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Abstract. The one-dimensional fully asymmetric exclusion model, which describes a system
of particles hopping in a preferred direction with hard core interactions, is considered on a ring
of size N. The steady state of this systern is known (all configurations have equal weight), which
allows for easy computation of the average velocity of a particle in the steady state. Here an exact
expression for the diffusion constant of a particle is obtained for arbitrary number of particles and
system size, by using a matrix formulation. Two Iimits of infinite system size ¥ are discussed:
firstly, when the number of particles remains finite as ¥ — co the diffuston constant remains
dependent on the exact number of particles due to correlations between successive collisions;
secondly, when the density p of particles is non-zero (i.e. when the number of particles is equal
to Np as N — oc) the diffusion constant scales as N—'/2, The exponent —1/2 is related to the
dynamic exponent z = 3/2 of the KpZ equation in (1+1) dimensions.

Particles hopping in a preferred direction with stochastic dynamics and hard core interactions
are simple examples of non-equilibrium systems [1]. Physically they are models of driven
lattice gases [2] or hopping conductivity [3] and are closely related to growth processes {4, 3].
A particularly simple example of a driven lattice gas is the one-dimensional asymmetric
exclusion process [6]. The model describes particles which jump independenily to their right
with hard core repulsion along a one-dimensional lattice. It is one of the few non-equilibrium
models for which the steady state is exactly known and all equal-time correlation functions
can be calculated [7-11]. For periodic boundary conditions all configurations have equal
weight in the steady state [7]. The case of open boundary conditions [5, 12], where particles
enter at one end of the lattice and are removed at the opposite end, is more complicated,
nevertheless the steady state can still be solved exactly [8-11]. It was shown recently [11]
that a simple way of representing the steady state is to write the weights of configurations as
products of non-commuting matrices. This approach makes the exact solution much easier
to obtain and has been extended to other situations such as a mixture of two species of
particles on a ring [13]. Although it holds the promise of wider application, the matrix
approach has so far only been used to obtain steady-state, equal-time correlation functions.

The time dependence of these models at present appears more difficult, although it has
been shown that for periodic boundary conditions the eigenvaiues of the master equation
can be computed via the Bethe ansatz [14-16]. Of further interest is the behaviour of
correlations in time. A quantity related to such correlations is the diffusion constant of
a marked particle. It is known that, when an average is carried out over random initial
conditions for an infinite system, the long time behaviour of the variance of the distance

0305-4470/93/194911+08507.50 (© 1993 IOP Publishing Lid 4911



4912 B Derrida et al

travelled by a marked particle is proportional to ¢, the constant of proportionality being the
diffusion constant [17-19].

On the other hand when the initial configuration is fixed the variance of the distance
travelled is expected to increase as 12/3 [20,21], Here we consider a finite system of size N
in the long time limit (¢ —» co). Using a matrix formulation inspired by [11, 13], we obtain
an explicit expression for the diffusion constant for all lattice sizes and all possible densities
of particles. Because we take the limit ¢ — oo at finite N the value of the diffusion constant
does not depend on initial conditions.

Let us first define the one-dimensional asymmetric exclusion model that we consider,
Each site i (1 € f € N ) of a one-dimensional lattice of N sites is either occupied
by a particle (z; = 1) or empty (z; = 0). The lattice has periodic boundary conditions
{z~v+: = 7). The continuous time dynamics are as follows. During any infinitesimal time
interval d¢ each particle has a probability dr of jumping to its right-hand neighbour if this
neighbouring site is empty.

The number of particles on the lattice is fixed to be M 4+ 1 which reflects the fact that
one of the particles, without loss of generality the first, is marked (although this does not in
any way affect its dynamics). We denote by ¥, the number of hops the marked particle has
made up 0 time ¢, where Yy = 0. A configuration C of the system specifies the positions
of the M unmarked particles relative to the marked one, that is, we make the convention
that at time zero the marked particle is at site one and each time the marked particle moves
we use the translational invariance of the lattice to relabel the sites so that the position of
the marked particle remains site one.

In the long-time limit, the system reaches a steady state where the probabilities
plt2, 13, - - Ty) of each configuration are stationary. It is easy to convince oneself that
the fact that the number of possible ways of entering and leaving a configuration during
time dt are equal (i.e the number of pairs of sites {,{ 4+ 1 with ©; = 1, 754 = 0 equals
the number of pairs with 7; = 0, 1;3 = 1) implies that any configuration with the correct
number of particles has equal probability in the steady state {7]. Thus

CH )]_1 . M

Our aim is to determine the fluctuations in the distance travelled by the marked particle,
For large times, we expect that the average distance travelled is given by

(Yo} = vt )

where the velocity v is the rate at which, in the steady state, the marked particle makes
hops forward. The form of the steady-state probabilities (1) implies that

v=(N-M-1)/(N-1). 3)
One also expects that in the long-time limit
(Y7 — (0 =~ Ar @)

where A is the diffusion constant of the marked particle. In contrast to v the diffusion
constant A is a non-trivial quantity because it reflects non-equal-time correlations, The
main result of this work is the following exact expression for A (for M + 1 particles on a
lattice of N sites):

o= (7 ) [("a )] e ®
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Before coming to the derivation of (3), let us discuss briefly two limits of interest. First
we consider an infinite system containing a finite number of particles. By letting N — oo
in (3) with M fixed we obtain

w_ MV
B ESE @

In this limit one might believe that the infinite size of the system renders the events of
particles encountering each other so rare that the diffusion constant reduces to the value
for a collisionless system. However, on inspecting (6) one sees that for all M 2= 1 the
diffusion constant differs from unity, the value it would take if the marked particle were
the only particle in the system (i.e. M = 0), and depends on the exact number of particles.
The explanation is that once a particle collides with another particle many colhsmns ensue,
therefore the collisions are highly correlated in time.

A second limit we consider is that of a finite density of particles p in an infinite system.
On taking N — oc in (5) with g fixed, where

M = Np ¢))]

one obtains to leading order in N
L VE Q=P 1 g
2 T Pz NiZT ) (8)

The exponent % can be related to the dynamic exponent of the KPZ equation [22] in 1+ 1
dimensions as follows. There exists a mapping from the asymmetric exclusion process
to {1+ I)-dimensional single step growth models in which the movement of a particle is
equated with the growth of the surface height at a site by one unit [7]. From (8} the variance
of the surface heights at time ¢, or surface roughness, scales as [{¥?) — (¥;)?] ~ N~}
However, for a growth process with linear size N of the substrate, the roughness cannot
increase indefinitely and can only grow to O(N). The time scale at which the crossover
occurs, so that the interface appears rough on the scale of the system size, is N*2. The
exponent % is equivalent to z the dynamic exponent of the KPZ equation [22,4].

We now outline a derivation of (5). Let vs define P (C; Y) as the probability at time ¢
of finding the system in configuration C and of the marked particle having made exactly ¥
moves, averaged over any ensemble of initial configurations. The time evolution of F,(C; ¥)
is governed by the master equation

3 Y2 1 . 1 4
PG = ; [Ko(C.CHPAC: ¥) + KiC.CHPC, ¥ = 1)]

= [Ko(C. )+ K1 (€. O] A(C; ¥) ©
cr

where Ko(C, (") is the rate of transition from configuration C’ to C by moving an unmarked
particle and K,{C,C’) is the rate of transition from configuration €’ to C by moving the
marked particle.

Let us also consider p,(C), q:(C) defined by

pO=Y RCY)  a@=YYRGY). 10)
. Y Y

Thus p,(C) is the probability that the system is in configuration C at time ¢ and ¢,(C)/ p:(C) is
the average distance travelled by the marked particle given that the system is in configuration
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C at time ¢. These quantities satisfy

a
7 P©) =3 _[Ko(C.C) + K1 (€. )] pelC) = 3 [Ko(C, O) + Ki (€, O] ©) (1)
c c

]
5700 =} | [Ko(€,C) + Ki(C,E)]4(C) = 3 [KolC', €) + Ku(C', O] 4 (C)
c I

+ Y KiC.CHplCh. (12)
=

The time derivatives of the first two moments of ¥; may be expressed in terms of these
quantities as

3 a - i
5 W =g 290 =) KiC.p(@) (13)

[y

2 d
S =52 3 PRGN =23 Ki(C.ChaC) + ), Ki(C, CIpi(C) (14)
ot A e e

where the angular brackets denote an average over all configurations and all positions ¥ at
time 7. In the long-time limit we expect the system to reach a steady state and therefore [23]

p:(C) — p(C) ¢:(C) — vt p(C}+7(C) - (15)
where from (2), (13), (i5) we have ‘
v=_ Ki(C,Chp(C)) (16)
ce
which after evaluation using (1) recovers (3). On substituting (15) into (11), (12) one finds
Z [Ko(C.CH + Ki(C, C')] p(CH — Z [KO(C'1 Gy + Ki(C, C)] pCy=0 an
I =

D [Ko(C.C) + Ki(C, CH]r(C) = 3 [KolC', O) + Ki(C, O)] r(C)
c’ I

=p(C)~ ) Ki(C.CHp(C) (18)
Cl‘
and from (13), (14) that the diffusion constant A is given by

A= (- 0D =v+2 T KiC.OrE) -2 Y@ (9)
cc I
Thus to obtain the diffusion constant one has to solve equations (17), (18). As already
argued, the first equation {17) is solved by p(C) equal to a constant and expression (1) gives
the correct normalisation, However, the inhomogeneous equation (18) is non-trivial. (Also
note that if r5(C) is a particular solution of (18) then the general solution is ro{C) + Ap(C),
but due to (16) the A dependence disappears from expression (19).
We are now going to show that equation (18) may be solved by writing r(C) as the
trace of a product of semi-infinite non-commuting matrices {11] B, D, E

N
rC) =R Tr[B ]'[ X,-] (20)

i=2
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where X; = D if site { is occupied, X; = E if site { is empty, B marks the position of
the marked particle (site one) and R is a normalising constant. The translational invariance
of the lattice is reflected by the translational invariance of a product of matrices under the
trace operation. The matrices D, E satisfy the relation

DE=D+E 21}

and we choose them to be [11]
oQ ad
D=3 (E+IG+1)  E=) (+E+16D. @)
i=l i=l1
The matrix B has its first M rows identical to those of D and zeros for all its other elements
M .
B= > (DUl+1irG+1) . (23)
fe=|

In order to prove that equations (20)—(23) solve (18) one has, in principle, one equation
of the form (18) to satisfy for each configuration C. However, by an argument similar to
that given in [13], which uses repeatedly the identity (21}, one can show that any such
equation teduces to one of four conditions according to the occupations of sites two and N
in configuration C

RTt[(EB+BE>—BE —EBE)Zy_ay]=(—1p)  forz =0,y =0

RTr[(DB+ BE — DBE)Zy_3 44-1] = vp(C) for =0,y =1 o)
RTt[(BED — BD — EB)Zy_3p—1] = (v~ Dp(C) forp=1tw=0
RTr [(BD — DB)ZN_g,M..z] = 'Up(C) for T = 1, ™ = 1

where Zy_3 p is a product of M matrices D and N —3 — M matrices E in arbitrary order
and corresponds to any of the possible configurations for sites 3 £ { € N — 1. Using the
form (22), (23) of B, D, E one can check that the following relations hold:

EB+ BE? —BE — EBE = —|M + 1){(M|E
DB+ BE — DBE = |M}{M + 1|E -

BED —BD — EB = —|M + 1}{M|D
BD—DB = |M){M+1|D.

(25)

Inserting these expressions into (24) and using the expression (3) for v, the conditions (24)
become

R(MIEZy—34IM + 1) = pCM/(N — 1)

R(M + 1|EZy_349-1|M) = pQOW = 1= M)/(N = 1)
R{MIDZy_s 41 |M +1) =pC)M/(N — 1)

R(M + 1IDZnsu-alM) = p@N = 1= M)/(N = 1).

(26)

In order to show that these conditions can be satisfied, one may use the fact that the
matrices D, E are bidiagonal (see 22). The matrix elemenis of the form (r| Hf;l X;im) can
be thought of as representing walks of L steps from site m to site » of a semi-infinite lattice
with absorbing boundary at the origin, Afstep L 41—, if X; = D the walker remains
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at the same site or moves to the left and if X; = E the walker remains at the same site
or moves to the right. When there are K matrices D in the product, if m > K the walker
cannot reach the origin and the absorbing boundary plays no role. In view of this, the order
in which the matrices appear in the matrix elements present in (26) does not matter; thus
using the action of D, £ on {n]

mD=n-+1E={n+h+1| with (0} =0 27
one obtains

- K pleK |\ — Lyt L
(rlZy xim) = (n|D*E~""|m) ={n +K|E Im>_(K+n--m) form=> K.
(28)

With this expression one finds that if the normalisation R is chosen to be

oo (5] <[]

then (26), and therefore (18), are satisfied, hence equation (20) is proven.
The expression of the diffusion constant (19) in terms of matrices is as follows:

-2
A=vw +2[( Nﬂ; ! )] {Tr[BEGM,N —2)] —vTr[BG(M,N — )]} (1))
where the matrices (M, L) are given by
L L
GM,Ly= Y. sM-> p[[mb+U-wE). (31)
{ne=100 1Sk LY Jj=1 i=1

The fact that B has a finite number of non-zero elements means that the traces in (30) are
finite sums of matrix elements of G(M, L). These matrix elements can in fact be computed:

wosnom=(5) (st o) () (uln) o0

One way of proving (32) is to use the action (27} of I, E on {n| to write a recursion
(n|G(M, LYIm) = (n|G(M, L — 1)[m) + {n — HG(M, L — 1)|m}
+{nlGM—-LL—Dimy+{n+1{GM -1, L~ 1)m) (33)

with boundary conditions such that (r{G{M, L)|m) vanishes when either n or m is zero.
Cne can then check that (32) satisfies these boundary conditions and the recursion (33). I
is possible to evaluate the sums of mairix elements (32) present in (30) by using the identity

f_—iw(xii)(yii)=(x2fy) (34)

and one finds that

M
Tr[BG(M, N — )] = »_ [(il + (i + LI G(M, N — 1)}i)

=1

1/ N-1 N—1 ' N 1/ 2N ~1
=§( M )[(MH)“L@M“)(MH)]"5(2M+1)

(33)
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M
Tr{BEG(M,N -] = Z[(i — 1 +2{il+ (i + HIG(M, N - 2)|i}

i=1

B e

After a little algebra equation (5) can be obtained from (30) and (35), (36).

In this paper we have presented an exact expression (3) for the diffusion constant of
a particle in an asymmetric exclusion process on a ring of size N. The results highlight
several interesting features of the large N behaviour, namely the scaling for a finite density
of particles (8) and the fact that the diffusion constant remains dependent on the particle
number in the limit of zero density (6). These features are not present in the expression
derived by [18] for an infinite system. (The difference between our result and that of [18]
is that here we take ¢ — oo at fixed finite NV whereas in [18] N — oo is taken first and
then ¢t — o).

We believe this work shows that the matrix technique [11] is capable of giving more
complicated properties of the steady state than equal-time correlations. It would be of
interest to extend our calculations to more general situations such as partially asymmetric
exclusion where in time df particles can jump to the right with probability pd: and to the
left with probability gdr (in the case p == ¢ the diffusion constant for a finite density of
particles in the limit of an infinite system should scale as N ! [24,25]). One could also look
at the two-species problem [13] (at present we have succeeded in calculating the diffusion
constant of a single second-class particle in the presence of an arbitrary number of first-class
particles). Lastly, it would, of course, be interesting to see whether the matrix approach
could be used to obtain more general time correlations in the steady state.
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