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Abstract. The one-dimensional fully asynmehic exclusion model, which desaibes a system 
of particles hopping in a preferred direction with hard core interactions, is considered on a ring 
of size N .  The steady stake of this system i s  known (all cnnfiguiations have equal weight), which 
allows for easy computation of the average velocity of a particle in lhe steady state. Here an exact 
expression for the diffusion constant of a particle is obtained for arbIraq number of particles and 
system size. by using a mairix formulation. Two limits of infinite system size N are discussed 
firstly, when the number of panicles remains finite as N -+ m the diffusion constant remains 
dependent on the exact number of particles due to correlations between successive collisions: 
secondly, when the density p of particles is non-zem (i.e. when the number of panicles is equal 
to N p  as N + m) the diffusion constant scales as N - ' / * .  The exponent -112 is related to the 
dynamic exponent 2 = 312 of the KPZ equation in (1+1) dimensions. 

Particles hopping in a preferred direction with stochastic dynamics and hard core interactions 
are simple examples of non-equilibrium systems [l]. Physically they are models of driven 
lattice gases [2] or hopping conductivity [3] and are closely related to growth processes [4,5]. 
A particularly simple example of a driven lattice gas is the one-dimensional asymmetric 
exclusion process [6]. The model describes particles which jump independently to their right 
with hard core repulsion along a one-dimensional lattice. It is one of the few non-equilibrium 
models for which the steady state is exactly known and all equal-time correlation functions 
can be calculated [7-111. For periodic boundary conditions all configurations have equal 
weight in the steady state [7]. The case of open boundary conditions 15,121, where particles 
enter at one end of the lattice and are removed at the opposite end, is more complicated, 
nevertheless the steady state can still be solved exactly [8-1 I]. It was shown recently [ 1 I] 
that a simple way of representing the steady state is to write the weights of configurations as 
products of non-commuting matrices. This approach makes the exact solution much easier 
to obtain and has been extended to other situations such as a mixture of two species of 
particles on a ring [13]. Although it holds the promise of wider application, the matrix 
approach has so far only been used to obtain steady-state, equal-time correlation functions. 

The time dependence of these models at present appears more difficult, although it has 
been shown that for periodic boundary conditions the eigenvalues of the master equation 
can be computed via the Bethe ansatz 114-161. Of further interest is the behaviour of 
correlations in time. A quantity related to such correlations is the diffusion constant of 
a marked particle. It is known that, when an average is carried out over random initial 
conditions for an infinite system, the long time behaviour of the variance of the distance 
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travelled by a marked particle is proportional to t ,  the constant of proportionality being the 
diffusion constant 117-191. 

On the other hand when the initial configuration is fixed the variance of the distance 
travelled is expected to increase as t2I3 [20,2l]. Here we consider afrnite system of size N 
in the long time limit (i + ca). Using a matrix formulation inspired by [11,13], we obtain 
an explicit expression for the diffusion constant for all lattice sizes and all possible densities 
of particles. Because we take the limit i + ca at finite N the value of the diffusion constant 
does not depend on initial conditions. 

Let us first define the one-dimensional asymmetric exclusion model that we consider. 
Each site i (1 4 i 6 N ) of a one-dimensional lattice of N sites is either occupied 
by a particle (ri = 1) or empty (4 = 0). The lattice has periodic boundary conditions 
(t,v+i = ri). The continuous time dynamics are as follows. During any infinitesimal time 
interval dt each particle has a probability di of jumping to its right-hand neighbour if this 
neighbouring site is empty. 

The number of particles on the lattice is fixed to be M + 1 which reflects the fact that 
one of the particles, without loss of generality the first, is marked (although this does not in 
any way affect its dynamics). We denote by Yl the number of hops the marked particle has 
made up to time t ,  where Yo = 0. A configuration C of the system specifies the positions 
of the A4 unmarked particles relative to the marked one, that is, we make the convention 
that at time zero the marked particle is at site one and each time the marked particle moves 
we use the translational invariance of the lattice to relabel the sites so that the position of 
the marked particle remains site one. 

In the long-time limit, the system reaches a steady state where the probabilities 
p(r2, q, . . . rN) of each configuration are stationary. It is easy to convince oneself that 
the fact that the number of possible ways of entering and leaving a configuration during 
time dt are equal (i.e the number of pairs of sites i, i + 1 with q = 1, ri+l = 0 equals 
the number of pairs with ri = 0. q + l  = I )  implies that any configuration with the correct 
number of particles has equal probability in the steady state [7]. Thus 

Our aim is to determine the fluctuations in the distance travelled by the marked particle. 
For large times, we expect that the average distance travelled is given by 

(Yl) cz Ut (2) 

where the velocity U is the rate at which, in the steady state, the marked particle makes 
hops forward. The form of the steady-state probabilities (I) implies that 

U = ( N  - M - I)/(N - 1). (3) 

One also expects that in the long-time limit 

( Y f )  - (YI)’ N At (4) 

where A is the diffusion constant of the marked particle. In contrast to U the diffusion 
constant A is a non-trivial quantity because it reflects non-equal-time correlations. The 
main result of this work is the following exact expression for A (for M + 1 particles on a 
lattice of N sites): 

A = ( 2:i ) [ ( Ni )I-’ ( 2 M +  l)-’. (5) 
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Before coming to the derivation of (5),  let us discuss briefly two limits of interest. First 
we consider an infinite system containing a finite number of particles. By letting N -+ 00 
in (5) with M fixed we obtain 

M!)2 
(2M + I)!  ’ 

A + 4 M  ( 

In this limit one might believe that the infinite size of the system renders the events of 
particles encountering each other so rare that the diffusion constant reduces to the value 
for a collisionless system. However, on inspecting (6) one sees that for all M 2 1 the 
diffusion constant differs from unity, the value it would take if the marked particle were 
the only particle in the system (i.e. M = 0). and depends on the exact number of particles. 
The explanation is that once a particle collides with another particle many collisions ensue, 
therefore the collisions are highly correlated in time. 

A second limit we consider is that of a finite density of particles p in an infinite system. 
On taking N -+ 00 in (5) with p fixed, where 

M = N p  

one obtains to leading order in N 

(7) 

The exponent 4 can be related to the dynamic exponent of the KPZ equation 1221 in 1 + 1 
dimensions as follows. There exists a mapping from the asymmetric exclusion process 
to (1 + I)-dimensional single step growth models in which the movement of a particle is 
equated with the growth of the surface height at a site by one unit [7]. From (8) the variance 
of the surface heights at time f, or surface roughness, scales as [(Y:) - (YI)*] - N-’/’t. 
However, for a growth process with linear size N of the substrate, the roughness cannot 
increase indefinitely and can only grow to O(N).  The time scale at which the crossover 
occurs, so that the interface appears rough on the scale of the system size, is ”1’. The 
exponent 4 is equivalent to z the dynamic exponent of the KFZ equation [22,4]. 

We now outline a derivation of (5). Let us define P,(C; Y )  as the probability at time f 
of finding the system in configuration C and of the marked particle having made exactly Y 
moves, averaged over any ensemble of initial configurations. The time evolution of Pr(C Y) 
is govemed by the master equation 

where Ko(C, C‘) is the rate of transition from configuration C’ to C by moving an unmarked 
particle and Kl (C, C’) is the rate of transition from configuration C’ to C by moving the 
marked particle. 

Let us also consider p&), qr(C) defined by 

Thus pr(C) is the probability that the system is in configuration C at time t and 4,(C)/pt(C) is 
h e  average distance travelled by the marked particle given that the system is in configuration 
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C at time t. These quantities satisfy 

,PK) a = v ~[Ko(C ,C’ )+K1(C,C’ ) ]p t (C’ )  - C [ K o ( C ‘ , C ) +  Ki(C’,C)]P,(C) (11) 
C‘ C’ 

The time derivatives of the first WO moments of Y, may be expressed in tems of these 
quantities as 

where the angular brackets denote an average over all configurations and all positions Y at 
time t .  In the long-time limit we expect the system to reach a steady state and therefore 1231 

fr(C) -+ P C )  + ut P O  +m (15) 

U = KlG,  C‘)P(C’) (16) 

where from (2), (13). (15) we have 

C . C  

and from (13). (14) that the diffusion constant A is given by 

(1% 
a 

A = ;i; ((Y:} - (Y,}’) = U + 2 K1(C, C’)r(C‘) - 2u 1 r (C) . 
C,C’ c 

Thus to obtain the diffusion constant one has to solve equations (17). (18). As already 
argued, the first equation (17) is solved by p(C)  equal to a constant and expression (1) gives 
the correct normalisation. However, the inhomogeneous equation (18) is non-trivial. (Also 
note that if r&) is a particular solution of (18 )  then the general solution is ro(C) + Ap(C),  
but due to (16) the h dependence disappears from expression (19). 

We are now going to show that equation (18) may be solved by writing r(C) as the 
trace of a product of semi-infinite non-commuting matrices [I I] 8 ,  D ,  E 

N 
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where Xi  = D if site i is occupied, Xi = E if site i is empty, B marks the position of 
the marked particle (site one) and R is a normalising constant. The translational invariance 
of the lattice is reflected by the kanslational invariance of a product of matrices under the 
trace operation. The matrices D ,  E satisfy the relation 

D E = D + E  (21)  

and we choose them to be [l l]  
m 

D = c(li)(il+ li)(i+ 11) E = F(li)(il+ li+ l)(il) . (22)  

The matrix B has its first M rows identical to those of D and zeros for all its other elements 

123) 

In order to prove that equations (20)-(23) solve (18)  one has, in principle, one equation 
of the form (18) to satisfy for each configuration C. However, by an argument similar to 
that given in [13], which uses repeatedly the identity (21), one can show that any such 
equation reduces to one of four conditions according to the occupations of sites two and N 
in configuration C 

i=l i d  

= c(li)(il+ li)(i + 11) . 
i=l 

R T I [ ( E B + B E ’ - B E - E B E ) Z N - ~ , M ]  = ( U - l ) p ( c )  forr2=O,mN=O 
R T ~ [ ( D R + B E - D B E ) Z N - ~ , ~ - ~ ]  =up(C)  

R T r [ ( B E D  - E D  - EB)ZN-, , , - , ]  = (U - l)p(C) 
R T r [ ( B D  - D B ) Z N - ~ , M - Z ]  Up(C) 

where Z N - ~ . M  is a product of M matrices D and N - 3 - M matrices E in arbitrary order 
and corresponds to any of the possible configurations for sites 3 < i < N - 1 .  Using the 
form (22). ( 2 3 )  of E ,  D ,  E one can check that the following relations hold 

for rz = 0, rN = 1 
for rz = 1, r,V = 0 
for r2 = 1, rN = 1 

(24)  

E B  + B E Z  - B E  - E B E  

D E  + B E  - D E E  = IM)(M + 1IE 

R E D  - B D  - E B  = -1M + l ) ( M I D  

B D - D B = I M ) ( M + l l D .  

-(M + l ) ( M I E  

(25) 

. .  

Inserting these expressions into ( 2 4 )  and using the expression (3) for U, the conditions (24) 
become ’ 

R ( M I E Z N - ~ . M I M +  1) = p ( C ) M / ( N  - 1) 
R ( M  + IIEZN-3,M-lIM) = p(C) (N - 1 - M ) / ( N  - 1) 

(26)  
R ( I ~ ~ D Z N - ~ . M - I I M  + 1) =:P(C)M/(N - 1 )  

R ( M  + IIDZN-$,M-ZIM) = p ( C ) ( N  - 1 - M ) / ( N  - 1). 

In order to show that these conditions can be satisfied, one may use the fact that the 
matrices D .  E are bidiagonal (see 22). The matrix elements of the form (nl nf=, X i l m )  can 
be &ought of as representing walks of L steps from site m to site n of a semi-infinite lattice 
with absorbing boundary at the origin. At step L + 1 - i ,  if X i  = D the walker remains 
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at the same site or moves to the left and if Xi = E the walker remains at the same site 
or moves to the right. When there are K matrices D in the product, if m > K the walker 
cannot reach the origin and the absorbing boundary plays no role. In view of this, the order 
in which the matrices appear in the matrix elements present in (26) does not matter; thus 
using the action of D, E on (nl 

(27) (nlD = (n+ 1IE = (nl+ (n + 11 with (01 = O  

one obtains 

( n l Z u l m )  = (nlD I m ) = ( n + K I E L l m ) =  K + n - m  for m > K . 
(28) 

( “ 1  K E L - K  

With this expression one finds that if the normalisation R is chosen to be 

N - 1  
R = ~ ( 0  [ ( 

)]-I = [ ( Ni 
then (26), and therefore (IS), are satisfied, hence equation (20) is proven. 

A = U  +2[( “G ) ] - * { T r [ B E G ( M ,  N -2)J --vTr[BG(M, N - 1)1) 

where the matrices G(M, L) are given by 

The expression of the diffusion constant (19) in terms of matrices is as follows: 

(30) 

L L 

G ( M , L ) =  S ( M - C t j ) n ( r i D + ( l - s ) E ) .  (31) 

The fact that B has a finite number of non-zero elements means that the traces in (30) are 
finite sums of matrix elements of G ( M ,  L). These matrix elements can in fact be. computed: 

lq-l.0: I$*<,Y j=1 i=l 

One way of proving (32) is to use the action (27) of D, E on (nl to write a recursion 

(nlG(M, L)lm) = (nlG(M, L - 1)lm) + (n - I lG(M, L - 1)lm) 

+ ( n l G ( M - l , L - I ) l m ) + ( n f l l G ( M - l , L - l ) l m )  (33) 

with boundary conditions such that (nlG(M, L)lm) vanishes when either n or m is zero. 
One can then check that (32) satisfies these boundary conditions and the recursion (33). It 
is possible to evaluate the sums of matrix elements (32) present in (30) by using the identity 

and one finds that 
M 

TrlBG(M, N - 1)l = c[(il+ (i + lIIG(M, N - 1)li) 
i=I 
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After a little algebra equation (5) can be obtained from (30) and (35). (36). 
In this paper we have presented an exact expression (5 )  for the diffusion constant of 

a particle in an asymmetric exclusion process on a ring of size N .  The results highlight 
several interesting features of the large N behaviour, namely the scaling for a finite density 
of parIicles ( 8 )  and the fact that the diffusion constant remains dependent on the particle 
number in the limit of zero density (6). These features are not present in the expression 
derived by [le] for an infinite system. (The difference between our result and that of [18] 
is that here we take t + 00 at fixed finite N whereas in [18] N --t cc is taken first and 
then t -+ ca). 

We believe this work shows that the matrix technique [ I  I ]  is capable of giving more 
complicated properties of the steady state than equal-time correlations. It would be of 
interest to extend our calculations to more general situations such as partially asymmetric 
exclusion where in time df particles can jump to,the right with probability pdt and to the 
left with probability qdt (in the case p = q the diffusion constant for a finite density of 
particles in the limit of an infinite system should scale as N - ’  [%I, 251). One could also look 
at the two-species problem [I31 (at present we have succeeded in calculating the diffusion 
constant of a single second-class particle in the presence of an arbitrary number of first-class 
particles). Lastly, it would, of course, be interesting to see whether the matrix approach 
could be used to obtain more general time correlations in the steady state. 
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