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Shift in the velocity of a front due to a cutoff
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We consider the effect of a small cutoff € on the velocity of a traveling wave in one dimension. Simulations
done over more than ten orders of magnitude as well as a simple theoretical argument indicate that the effect
of the cutoff € is to select a single velocity that converges when € —0 to the one predicted by the marginal
stability argument. For small &, the shift in velocity has the form K (Ing) 2 and our prediction for the constant
K agrees very well with the results of our simulations. A very similar logarithmic shift appears in more
complicated situations, in particular in finite-size effects of some microscopic stochastic systems. Our theoret-
ical approach can also be extended to give a simple way of deriving the shift in position due to initial
conditions in the Fisher-Kolmogorov or similar equations. [S1063-651X(97)01609-7]

PACS number(s): 02.50.Ey, 03.40.Kf, 47.20.Ky

I. INTRODUCTION

Equations describing the propagation of a front between a
stable and an unstable state appear [1-7] in a large variety of
situations in physics, chemistry, and biology. One of the sim-
plest equations of this kind is the Fisher-Kolmogorov [1,2]
equation

oh  h 5
E:W'Fh—h s (1)

which describes the evolution of a space- and time-
dependent concentration /(x,f) in a reaction-diffusion sys-
tem. This equation, originally introduced to study the spread
of advantageous genes in a population [1], has been widely
used in other contexts, in particular to describe the time de-
pendence of the concentration of some species in a chemical
reaction [8,9].

For such an equation, the uniform solutions ~=1 and
h=0 are, respectively, stable and unstable and it is known
[3,7,10—12] that for initial conditions such that 4(x,0)—1 as
x——oo and h(x,00—0 as x— +o there exists a one-
parameter family F, of traveling-wave solutions (indexed by
their velocity v) of the form

h(x,t)=F,(x—vt), (2)

with F, decreasing, F,(z)—1 as z——% and F,(z)—0 as
z—. The analytic expression of the shape F', is in general
not known, but one can determine the range of velocities v
for which solutions of type (2) exist. If one assumes an ex-
ponential decay

F,(z)=e " forlarge z, (3)
it is easy to see by replacing Egs. (2) and (3) in Eq. (1) that
the velocity v is given by
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1
v(v)=7+;. (4)

As v is arbitrary, this shows the well-known fact that the
range of possible velocities is v=2. The minimal velocity
vy=2 is reached for yy=1 and for steep enough initial con-
ditions 2 (x,0) (which decay faster than e~ ¥0*), the solution
selected [3,4,6,7,10—12] for large ¢ is the one corresponding
to this minimal velocity v,.

Equations of type (1) are obtained either as the large-scale
limit [5,8,13—16] or as the mean-field limit [17] of physical
situations that are discrete at the microscopic level (particles,
lattice models, etc.) As the number of particles is an integer,
the concentration /(x,?) could be thought of as being larger
than some &, which would correspond to the value of i (x,?)
when a single particle is present. Equations of type (1) ap-
pear then as the limit of the discrete model when &£—0.
Several authors [8,13,14] already have noticed in their nu-
merical works that the speed v, of the discrete model con-
verges slowly, as e tends to 0, towards the minimal velocity
vo. We believe that the main effect of having € #0 is to
introduce a cutoff in the tail of the front and that this changes
the speed noticeably.

The speed of the front is in general governed by its tail. In
the present work, we consider equations similar to Eq. (1),
which we modify in such a way that whenever h(x,?) is
much smaller than a cutoff &, it is replaced by 0. The cutoff
e can be introduced by replacing Eq. (1) by

h
=5 = (h=h)a(h), ®)
with
a(h)=1 if h>e,
a(h)<1 if h<e. (6)

For example, one could choose a(h)=1 for h=¢ and
a(h)=hl/e for h=<e. Another choice that we will use in Sec.
IV is simply a(h)=1 if h>¢ and a(h)=0 if h=<e.

2597 © 1997 The American Physical Society



2598

The question we address here is the effect of the cutoff &
on the velocity v, of the front. We will show that the veloc-
ity v, converges, as e —0, to the minimal velocity v of the
original problem (without a cutoff) and that the main correc-
tion to the velocity of the front is

2.2
™Y 1
Ve=VoT 5 U (7o) (Ine)? (7)

for an equation of type (1) for which the velocity is related to
the exponential decay vy of the shape (2) by some relation
v(y). (Everywhere we denote by v, the minimal velocity
and 1y, the corresponding value of the decay vy.) In the par-
ticular case of Eq. (1), where v(y) is given by Eq. (4), this
becomes

77_2

2- (Ing)*

®)

V=

In Sec. IT we describe an equation of type (1) where both
space and time are discrete, so that simulations are much
easier to perform. The results of the numerical simulations of
this equation are described in Sec. III: as e —0, the velocity
is seen to converge like (Ing)~? to the minimal velocity v,
and the shape of the front appears to take a scaling form.

In Sec. IV we show that for equations of type (1) in the
presence of a small cutoff & as in Eq. (5), one can calculate
both the shape of the front and the shift in velocity. The
results are in excellent agreement with the numerical data of
Sec. III.

In Sec. V we consider a model defined, for a finite num-
ber N of particles, by some microscopic stochastic dynamics
that reduces to the front equation of Secs. III and IV in the
limit N—oc. Despite the presence of noise, our simulations
indicate that in this case too the velocity dependence of the
front decays slowly [as (InN) 2] to the minimal velocity v,
of the front.

II. DISCRETE FRONT EQUATION

To perform numerical simulations, it is much easier to
study a case where both time and space are discrete vari-
ables. We consider here the equation

hx,t+1)=g(x,1) O(g(x,1)—¢), (9a)
where
gx,t)=1—[1—ph(x—1,0)—(1—p)h(x,1)]*>.  (9b)

Time is a discrete variable and if initially the concentration
h(x,0) is only defined when x is an integer, h(x,t) remains
so at any later time. Because 7 and x are both integers, the
cutoff & can be introduced as in Eq. (9) in the crudest way
using a Heaviside O function. [We have checked, however,
that other ways of introducing the cutoff & as in Egs. (5) and
(6) do not change the results.]

Equation (9) appears naturally (in the limit £=0) in the
problem of directed polymers on disordered trees [17,18]
(where the energy of the bonds is either 1 with probability p
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TABLE I. Values of y, and v, for some p when £=0.

)4 0.05 0.25 0.45
Yo 2751 111... 2553244 ... 4.051 851 ...
Vo 0.451818... 0.810710. .. 0.979 187 ...

or 0 with probability 1 —p). At this stage we will not give a
justification for introducing the cutoff €. This will be dis-
cussed in Sec. V.
We consider for the initial condition a step function
h(x,0)=0

if x=0,

h(x,00=1 if x<O. (10)
Clearly, for such an initial condition, 2 (x,r)=1 for x<<0 at
all times. As h(x,t)=1 behind the front and h(x,t)=0
ahead of the front, we define the position X, of the front at
time ¢ by

+ o0

X,= >, h(x.1). (11)
x=0
The velocity of the front v, can then be calculated by

. Xf
vgzhmT:(X,H—X,), (12)

t—o

where the average is taken over time. [Note that as h(x,7) is
only defined on integers, the difference X,,;—X, is time
dependent and has to be averaged as in Eq. (12).]

When £=0, the evolution equation (9) becomes

h(x,t+1)=1—[1—ph(x—1,0)—(1—p)h(x,1)]>.

As for Eq. (1), there is a one-parameter family of solutions
F, of the form (2) indexed by the velocity v which is related
as in Eq. (3) to the exponential decay vy of the shape by

v(y)=lyln[2pe"+2(1—p)]. (14)

[This relation is obtained as Eq. (4) by considering the tail of
the front where h(x,t) is small and where therefore (13) can
be linearized.]

One can show that for p<<1/2, v(+y) reaches a minimal
value v, smaller than 1 for some 7y,, whereas for p=1/2,
v(7) is a strictly decreasing function of vy, implying that the
minimal velocity is vy=lim,_,v(y)=1. We will not dis-
cuss this phase transition here and we assume from now on
that p<1/2. Table I gives some values of v and 7y, obtained
from Eq. (14).

It is important to notice that for p<<1/2, the function v (y)
has a single minimum at y,. Therefore, there are in general
two choices y; and vy, of vy for each velocity v. For v # v,
the exponential decay of F,(z) is dominated by
min(y,,y,). As v—uv,, the two roots y, and 7y, become
equal and the effect of this degeneracy gives (in a well cho-
sen frame)
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FIG. 1. Difference vy—uv, for p=0.05, 0.25, and 0.5. The sym-
bols represent the result of our numerical simulations and the solid
lines indicate the prediction of the analysis of Sec. IV.

FUO(z):Aze“/OZ for large z, (15)
where A is a constant. This large-z behavior can be recov-

ered by looking at the general solution of the linearized form
of Eq. (13),

h(x,t+1)=2ph(x—1,6)+2(1—=p)h(x,t). (16)

III. NUMERICAL DETERMINATION OF THE VELOCITY

We iterated numerically Eq. (9) with the initial condition
(10) for several choices of p<<1/2 and for & varying between
0.03 and 10~ 7. We observed that the speed is usually very
easy to measure because, after a short transient time, the
system reaches a periodic regime for which

hix,t+T)=h(x—Y,1) (17)
for some constants 7 and Y. The speed v, of the front is then

simply given by

(18)

V=

NI~

For example, for p=0.25 and e =103, we find T=431 and
Y =343, so that v,=343/431. The emergence of this peri-
odic behavior is due to the locking of the dynamical system
of the h(x,t) on a limit cycle. Because Y and T are integers,
our numerical simulations give the speed with an infinite
accuracy.

For each choice of p and €, we measured the speed of the
front, as defined by Eq. (12) and its shape. Figure 1 is a
log-log plot of the difference vy—uv, versus ¢ (varying be-
tween 0.03 and 10~ !7) for three choices of the parameter
p. The solid lines on the plot indicate the value predicted by
the calculations of Sec. IV.

We see in this figure that the velocity v, converges slowly
towards the minimal velocity v, as e —0. Our simulations,
done over several orders of magnitude (here 15), reveal that
the convergence is logarithmic: vy—v .~ (Ing) 2.

As the front is moving, to measure its shape, we need to
locate its position. Here we use expression (11) and we mea-
sure the shape s,(z) of the front at a given time ¢ relative to
its position X, by
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FIG. 2. Normalized shape of the front s,(z)e”0* versus z for
p=0.25 and several choices of ¢.

s.(z)=h(z+X,,1). (19)

When the system reaches the limit cycle (17), the shape
s.(z) becomes roughly independent of the time chosen. (In
fact, it becomes periodic of period T, but the shape s, has a
smooth envelope.) We have measured this shape at some
arbitrary large enough time to avoid transient effects. As we
expect s.(z) to look more and more like F vo(z) as & tends to

0, we normalize this shape by dividing it by ¢ ~ Y0*. The result
s.(z)e?0 is plotted versus z for p=0.25 and £=10"",
1071, 10713, 10715, and 107" in Fig. 2.

On the left-hand side of the graph, our data coincide over
an increasing range as & decreases, indicating that far from
the cutoff, the shape converges to expression (15) of
F vo(z). On the right-hand side, the curves increase up to a

maximum before falling down to some small value that
seems to be independent of £. When ¢ is multiplied by a
constant factor (here 1072), the maximum as well as the
right-hand side of the curves is translated by a constant
amount. This indicates that for € small enough, the shape
s¢(z) in the tail (that is, for z large) takes the scaling form

<

5.(z)=|Ing| G( )e_yoz. (20)

|Ing|

We will see that our analysis of Sec. IV does predict this
scaling form. As one expects this shape to coincide with the
asymptotic form (15) of F, (z) for 1 <z<<|Ingl, the scaling

function G(y) should be linear for small y.

IV. CALCULATION OF THE VELOCITY
FOR A SMALL CUTOFF

The first remark we make is that as soon as we introduce
a cutoff through a function a(h), which is everywhere
smaller than 1, the velocity v, of the front is lowered com-
pared to the velocity obtained in the absence of a cutoff. This
is easy to check by comparing a solution %.(x,7) of Eq. (5),
where a(h) is present, and a solution %y(x,t) of Eq. (1). If
initially 4 ,(x,0)<hy(x,0), the solution &, will never be able
to take over the solution &,. Indeed, if the two functions
h.(x,0) and hy(x,0) were to coincide for the first time at
some point x, we would have at that point
*h,19x*<3*hy/dx* and together with the effect of a(h)
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this would bring back the system in the situation where
ho(x,1)<ho(x,t) [3,7]. This shows that v, <v,.

For the calculation of the velocity v,, we will consider
first the modified Fisher-Kolmogorov equation (5) when the
cutoff function a(h) is simply given by

a(h)=0(h—¢). (21)

In this section we will calculate the leading correction to the
velocity when ¢ is small and we will obtain the scaling func-
tion G that appears in Eq. (20). Then we will discuss briefly
how our analysis could be extended to more general forms of
the cutoff function a(h) or to other traveling-wave equations
such as Eq. (9).
As v, is the velocity of the front, its

s(z)=h(z+vt,t) in the asymptotic regime satisfies

shape

vgs;+s;’+(ss—s§)a(sg)=0.

When ¢ is small, with the choice (21) for a(h), we can
decompose the range of values of z into three regions: region
I, where s.(z) is not small compared to 1; region II, where
e<s.(z)<<1; and region III, where s.(z)<e.

In region I, the shape of the front s, looks like Fy

whereas in regions II and III, as s, is small, it satisfies the
linear equations

ves.tsi+s,=0 inregionII, (22)

ves.tsi=0 inregion IIL (23)
These linear equations (22) and (23) can be solved easily.
The only problem is to make sure that the solution in region
II and its derivative coincides with F v, At the boundary be-

tween I and IT and with the solution valid in region III at the
boundary between II and III. If we call A the shift in the
velocity

A=vy—v, (24)

and if we denote y,*ivy; the two roots of the equation
v(y)=v,, the shape s, is given in the three regions by

se(z)=F,(z) inregionl,

sg(z)=Ce™ "sin(y,;z+D) inregionlIl, (25)

s.(z)=ge v=:7%) in region III,

and we can determine the unknown quantities C, D, z, and
v, by using the boundary conditions.

For large z we know from Eq. (15) that
FUO(z)zAze_”OZ for some A. Therefore, as y,— y,~A and

vi~A'2, the boundary conditions between regions I and II
impose, to leading order in A%, that C=A/vy; and D=0.
At the boundary between regions II and III, we have
s.(z)=¢ and z=z,. If we impose the continuity of s, and of
its first derivative at this point, we get
Ae” "rosin(y;zg) =€y, (26a)

and
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Ae” 70[ = y,sin(yi20) + ¥icos(¥i20) 1= —v.E Vi

(26b)
Taking the ratio between these two relations leads to
Yi
- =0,. 27
Y tan(yeg) Ve 27)

When A is small, y,=7y,=1, v,=v,=2, and y,~A"2
Thus the only way to satisfy Eq. (27) is to set y;zo= and
= y:20=y;~A"2. Therefore, Eq. (26) implies to leading
order that zo=—(Ine)/7y, and the condition y;zy= gives

T WY

o — o 28
Yi Zo |lns| (28)

Then, as v, is small, the difference A=v,—v, is given by

1 v//( ) 772 2
UO_US:EU"(’)’O)Y?ZW’ (29)
which is the result announced in Egs. (7) and (8).

A different cutoff function a(h) should not affect the
shape of s, in region II or the size z, of region II. Only the
precise matching between regions II and III might be modi-
fied and we do not think that this would change the leading
dependence of z, in &, which controls everything. In fact,
there are other choices of the cutoff function a(h) (piecewise
constant) for which we could find the explicit solution in
region III, confirming that the precise form of a(4) does not
change Eq. (28). The generalization of the above argument to
equations other than Eq. (1) (and in particular to the case
studied in Secs. II and III) is straightforward. Only the form
of the linear equation is changed and the only effect on the
final result (7) is that one has to use a different function
v(y).

When expression (7) is compared in Fig. 1 with the re-
sults of the simulations, the agreement is excellent. More-
over, in region II, one sees from Egs. (25) and (28) that

A TYol
~ 1 — Y02
5:(2) 71_y()|1n8|sm( line| )e , (30)

which also agrees with the scaling form (20).

Recently, for a simple model of evolution [19,20] gov-
erned by a linear equation, the velocity was found to be the
logarithm of the cutoff to the power 1/3. This result was
obtained by an analysis that has some similarities to the one
presented in this section.

V. STOCHASTIC MODEL

Many models described by traveling-wave equations
originate from a large-scale limit of microscopic stochastic
models involving a finite number N of particles [13-16].
Here we study such a microscopic model, the limit of which
reduces to Eq. (13) when N—o. Our numerical results, pre-
sented below, indicate a large-N correction to the velocity of
the form v N:vo—a(ln]\Of2 with a coefficient a consistent
with the one calculated in Sec. IV for e=1/N.

The model we consider in this section appears in the study
of directed polymers [14] and is, up to minor changes,
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equivalent to a model describing the dynamics of hard
spheres [15]. Tt is a stochastic process discrete in both time
and space with two parameters: N, the number of particles,
and p, a real number between 0 and 1. At time 7 (¢ is an
integer), we have N particles on a line at integer positions
x1(1), x5(1), ... , xy(t). Several particles may occupy the
same site. At each time step, the N positions evolve in the
following way: for each i, we choose two particles j; and
!

Jji at random among the N particles. (These two particles do
not need to be different.) Then we update x,(¢) by

xi(t+1)=max[x; (1) +a;, le_f(t)-l—ai’], (31)

where «@; and «; are two independent random numbers tak-
ing the value 1 with probability p or 0 with probability
1 —p. The numbers «;, «;, j;, and j; change at each time
step. Initially (#=0), all particles are at the origin, so that we
have x;(0)=0 for all i.

At time ¢, the distribution of the x;(#) on the line can be
represented by a function A (x,?), which counts the fraction
of particles strictly at the right of x,

1
h(x.n)=~ %; 1. (32)

Obviously A(x,t) is always an integral multiple of 1/N. At
t=0, we have h(x,0)=1 if x<0 and h(x,0)=0 if x=0.
One can notice that the definition of the position X, of the
front used in Eq. (11) coincides with the average position of
the N particles

+ oo N
X,= 2 h(x,n)= s xi(1). (33)
=0 Niz1

Given the positions x;(z) of all the particles [or, equiva-
lently, given the function A(x,f)], the x;(r+ 1) become inde-
pendent random variables. Therefore, given A(x,?), the prob-
ability for each particle to have at time 7+ 1 a position
strictly larger than x is given by

(h(x,t4+1) | h(x,1))
=1-[1—ph(x—1Lt)—(1—p)h(x,0)]>. (34)

The difficulty of the problem comes from the fact that one
can only average h(x,t+ 1) over a single time step. On the
right-hand side of Eq. (34) we see terms such as h%(x,t) or
h(x—1,t)h(x,t) and one has to calculate all the correlations
of the h(x,r) in order to find (h(x,#+1)). This makes the
problem very difficult for finite N. However, given h(x,t),
the x;(r+1) are independent and in the limit N—oo, the
fluctuations of h(x,t+1) are negligible. Therefore, when
N—oo, h(x,t) evolves according to the deterministic equa-
tion (13). As the initial condition is a step function, we ex-
pect the front to move, in the limit N—oo, with the minimal
velocity v, of Eq. (14).

For large but finite N, we expect the correction to the
velocity to have two main origins. First, h(x,t) takes only
values that are integral multiples of 1/N, so that 1/N plays a
role similar to the cutoff & of Sec. II. Second, /(x,t) fluctu-
ates around its average and this has the effect of adding noise

to the evolution equation (13). In the rest of this section we
present the results of simulations done for large but finite N
and we will see that the shift in the velocity seems to be very
close to the expression of Sec. IV when e =1/N.

With the most direct way of simulating the model for N
finite, it is difficult to study systems of size much larger than
10°. Here we use a more sophisticated method allowing N to
become huge. Our method, which handles many particles at
the same time, consists in iterating directly A(x,?).

Knowing the function A(x,?) at time ¢, we want to calcu-
late A(x,t+1). We call x4, and x,,,, respectively, the po-
sitions of the leftmost and rightmost particles at time ¢ and
I=Xpax— Xmint 1. In terms of the function i(x,t), one has
0<h(x,t)<1 if and only if x ;,<x<x... Obviously, all
the positions x;(#+ 1) will lie between x,;;, and x ..+ 1. The
probability p, that a given particle i will be located at posi-
tion x,,;,tk at time r+1 is

pk:<h(xmin+k_1’t+1)>_<h(xmin+k’t+1)>’ (35)

with {(h(x,t+1)) given by Eq. (34). Obviously, p;#0 only
for 0<k=<I.

The probability to have, for every k, n; particles at loca-
tion x,;,+ k at time r+1 is given by

N! " n
P(ng,nq, ... n)=—10 "
( 0-7%1 sIh] i’lo! n]! n[!po pl

XSN—ng—n;—---—n;). (36)

nj
... pl

Using a random number generator for a binomial distribu-
tion, expression (36) allows one to generate random ny, . This
is done by calculating n according to the distribution

P(ng)= o (1=po)"™ ", (37)

l’lo! (N_l’lo)' po

then n; with

(N=ng)! [ py \"
P(n1|n0)—n1! (N=ng—n)!\ 1=pg
N—ng—n
pl 0 1
X[ 1— , 38)
1_Po) (

and so on. This method can be iterated to produce the [+ 1
numbers ny, ny, ... , n; distributed according to Eq. (36).
Then we construct i(x,t+ 1) by

h(x,t+1)=1 if x<xp,,
P
h(x,t+1)=— E n; if XminSXSX et 1,
NiZt
and x=x,;,+k, (39)

h(x,t+1)=0 if x>x,,+1.

As the width [ of the front is roughly of order InN, this
method allows N to be very large.

Using this method with the generator of random binomial
numbers given in [21], we have measured the velocity vy of
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FIG. 3. Difference vy—uvy versus 1/N for three choices of p.
The symbols represent the result of our numerical simulations of the
stochastic process and the solid lines indicate the prediction (7) for
e=1/N.

the front for several choices of p (0.05, 0.25, and 0.45) and
for N ranging from 100 to 10'®. We measured the velocities
with the expression

X106— X105

U= 40
M 9x10° (40)

Figure 3 is a log-log plot of the difference vy—uv, versus
1/N compared to the prediction (7) for e = 1/N. The variation
of vy when using longer times or different random numbers
was not larger than the size of the symbols. We see in Fig. 3
that the speed vy of the front seems to be given for large N
by

K

UN:UQ_(IHN—)Z’ (41)

where the coefficient K is not too different from the predic-
tion (7).

The agreement, however, is not perfect. The shift vyg—vy
seems to be proportional to (InN) 2, but the constant in Fig.
3 looks slightly different from the one predicted by Eq. (7).
A possible reason for this difference could have been the
discretization of the front: instead of only cutting off the tail
as in Secs. III and IV, here the whole front i(x,t) is con-
strained to take values multiple of 1/N. One might think that
this could explain this discrepancy. However, we have
checked numerically (the results are not presented in this
paper) that Eq. (13) with &(x,f) constrained to be a multiple
of a cutoff & does not give results significantly different from
the simpler model of Secs. III and IV with only a single
cutoff. So we think that the full discretization of the front
cannot be responsible for a different constant K. The discrep-
ancy observed in Fig. 3 is more likely due to the effect of the
randomness of the process. It is not clear, however, whether
this mismatch would decrease for even larger N. It would be
interesting to push the numerical simulations further and
check the N dependence of the front velocity for very large
N.

ERIC BRUNET AND BERNARD DERRIDA 56

VI. CONCLUSION

We have shown in the present work that a small cutoff &
in the tail of solutions of traveling-wave equations has the
effect of selecting a single velocity v, for the front. This
velocity v, converges to the minimal velocity v, when e =0
and the shift vy—uv, is surprisingly large (7) and (8).

Very slow convergences to the minimal velocity have
been observed in a number of cases [8,13—15] as well as the
example of Sec. V. As the effect of the cutoff on the velocity
is large, it is reasonable to think that it would not be affected
much by the presence of noise. The example of Sec. V shows
that the cutoff alone gives at least the right order of magni-
tude for the shift and it would certainly be interesting to push
the simulations further for this particular model to see
whether the analysis of Sec. IV should be modified by the
noise. The numerical method used in Sec. V to study a very
large (N~10'®) system was very helpful to observe a loga-
rithmic behavior. We did not succeed in checking in earlier
works [13—15,22] whether the correction was logarithmic,
mostly because the published data were usually too noisy or
obtained on a too small range of the parameters. Still, even if
the cutoff was giving the main contribution to the shift of the
velocity, other properties would remain very specific to the
presence of noise, like the diffusion of the position of the
front [16].

Our approach of Sec. IV shows that the effect of a small
cutoff is the existence of a scaling form (20) and (30) that
describes the change in the shape of the front in its steady
state. The effect of initial conditions for usual traveling-wave
equations (with no cutoff) leads to a very similar scaling
form for the change in the shape of the front in the transient
regime. This is explained in the Appendix, where we show
how the logarithmic shift of the position of a front due to
initial conditions [10,23] can be recovered.

ACKNOWLEDGMENTS

We thank C. Appert, V. Hakim, and J.L. Lebowitz for
useful discussions. Le Laboratoire de Physique Statistique
est associé au CNRS et aux Universités Paris VI and Paris
VII.

APPENDIX: EFFECT OF INITIAL CONDITIONS
ON THE POSITION AND ON THE SHAPE
OF THE FRONT

In this appendix we show that ideas very similar to those
developed in Sec. IV allow one to calculate the position and
the shape at time ¢ of a front evolving according to Eq. (1),
or a similar equation, given its initial shape. The main idea is
that in the long-time limit, there is a region of size \r ahead
of the front that keeps the memory of the initial condition.
We will recover in particular the logarithmic shift in the
position of the front due to the initial condition [10,23],
namely, that if the initial shape is a step function

h(x,0)=0 if x>0,

n(x0)=1 if x<0, (A1)

then the position X, of the front at time 7 increases like
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3
X,=2¢t— Elnt. (A2)
More generally, if initially
h(x,0)=x"e 7" if x>0,
h(x,00=1 if x<0, (A3)
we will show that for v>—2
X, =21+ ; Int, (A4)

whereas the shift is given by Eq. (A2) for v<<—2. Here,
there is no cutoff, but the transient behavior in the long-time
limit gives rise to a scaling function very similar to the one
discussed in Sec. IV.
If we write the position of the front at time ¢ as
X,=vot—c(1), (A5)
we observed numerically (as in Fig. 2 of Sec. III) and we are
going to see in the following that the shape of the front takes,
for large ¢, the scaling form

__X’>e~yo(xX,), (A6)

X
h(x,t)ZI“G(

which is very similar to Egs. (20) and (30).
If we use Egs. (A5) and (A6) into the linearized form of
Eq. (1), we get, using the fact that v,=2 and y,=1,

1 1 . .
t_aG”+ l—_(azG'—aG)-i—t“c G=c G, (A7)
t o

where z=(x—X,)t” “. By writing that the leading orders of
the different terms of Eq. (A7) are comparable, we see that
we must have

(A8)

(A9)

for some B and that the right-hand side of Eq. (A7) is neg-
ligible. Therefore, the equation satisfied by G is

2 G+ 4 G+ ! G=0 A10
22O\ Pra)o (A1)

and the position of the front is given by
X,=vot— B Int. (A11)

As in Sec. IV, we expect that as t—oo, the front will
approach its limiting form and therefore that for z small, the
shape will look like Eq. (15). Therefore, we choose the so-
lution Gg(z) of Eq. (A10), which is linear at z=0. This
solution can be written as an infinite sum

2603
G()-Aiﬂz"“ﬂ( +i)
A=A 2 ) At
(—1)" T+p) , .

2 anrDl T L (A

(The second equality is not valid when B is a nonpositive
integer.)

To determine B3, one can notice that the scaling form (A6)
has to match the initial condition when x is large and ¢ of
order 1. We thus need to calculate the asymptotic behavior of
G(z) when z is large.

For certain values of B, there exist closed expressions of
the sum (A12). For instance,

z? zs)
2t o+ =,

3 60

G_z(Z):A

3 5
G7/2(Z) A(Z_g‘f' 60

—2%/4

s

3

z
2+ =

G_i(z)=A 6

< (A13)

23 2
Gsp(z) :A(Z— —) e M
Go(Z) =Az,

2
Gip(z)=Aze *M,

Z
Gl(z)=Ae_Zz’4f M.
0

z
Gl/z(z)=Af e Hdr.
0

One can check directly on Eq. (A10) that G 5 has a symmetry

GB(Z)__ i Gip- 5(1Z) (A14)

For any 3, one can obtain the large-z behavior of G(z).
To do so, we note that for >0, one can rewrite Eq. (A12)
as

Gg(z)= F(,B)f dr tP~ 3/Zsm(\/—z)e
_ 24 1-28 * 28-2: —1272
F(B)Z fo dt t sin(t)e

(A15)
For 0<<8<1, the second integral in Eq. (A15) has a nonzero
limit and this gives the asymptotic behavior of G 4(z),

24 ——cos(wB) T'(2B—1)z' 28, (Al6)

I'(B)

From Eq. (A12), one can also show that

Gﬁ(Z)Z



2604 ERIC BRUNET AND BERNARD DERRIDA 56

rg+1)

TE)G/;H, (A17)

Gg=—
implying that Eq. (A16) remains valid for all 8 except for
B=3/2,5/2,7/2, etc., where the amplitude in Eq. (A16) van-
ishes. For these values of 8, G(z) decreases faster than a
power law [see Eq. (A13)].

The functions G 4 calculated so far are acceptable scaling
functions for the shape of the front only for 8=<3/2. Indeed,
one can see in Eq. (A16) that for 3/2<<8<5/2 the function
G4(z) is negative for large z. In fact, for all B>3/2, this
function changes its sign at least once, so that the scaling
form (A6) is not reachable for an initial #(x,0) that is always
positive. It is only for S=<3/2 that G ;4 remains positive for all
z>0.

Looking at the asymptotic form (A16), we see that if ini-
tially A (x,0) =x"e™ 7%, the only function G 4(z) that has the
right large-z behavior is such that 1 —2 8= v and this gives,

together with Eq. (A11), the expression (A4) for the shift of
the position. As the cases 8>3/2 are not reachable, all initial
conditions corresponding to ¥<<—2 or steeper (such as step
functions) give rise to G5, and the shift in position given by
Eq. (A2).

The analysis of this appendix can be extended to other
traveling-wave equations such as Eq. (13), with more general
functions v(7y) (having a nondegenerate minimum at y,) as
in Eq. (14). Then the expressions (A2) and (A4) of the shift
become

Xt:l}ol‘—z—yolnt (A18)
and

X Lo A19

=Vt 270 nt. (A19)

[1] R. A. Fisher, Ann. Eugenics 7, 355 (1937).

[2] A. Kolmogorov, I. Petrovsky, and N. Piscounov, Moscou
Univ. Bull. Math. A 1, 1 (1937).

[3]D. G. Aronson and H. F. Weinberger, Adv. Math. 30, 33
(1978).

[4] G. Dee and J. S. Langer, Phys. Rev. Lett. 50, 383 (1983).

[5] M. Bramson et al., J. Stat. Phys. 45, 905 (1986).

[6] W. van Saarloos, Phys. Rev. A 39, 6367 (1989).

[7] P. Collet and J. -P. Eckmann, Instabilities and Fronts in Ex-
tended Systems (Princeton University Press, Princeton, 1990).

[8] A. R. Kerstein, J. Stat. Phys. 45, 921 (1986).

[9] D. G. Aronson and H. F. Weinberger, Lect. Notes Math. 446,
5 (1975).

[10] M. Bramson, Convergence of Solutions of the Kolmogorov
Equation to Traveling Waves, No. 285 in Memoirs of the
American Mathematical Society (AMS, Providence, 1983).

[11] W. van Saarloos, Phys. Rev. Lett. 58, 2571 (1987).

[12] W. van Saarloos, Phys. Rev. A 37, 211 (1988).

[13] H. P. Breuer, W. Huber, and F. Petruccione, Physica D 73, 259
(1994).

[14] J. Cook and B. Derrida, J. Stat. Phys. 61, 961 (1990).

[15] R. van Zon, H. van Beijeren, and C. Dellago (unpublished).

[16] H. P. Breuer, W. Huber, and F. Petruccione, Europhys. Lett.
30, 69 (1995).

[17] B. Derrida and H. Spohn, J. Stat. Phys. 51, 817 (1988).

[18] B. Derrida, Phys. Scr. 38, 6 (1991).

[19] D. A. Kessler, H. Levine, D. Ridgway, and L. Tsimring (un-
published).

[20] L. Tsimring, H. Levine, and D. A. Kessler, Phys. Rev. Lett. 76,
4440 (1996).

[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C (Cambridge University
Press, Cambridge, 1994).

[22] A. R. Kerstein, J. Stat. Phys. 53, 703 (1988).

[23] M. D. Bramson, Commun. Pure Appl. Math. 31, 531 (1978).



