J. Phys. A: Math. GerB2 (1999) 4833-4850. Printed in the UK PIl: S0305-4470(99)01746-1

Bethe ansatz solution for a defect particle in the asymmetric
exclusion process

B Derridat ad M R Evanst

T Laboratoire de Physique Statistique, Ecole NormaleeBepre§ 24 rue Lhomond, 75231 Paris
Cedex 05, France

T Department of Physics and Astronomy University of Edinburgh, Mayfield Road, Edinburgh
EH9 3JZ, UK

Received 9 February 1999

Abstract. The asymmetric exclusion process on a ring in one dimension is considered with a
single defect particle. The steady state has previously been solved by a matrix product method.
Here we use the Bethe ansatz to solve exactly for the long time limit behaviour of the generating
function of the distance travelled by the defect particle. This allows us to recover steady state
properties known from the matrix approach such as the velocity, and obtain new results such as
the diffusion constant of the defect particle. In the case where the defect particle is a second-class
particle we determine the large deviation function and show that in a certain range the distribution
of the distance travelled about the mean is Gaussian. Moreover, the variance (diffusion constant)
grows asL/2 whereL is the system size. This behaviour can be related to the superdiffusive
spreading of excess mass fluctuations on an infinite system. In the case where the defect particle
produces a shock, our expressions for the velocity and the diffusion constant coincide with those
calculated previously for an infinite system by Ferrari and Fontes.

1. Introduction and model definition

The asymmetric simple exclusion process (ASEP) [1] is a simple example of a driven lattice
gas [2] and as such is a system far from thermal equilibrium. The model comprises particles
hopping in a preferred direction along a one-dimensional lattice with hard core exclusion
imposed. The model’s broad interest lies in its connections to growth processes, the problem
of directed polymers in a random medium and Burgers equation [3, 4]. It is also a natural
starting point for many traffic flow models [5].

Multi-species variants of the ASEP have been considered [6—-10]. In particular the idea
of a second-class particle has proven useful [6]. The second-class particle hops forward as
usual when the neighbouring site is empty but is overtaken by the other particles. Therefore, it
moves forward in an environment of low density of particles and backwards in a high-density
environment. In this way a second-class particle can be used to locate shocks which are sudden
changes in density over a microscopic region [11-14]. A generalization of the second-class
particle idea to that of a defect particle [15, 16] has been shown to exhibit phase transitions
and, in particular, phase coexistence. Interpreted in the context of traffic problems, the phase
transition corresponds to the appearance of a traffic jam whereas coexistence between phases
of different densities corresponds to the coexistence between a freely flowing and a jammed
region in traffic. The model has also been interpreted in the context of a two-way road [17].
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Analytical results for the ASEP, such as the steady state of systems with open boundaries
[18,19], the diffusion constant [20], and the steady state for the second-class particle problem
[6, 15, 16] have been obtained via a matrix product technique [18, 21]. Recently it was shown
that a Bethe ansatz aprroach to the ASEP, used previously to calculate the gap and dynamic
exponent [22—24], could be extended to obtain all moments and the large deviation function
of the time integrated current [25-27]. Here we show that the Bethe ansatz can also be used
in the case of the defect particle and this allows us to generalize previous [15, 16, 28] results
obtained by the matrix approach.

Let us now define the model we consider [15, 16]. The model comprises a single defect
particle (indicated by 2) antf — 1 first-class (i.e. normal) particles (indicated by 1) on a ring
of sizeL sites. The hopping rates of the particles are as follows

10— 01 withrate 1
20— 02 with rate « (2)
12— 21 with rate S.

By this itis implied, for example, that in an infinitessimal time interva) afirst-class particle

hops to the neighbouring site to the right with probabilityfdhat neighbouring site is empty.
We restrict ourselves t@, 8 > 0.

2. Main results

Before discussing the technical details of the Bethe ansatz solution we summarize in this
section our main results. Let us denote pythe distance travelled (total number of hops
forward minus total number of hops backward) by the defect particle. In the steadystate,
arandom variable. Its first and second moments give the veloeibd the diffusion constant

A of the defect particle:

T {y)
v=lm = @)
2y _ y2
A = fim M 3)
All cumulants ofy, can be computed from the knowledge of the generating fun¢&ien via
n d” In[{e’)]
Ve = a . (4)
Y y=0

Here, by employing a Bethe ansatz technique we calculate exactly the laegpaviour
of this generating function namely
In[(e¥
M) = fim L) ©)

=00 t
for arbitrary L and M. Exact expressions af and A follow easily from the knowledge of
A(y):
2

d
v=——A(y) A:d_yz

A . 6
a . ) (6)

y=0
In the thermodynamic limitk, M large) with fixed density where

p=M/L (7)
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V= o—p v=1-2p

v=a-p | v=1-pp

0 1 ol Figure 1. Phase diagram for the model. The velocities in
-p the various phases are indicated.

our exact expressions fary) allow us to show that the velocityand diffusion constam of
the defect particle have the following asymptotic forms in different regions of the parameter
space ofx, 8, p:

A 1— p))2
For B>p and a>1-p v—>1-2p and L1/2—>(np( 4p)) (8)
1—
For B<p and a>1-p v—>1—-p—p and A—>ﬁ( B) ©)
p—p
1—
For 8>p and a<1—p v—>a—p and A—>f( o) (10)
—p—a
1-8)+a(l-
For B<p and a<1—p v—a—p and A—)ﬂ( 1,3) Ot(ﬂ oc)' (11)
o —

These results lead to a phase diagram (see figure 1) which has the same expressions for
the velocity and is the same upto labelling of phases as that given in [16]8 Forp and
a > 1— pitis known [6, 16] that the density profile, as seen from the defect particle, has
a power law decay towards its asymptotic value. In the two phgsesp anda < 1 — p
or 8 < pande > 1 — p the density profile decays exponentially towards the asymptotic
values. In the final phase there is coexistence between a region of low dgngityront of
the defect particle and high density—l«, behind the defect particle. Therefore, there is a
shock separating the two regions at a distantein front of the defect particle where is
given byp = Bx + (1 — w)x [15,16]. The novelty of this work is that, as we can calculate
A(y), all the higher cumulants of the distance travelled (including the diffusion constant) can
be calculated exactly for the different phases.
One should notice from (8) thatin the whole phAse p and :-a < p (whichincludesthe
case of asecond-class partigle- « = 1) the diffusion constant of the defect particle increases
with L. This is in contrast with the diffusion constant of the first-class particles [20,25] which
(inthe absence of a defect) decreaselsd4?. This difference between first- and second-class
particles is not a surprise since, for an infinite system, one expects the fluctuations of position
to be superdiffusive for second-class particles and subdiffusive for first-class particles [29, 30].
Furthermore, in the whole phase-lo < p < 8 we will show that\.(y) defined by (5)
is given in the largd. limit by

_ _ NZ_V _ 1-8 o 2 1/2\/m
Ay) = 7(1 2p>_L[z p(1+p_ﬂ+a_l+p>}+” !

12)
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on the scale wherg ~ O(L~%/?).

The fact that in a certain range the expression of(y) is quadratic implies that the
distribution of the variable, /t — (1— 2p) is Gaussian over a certain range. Itis easy to check
that the range which correspondste~ O(L~%/?)isy,/t — (1 — 2p) ~ O(1/L), so that over
that range, the distribution of this difference should be Gaussian.

In the following sections we give the derivation of (8)—(12).

3. Generating function for fluctuations in distance travelled

To calculater(y), we follow and extend the technique of [25, 26]. First, consiB&€, y)
which is the probability of the system being in configuraticand of the defect particle having
been displaced a distangénegative if the particle has been displaced backwards). The master
equation is

dr (C, y)

7 D IMo(C, CYP(C, y) + Ma(C.CHP(C, y — 1)+ M_1(C,CYP(C', y + D]
C/

(13)

where Mqy(C, C), M1(C,C"), M_1(C,C’) are rates for transitions fromd’ to C that do

not move the defect particle, move the defect particle forward, move the defect particle
backward, respectively. The total rate out of configuratiois given by —Mgy(C,C) =
ZC,;EC[Ml(C/, C) + Mo(C', C) + M_41(C’, ©)]. The generating function

F(C) = i}o: exp(yy) P(C, y) 14)
obeys o
dF(;t(C) = Z[MO(C, CHE(C) + & M1(C,CHYF(C)+€ Y M_1(C,CHFR(CN]. (15)
Now C
(€)=Y _F(©) (16)
c

so we expect as in (5)
() ~ et (17)

wherei(y) is the largest eigenvalue of the mati(y) = Mg + & M1 + e Y M_;. For

y = 0 we know thak.(y) = 0 becausé\(0) is a stochastic matrix. Now as in [25,26], by the
Perron—Frobenius theorem we know that the largest eigenvalié(¢f) is non-degenerate
therefore ag’ increases from zero there can be no crossing of the largest eigenvalue. Thus
A(y) is the eigenvalue that tends to zeroyatends to zero.

One should note in the present problem thatyfoe O the eigenvector with eigenvalue
zero (the steady state) is non-trivial and has previously been constructed by using a matrix
product [6, 16]. In the following sections we show how the Bethe ansatz can recover some
properties of this steady state in the limit> 0.

4. Bethe ansatz

Let a configuration of the particles on the ring be specified by the coordipates, .. ., x}
wherex; is the position of the defect particle amg < x3--- < xj, are the positions of the
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normal particles. By convention, one can always chdase. . x)} such that 1< x; < L
andx; < x; < --- < xy < x1+ L. With the dynamics (1) the equation for an
eigenfunctiony (x1, . . . xp7) of M(y) with eigenvalue.(y) takes the form: fox; < x;41—1
andxy < L +x; — 1 (i.e. when all particles are more than one lattice spacing apart):

A (x1,...xpy) =—(M —1+a)P(xy,...xy) +€a(x1—1,...xy)

M
+ZI/I(X1,...,)C,'—1,...)CM). (18)
i—2

Whenx; = x;41—1o0rx; = x;+L — 1 (i.e. for configurations where two consecutive sites are
occupied), equation (18) is in principle modified. Insisting that it remains valid even in these
particular cases, requires that the functiditxy, ... x,) take values in unphysical regions
(x;+1 = x; Or xp; = x1 + L) which satisfy the following conditions arising from the interaction

of particles:

A-—ByY(xy,..x1+L—-1) —€ay(x1—1,...x1+L—-1)=0 (29)
Yi.,x,x+1L . ) —v(..,x,x,...)=0 for 1<i<M (20)
ay(xy, x1+1..) —Y(x,x1...)+e€ "By (x1+1, x3,...,x1+L) =0. (22)
The Bethe ansatz consists of writing the eigenfunctidn,, ... x,) as
Yxy, . ..xy) =€t ZAQ(l)...Q(M)(ZQ(l))Xl o)™ (22)
0

where the sum is over all permutatio@f 1. .. M. The amplitudesiy1)...om) and the wave
numbers; ... z), area priori arbitrary complex numbers. This ansatz inserted into (18) gives
for the eigenvalue

M
1
k=

for any choice of the amplituded1)..om) and of the wavenumbets .. .zy. For (22) to
fulfil conditions (19)—(21), the amplitudes and the wavenumbers have to satisfy:

3 A-pz —1]

Aji=(= Aij 24
—1
A ji..= (=) Z 3 A ij... (25)
1

Aji.. = (—)m[(aZj —DA;j. +01,3Z5Z§“Ai...j +afzizf Al (26)
Using (24) and (25) allows (26) to be written as
n _(_)(azj—l)[lmﬂ 1 i~ ﬁ(l—z)]ft

ji... = (OlZi — 1) (aZj _ l)(sz _ 1)(Zj _ 1)M—1 2 — 1 it k ij...
(27)

where

b=1-5). (28)

Using (27) twice in succession yields, after some algebra, the following condition gp the

(@zi — 1)(bz; — D)(z; — M1 Y 1
|: —af 11:[1(1—Zk)1|rzi

7k

L

o o _1\M-1 M
_ [(‘“f DO~ D& =D T ]a- z;)} : @
k=1

- -.
% 1-z
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The wavefunction) (x1, . . . x)7) corresponding to the largest eigenvalige ) is invariant under
translation, therefore

M
(S 1_[ Ik = 1. (30)
One can rewrite the Bethe equations (29) in terms of two constgriisas follows:

M
C=E""p]J@-D (31)
k=1

E=-

L L L _1yM-1
1 [(azl Dbz — Dz — 1) +1] (32)

zi—1 FC
Under this form the Bethe equations (29) are much easier to solve. One firstfittoes
solutions of (32) (which depend on the unknown constar@sd E). Then by inserting these
solutions into (30) and (31), the constattand E are determined. In appendix A, we show
(see (Al14), (A15) and (A19)) that, in so doing, the eigenvalge) can be written as

1 =-2 5| 44 | atecr 39)
—ic—[f f]d—zftm e (34)

—Zl[1+(z - DE]
0(x) = 1
(bz—D(z—D(z-1)
and the constart is fixed by imposing

& [f ﬂz—m—[gwl" (36)

Asis shownin appendlx A the contours of integration in (33), (34) and (36) are small contours
which surround 1 and/kx but do not surround /b; the particular cases whese= 1,6 = 1
or « = b can be obtained easily as limiting cases since all the integrals which appear in the
right-hand side of (33), (34) and (36) are rational functions ahdg.

Equations (33)—(36) determine the exact expression(@j for arbitrary L, M, « and
B. The difference between these equations and the corresponding equations of [25] is that in
the present case we have an additional unknown constaitthis feature emerges from the
structure of the Bethe equations (29).

where

(39)

5. Exact expressions for the velocity and diffusion constant

In principle, one can use (36) to expafdn powers ofC. ReplacingE by its expansion in
powers ofC in (33) and (34) gives the expansionsioandy in powers ofC. Then one can
eliminateC between the two expansions and this gives powers ofy. This is what is done
in this section to obtain exact expressions of the velocity and of the diffusion constant.

For example, to obtain the velocity one can note from (34) thatvanishes linearly with
y so that from (36), the limiting valu€ (0) of E aty =0 is

E(0) = — LM

37
Xr m-1 (37)
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whereX y is defined by

1
ke [% %}Zm (z— DM (bz — L)(az — 1) (38)

Then from (33) and (34), one finds that fersmall A(y) = vy + O(y?), with the velocityv
given by

XemXrom—2—Xp m-1X1-2m-1

v=— . : : 39
Ziw (39)
where
Zivw=XemXr-am—2 — Xpm—1X1-1,m-1. (40)
Expression (39) may be simplified by using
Xem=Xraum+Xi1ma (41)
to obtain
Z_ —Zi_1m—
— L-1M L-1M 1' (42)
Zim

In a similar fashion one obtains from the second derivatives of (33), (34) and (363=a0,
after a good deal of straightforward but tedious algebra,

X1 m—
A= L’Z—Ml{WZL,ZMleLfZ,MfZ — War—22m—2X1.m-1
ZL,M
+u[War_1o0m—2X1 -1 — War om—1X1-1.m-2]} (43)
whereW,; »), is defined by
2L 2
z [1+EO)(z - 1]
War om = 44
2L.2m = [% f ]Zm (2 — DM (b7 — 1)2(az — 12 (44)
Expression (43) can be simplified by using (39)—(41) to obtain
XE -1
A=——Warom-1Zr-1m-1— War—22m-2Z1.m
ZL M

+Wor1om-2lZram — Zr-1.m-1]}- (45)
Alternatively, one could obtain (45) directly from (33)—(36) by using, for example,
Mathematica. The integrals in the above expressions can be evaluated by residues. In this
way one can show that the integral expressionsZpr, andv given by (38), (40) and (42)
are equivalent to those derived in [15, 16] within the matrix product formulation. However,
exact evaluation of the integrals involved in the diffusion constant (45) results, in general, in
cumbersome expressions.

Remark. For the case of a second-class partiagle{ 8 = 1) simplification of (45) is possible
and one recovers the expression first presented in [28] which was originally obtained using a
matrix approach:

Ao (2L — 3)! (M — DV (L — M) T?
T T@M =D)L — 2M + 1)! [ (L = 1) ]
x[(L —5)(M — 1)(L — M) + (L — 1)(2L — 1)]. (46)

The derivation of (46) from (45) is tedious and not illuminating, therefore, we do not
present it. In principle, the matrix approach could be extended to calclébe generake
and g [31] but such an expression far has not been obtained due to the complexity of the
calculation.
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6. Asymptotics and phase diagram

In order to obtain the phase diagram it suffices to determine the asymptotic forn sf
which in turn determines the asymptotic form of the velocity (42). We carry this out in detail
in appendix B, but would like to outline here how the different phases arise. We restrict
ourselvest® < 1 (b > 0) ande < 1.

Considerthe quantit¥; ,, given by (38). Inthelimitof., M large (with fixedo = L/ M)
there are three possible dominant contributions to the integral, all lying on the real axis: a saddle
pointatz. = 1/(1— p); apole at; = 1/b and a pole at = 1/«. The possible dominant and
subdominant contributions &, , gives rise to four phases as follows.

(1) If 1/ < z. < 1/b the contours of the two integrals in (38) may be merged and deformed
to pass through the saddle point. Therefore, only the saddle point contributes.

(2) If 1/a < z. and ¥b < z. the contours of the two integrals may be merged and deformed
to pass through the saddle point. However, the contour must make a clockwise detour
around the pole af = 1/b. Therefore, the pole at= 1/b is the dominant contribution
and the saddle point is the subdominant contribution.

(3) If1l/a > z. and Vb > z. the two integrals give separate contributions. The pole at
z = 1/« gives the dominant contribution and the integral arogiag 1 may be deformed
to pass through the saddle point and gives the subdominant contribution.

(4) If 1/a > z. > 1/b the two integrals give separate contributions: the poke-atl/« and
the clockwise integral around the polezat 1/b.

In appendix B the dominant contributions to the desired integrals are evaluated and
expressions (8)—(11) are established. At this point we can already see the interesting feature
that sinceZ in (40) is a difference of products &f, the subdominant contribution as well as
the dominant contribution to the integr&l must be evaluated to obtaifi and the velocity.

Also note that in phase whergd < z. < 1/b, power law decays in correlation functions,

for example the density profile, will arise from the saddle point being dominant. In the other
phases a dominant pole will give rise to exponential decays. Of particular interest is the phase
where Yo > z. > 1/b and the two poles compete. As described in the introduction, this is
the phase where a shock exists.

7. Scaling of the large deviation function for 1— a < p < 3

In this phase, because the integrals are dominated by the saddle point, the analysis of the
asymptotics of the exact expressionidf/) given by (33)—(36) is rather different from the
other cases. In these expressions a contour integral actually implies two integrals around
z = 1andz = 1/« butin this phase, for large, one expects all the integrals to be dominated

by their saddle point. = 1/(1 — p). So, to lighten the notation we write a single integral.

Let us replace the variablesaand E in (33)—(36) byy and F

2=2z:ty 47

and

1 1 F
+

ze—1 z.— 1L
Clearly, the values of which contribute to the integrals in (33), (34) and (36) are of order
y = O(L~2?) so that one can rewrite (33), (34) and (36) as

S3

1 2 3 4
Aly) = _?SO+ES1_ESZ+Z_§S3+O<W) (49)

E=—

(48)

c
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1 1 1 1 S3
r==se s e 9o )
1 1 1 1 S3
0= So — S+ So — S3+0(| ——=
217 -1 @ -3 @ —1*° <L1/2>

whereS, is given by

O [ dy - P BT
Sp_27¢2_7'[i|:R(y)(zc—1+z+L(Zc_l)>j| yp

n>1

with
1 (z¢ +)’)L
(A —bz. —by)(azc+ay —1) (zc+y — 1)M71'

R(y) =

4841
(50)

(51)

(52)

(53)

Under the assumption (which we will check later) tirais of order one (in the largg limit),

if we define

g(y) =log(zc +y) — plog(zc — 1 +y)

we can evaluate the leading orders of the integrals (52).
For p odd the leading largd. behaviour is given by

3

()% 1-p D 1 \'*2
S, ~ P_— !
V2 p LYz \g"(0)

where
1-z
(bze = D(aze — 1)’
For p everthe leading order in the range whdbeis of order one is

D = Cels©

P45

(DF D (L NE L 02
S, >~ Fg"(O -l
PV LR (g"(0>> { cOr D

1-p)2 1 b
o pp) [;_p+b—l_a—oi+p}g”(o)(p+l)”
_1__/’&(17+3)n}

0 6

D2 (1-p\° 1 1 \% (-7
+— 5 (p+ D
2 Iy Lz \2g"(0) N

where we defingp — 1!l = 1 for p = 0. F is fixed through (51) by
S12 (ze — DSo
and from (49) and (50) we obtain

! S
2ze—-D "

) 2—2z N
oy T 23z — 12

Using (55) and (57), (58) gives

Yy =

[S3(2 - 3ZC) - SZZC(l - Zc)]'

1 1+p b o D
~ — + + +
1—-p) p b=1+p a—-1+p| p(l—p)252

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)
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which is consistent with our earlier asumption tlkats of order one. From (59) and (60) we
find
—-D

V= Tz Lo (©2)
AY) —y(1—2p) ~ Z—V[z—p(u 1-5 + >i|+y2L1/2—Vﬂp(l_p) (63)
L p—B a—-1+p 8

as announced in (12).

8. Discussion

In this paper we have shown how the Bethe ansatz can be used to calculate exactly via (33)—
(36) the large deviation function of the displacement of the defect particle. By analysing the
asymptotics of (33)-(36) we could recover the velocity and phase diagram [15, 16] of the
asymmetric exclusion model with a moving defect. The approach also allows new results
(such as all the cumulants of the displacement of the defect) to be obtained, in particular
the diffusion constant of the defect particle in the various phases. This adds to the body
of knowledge concerning diffusion constants within the asymmetric exclusion process. For
example the exact expression for the diffusion constant of a first-class particle calculated in [20]
allowed the determination of a universal amplitude for the centre of mass fluctuation for growth
processes described by the one-dimensional KPZ equation [4]. The diffusion constant of a
second-class particle is of interest since it is closely related to the motion of shocks. In [14]
the diffusion constant for a second-class particle starting at the origin of an infinite lattice with
a shock initial condition was calculated. Our results (11) for the phase exhibiting a shock
(B < p < 1— «a) exactly agrees with that of [14]. This is of interest since it shows that a
single defect can provoke a shock in the ring geometry with the same behaviour as a shock on
the infinite line [33]. If the fluctuations of the shock on a ring with a defect are identical to the
fluctuations of the shock on an infinite line, this means that our results (33)—(36) should give
the whole large deviation function of a shock position on an infinite line. The behaviour of
shocks and shock fluctuations is also connected to the phase diagram and density profile for
systems with open boundary conditions [34].

Wheny — 0 the wavefunction (22) reduces to the steady state probabilities for each
configuration. Therefore, in principle, the steady state of the system, previously constructed
using a matrix product [6,15,16], can be extracted from the present Bethe é28dty taking
the limity — 0. This shows that a coordinate Bethe ansatz is capable of describing non-trivial
steady states of stochastic systems. In particular, it would be interesting to understand further
how this works and to see if the approach might be generalizable to larger numbers of species.
The matrix product steady state of the present model is very closely related to that of the ASEP
with open boundary conditions [6,18]. It would be of great interest to determine whether some
implementation of the Bethe ansatz, perhaps related to that of the present work, could be used
to recover the steady state with open boundary conditions. A major difficulty in doing so is
that the particle number is not conserved with open boundaries.

Returning to the case of a second-class particle, it is of interest to review how its dynamics
are related to the spreading of excess mass. The central idea, termed coupling [1], is well known
in the mathematical community but less so within physics. Consider two systems containing
only first-class particles, identical except that one systenihaarticles and the othéd — 1
particles. The two systems start from initial conditions differing only by the position of the
extra particle in the system with/ particles. In order to implement the dynamics one can
consider at each time step randomly choosing a pair of sites 1 to update; then if there is
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particle at site and a hole at siteé+ 1 the particle is moved forward. In the dynamics let us
choose the same pairs of sites in the two systems at each update (one can think of using the
same random numbers in a Monte Carlo program). Now it is easy to convince oneself that
after any length of time the configurations of the two systems will differ only by the position of
the extra particle (note that if we label the particles, the label of the extra particle will change
under the dynamics). Further, one can convince oneself that the position of the extra particle
has precisely the dynamics of a second-class particle in the ASEP. Conversely, the system
comprisingM — 1 first-class particles and one second-class particle that we have studied
describes the motion of an extra particle added to a systevh-efl particles. Therefore, the
diffusion constant of the second-class particle we have calculated here serves to describe the
spreading of excess mass in the ASEP.

Approximate calculations such as mode coupling [29, 32] have led to the following
understanding of the motion of excess mass fluctuations: the drift speed i8plas in
(8) for @ = B = 1 and the spreading of density fluctutations around the drift grow$'4s
on an infinite system i.e. it is superdiffusive. This superdiffusive motion can be recovered
from the L2 finite system size dependence (8) of the diffusion constant of a second-class
particle [28] if we assume that a scaling form holds and the variance of the distance travelled
by the second-class particle can be written as

(V3 = ()2 ~tLY2 f(¢/L%) (64)

wherez is the dynamic exponent antix) is a scaling function tending to a constantas- co.
Now the dynamic exponent for the ASEP is known by the Bethe ansatzzte:b%[23,24] and
we expect the same exponentin the present model. In thellimit oo for large but fixed, the
variance(y?) — (y,)? should not depend on system size therefore the scaling function must obey
f(x) ~ xY% asx — 0. We then find in this infinite system limit th&g?) — (y,)? ~ t¥3 so
that the typical spread of density fluctuations grows’&s The spreading of mass fluctuations
is also related to the scaling lengdth~ %3 of the KPZ equation in one dimension (see [4] for
detailed discussion).

Finally, let us mention that one can easily extend the calculation of this paper to calculate
the joint distribution of the distancg covered by the defect particle and of the total distance
Y, covered by all the first-class particles. One can show that

| eJ/Yr+8Yr
My.8) = lim M (65)
is still given by (23) for arbitrary. and M where thez; and the constants and E satisfy:
M
et My [T =1 (66)
k=1
M
C=)""ope" [ — D (67)
k=1

instead of (30) and (31) with (32) unchanged.
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Appendix A. Analysis of the Bethe ansatz equations

The solution for{z;} of (30)—(32) which gives. — 0 asy — 0 is of the formz; — 1/« and

7z — 1for2 < k < M. We analyse separately the cageg 1 ande = 1 and for simplicity
assume3d # 1 andpg # « although there is no problem in extending the analysis to include
these cases.

Casea # 1. Consider the root; and theM — 1 rootsz, for 2 < k < M of (32) which we
rewrite as

=DM bz — D@z — 1D +z*C[1+(z—DE] =0 (A1)
such that; — 1/« andz; — 1 asC — 0. Define
7M1+ (z - DE]
R = A2
@ = D=1 (A2)
then if z; is a root of (A1) such that; — 1 asC — 0 one has for small’
o =1+[CE™ R(zp)] 7. (A3)

We wish to calculate expressions (23), (30) and (31) of the fpiph(zx) (e.9. equation (23)
whereh = 1/z). If h(z) is analytic neat = 1, one has by the residue theorem

— [CET*R()] 1R (2)/[(M — 1) R(2)]
— [CeR(2)] 7
where the contour is a circle centred on one and of radiusth |C|ﬁ L ekl (To

understand (A4) notice that the numerator is just the derivative of the denominator.) Expanding
in powers ofC w1 and after an integration by parts, this gives

d 1
h(zi) = f—z “ h(z2) (A4)
1 471l

_ o~ L czini o [R(2)] ¥
h(zk>—h(1)+p;p[0e2 ] 514 Oy —1>P' (A5)
Then summing over the roots k < M leads to
S N 1, [R(2)]"
> hie) = (M- DHD+Y e foro S0 9
Similarly, if 2(z) is analytic near = 1/« and we define
_ 21+ (@ - DE]
S = - D=1 (A7)
then
1-CS' (@
h(z1) = fé/a o h(z )TS() (A8)

where the contour is a circle centred ofwland of radiuse with |C] <« € « 1. After
expanding in powers af and an integration by parts, this gives

_ 1 . C" dz [S@)]"
Man =h (a) P 7§ it O L (A9)
Therefore, if one define@(z) by
—z"[1+(z — DE] R(2) $(2)

Q) = G T D@ —De-—D" 1 G_p¥ i ;1 (A10)

o
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one finds by combining (A9) and (A6)

Zh(m—(M 1>h<1>+h() C[f f ]—h@[Q(z)l" (AL1)
n=1

Writing (23) and (30) as

Ay) = —(M — 1+a)+2— (A12)
= le

M
—loger — ) "logz, (A13)
k=1
one finds that

x<y>=—i%[y§ § |z atecr (14)

n=1

> [75 f]——[g( N (A15)

whereQ(z) is given by (A10). Then, with the use of (A3), replacing (31) by

M
1 1
-z [[IR@I™ = = (A16)
k=2 op
and using the fact (A6) and (A9) that
1 M
=In@p) +In(L—z0) + ——— ; In R(zx) (A17)

11 R'@[R@]" 1 s@r
= ZTﬁ[—M_lfdz o D ﬁd Z—l(z—ﬁ)”] (A18)

n=1
one finds that (31) is sat|sf|ed if

y & [?ﬁ N——[Q( ba (A19)

—zM1+ (z — DE]

Casex = 1. Let

P(z) = oD : (A20)
Then if z; is the root such thay, — 1 asC — 0 with for smallC
2 = 1+[CEE™ P(z)]¥ (A21)
and if h(z) is analytic near = 1, one has
ik
hz) = ?g gz, 1 [Ce2 P(Z)] P! (Z)/[MP(Z)] (A22)
1 27l — [Ce?imk P(2)]
Then summing over the rootsQ k < < M 1leads to
n [P(2)]"
Z h(z) = Mh(1) + Z g — )W (A23)

Therefore, the equatlons for case= 1 are given by exactly the same expressions as the case
a # 1 (33), (34) and (36) with the replacement

ot ]
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Appendix B. Asymptotic evaluation of velocity and diffusion constant

Evaluation of the velocity

For 1/a < z. and1/b > z.. In this phase (38) is dominated I$y , the saddle point
contribution

Xim=Sc,m+0(SL,m/L) (B1)
where

1 [p(1 = p)]*? zt
V2rL (b+p—D(a+p—1) (zo. — DM’

However, the leading contributions %, , cancel in (40). To evaluate the next leading
contribution we writeZ, 4, as a double integral using8)

Se.m = (B2)

. 7{ dz 7L ZL
M T 2mi bz — 1)(Otz —1) 2m b7 — 1)(0tz —D(-DME—1M
LEZDE-9 (B3)
Z

The double integral is dominated by the saddle peist z = z. = 1/(1 — p) and can be
evaluated to be

,oSf M
Zp oy~ ———. B4
L (B4)
From (42) one obtains = 1/z. — (z. — 1)/z., so that
v=1-2p (B5)

asin (8).

Forl/a < z.andl/b < z.. Asexplainedinsection 6, inthis phase the dominant contribution
to (38) is the pole at B and the saddle point is subdominant:

Xem=Brm+Se.m+0(SL,m/L) (B6)
whereB represents the contribution of the clockwise contour around thezpselé/b

1 1
B = . B7
LM (1= hyMpL—M (B7)

Therefore, from (40)

1— bz.)?
ZL,M ~ QBL’MSL,M (B8)
bz,
and from (42)
v=1-f-p (B9)

asin (9).
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For 1/a > z.and1/b > z.. In this phase the pole at/& is the dominant contribution to
(38) and the saddle point is subdominant

Xem=Arm+Se,m+0(SL m/L) (B10)
whereA | y is given by

1 1
b—a(l—a)Mgl-M"

Z; y may be determined by symmetry considerations from the previous phase: under
interchange oft andb (B6) becomes (B10) and (B8) becomes

o Q—az)?

Apm = (B11)

Zim AL mSL.m (B12)

and we find
v=a—p (B13)
asin (10).

For 1/a > z. and1/b < z.. Inthis phase

Xem = Apm+ Br oy +O(SL m) (B14)
so that

Zimx i a)ZAL,MBL,M (B15)
and

vea—B (B16)
asin (11).

Evaluation of the diffusion constant

In order to compute the diffusion constant given by (45)

Ur.u (B17)

where

Urm =Worom-1Zr—1m-1+Wor_1om—2(Zi—1.m — Zr—1m-1) — War—22m—2Z1 m
(B18)

we need first to evaluate the asymptoticé/gf,,. Using the integral definitions (44) and (B3)
we may write (B18) as

U dw w? [1+ E@QO)(w — 1)]? dz L 1
M= 7§ 271 (w — 12 (bw — 1)2(qw — 1)2 ?g 271 (z — DM (bz — 1)(az — 1)
" E ZL Z-Diz—-2) w—1lw—zw-—-2
271 Z — DM (b7 — D(az — 1) w? Z 72

(B19)
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For 1/a > z. and1/b > z.. In this phase all integrations are dominated by their saddle
points. However, care is required to correctly identify the first non-vanishing contribution
to (B19). This is done most systematically by considering the scaling of the large deviation
function and we carry this out in section 7 where we show

A~ Lrpd— )"

" (B20)

Forl/a < z.and1/b < z.. To evaluate (B19) we carry out the integrals in sequence. In the
firstintegral ovet we keep ampparentlysubdominant term (proportional 8 ,,) as well the
term proportional taB,, ,;, because when we integrate oyewe find both terms give leading
contributions proportional t8, B, ) i.e. the dominant contributions to the triple integral
come fromw at the pole, one of, 7 at the pole and the other at the saddle point:

U~ yg duw w2l=2  [1+ E@Q)(w — 1]? 743 7t 1
EM=F 201 (w — D2M-1 (bw — 1)2(aw — 1)2 | 27i (z — DM (b7 — D(az — 1)

[ (b — D)(bw — 1)(w — 2)(bz — 1)
x| BL.m

’ bz

S0y (ze = D(w — Z;ziw —2)(zc — z)}

~

dw 2L-2 1+ E@O)(w — D]?
% w [ (0)( )] St wBiw

271 (w — 1)2M-1 (hy — 1)2(qw — 1)2
5 [(b —Dbw — DY(w — z.)(bze — 1)

bz,
+(Zc —D(w — zo)(bw — D) (bz, — 1)]
bz2
_s B (bze — 1)? % dw w7 [1+EOQ)w - DP(w - z)
T ORMELM T2 271 (w — D21 (bw — 1)(aw — 1)2
2
~ 5B, 3 b)(zbzz" ) [1 +E(0) <¥>} : (B21)

In this phase the behaviour (B6) and the form of (B7) and (B2) imply #1@) given by (37)
becomes

b A—bz:) St.m
E©) ~ — 1 : . B22
© 1—b[ Ao BL,M] (822)
Therefore
ch - 1)5
~ 53, By y e B2
Uy = S; yBrm 20-b) (B23)
and (B17) along with (B8) and (B6) arid= 1 — 8, yields
A~ BA=B) (B24)
p—p

asin (9).
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For 1/a > z. and1/b > z.. For this phase the evaluation of the integral (B19) is very
similar to that outlined above for the previous phase, witteplacingb. In carrying out the
final integral overw a factor of—1 is introduced due to the opposite directions of the integral
around Y« and ¥/b. Therefore, one obtains the diffusion constant by interchangiagd
1— «in (B24) and multiplying by—1
1-—
A~ 210 (B25)
l-p—«
asin (10).

For 1/a > z. and1/b < z.. In this phase it turns out that the dominant contributions to
U..m come from one ot, z at the pole 1b and the other at the pole/d@ andw at either of
the two poles. Carrying out the integrals in (B19) in sequence gives

dw w?2  [1+EQO)(w-1]? dz <t

271 (w — )21 (hw — 1)2(qw — 1)2 7§ 271 (z — DM

(¢ —D(w—2)(aw —1) . (b—l)(w—z)(bw—l)i|
a(bz — 1)z LM b(az — 1)z

b-—a)? fdw w2 [1+EO0w-D]?

b 74 271 (w — M1 (bw — 1)(aw — 1)

31 N2
~ AL,MBQ‘_M—(I’ “)a(l b) [1+E(O) (—1 : b)}

a3l N
+A2MBL,MW [1+E(O)<1aa>] . (B26)

First considetB, i > A y. Then due to the form ok, (B14) in this phase one has

UL’MZ

X |:AL,M

~ A uBrum

EQ) ~——2 |1+ ©@=b) Avw ) (B27)
1-b (1—-b)a By u
Both terms in (B26) contribute and one obtains
a3 (b —a)®
Upm =~ AL,MBL.Mm[b(l_b) +ta(l—a)]. (B28)
Then (B14), (B15) and (B17) imply
A~ BA=Pte—a) (829)
1-8—«
asin (11).
In the case wherd, v > B u
a (b—a) Bru
E0) ~ — 1+ . B30
() 1—0[|: b(l—Ol)AL’MiI ( )

however, it turns out that one obtains the same expression for the diffusion constant (B29).
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