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ILdsumd. Nous consid4rons un mod61e d'exclusion asym4trique pour lequel des particules

avec des interactions de
coeur dur sautent avec uue direction privi14g14e. Dans le cas de con-

ditions de bord ouvertes, la valeur moyenne des nombres d'occupation 4tait d4jk connue. Nous

gdn4ralisons ces expressions h toutes les fonctions de corr41ation. Nous 4tudions plusieurs limites

continues de la fonction k deux points et montrons que les conditions de bord produisent des

corr41ations I longue port4e. Nous discutons aussi la pr4sence de ces corr41ations k tongue port4e
dans un mod61e de croissance re1i4,

Abstract, Asymmetric exclusion models
are systems of particles hopping in a preferred

direction with hard core interactions. Exact expressions for the average occupations have pre-

viously been derived in the one
dimensional fully asymmetric case with open boundaries. Gen-

eralisations of these expressions are
presented for all correlation functions. We discuss several

continuous limits of the twc-point correlation functions and show that due to the boundary
conditions, long range correlations persist in the bulk. We also discuss the presence of these

long range correlations in
a

related growth model.

1. Introduction.

Driven dilTusive lattice gas systems are
known as

non-equilibrium models which have inter-

esting stationary states [1-9]. They belong to a
broader class of systems, including growth

processes [10-12] and models exhibiting self-organised criticality [13,14], which evolve accord-

ing to microscopic dynamical rules that are local and stochastic. The absence of detailed

balance conditions for the dynamics of these models implies that their steady states usually
cannot be described as the Gibbs measure associated with any reasonable energy function. It

is expected that such systems should, in general, present long range correlations in their steady
state [13,15,16].
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In the present paper, we report some exact results on the correlations functions of an asym-

metric one dimensional exclusion model [8], which is a
particularly simple example of

a
driven

lattice gas. For this system, particles are chosen for update at random and can then jump to

their neighbouring site to the right, only when this site is not occupied. This model has been

considered recently by various authors in dilTerent geometries [10,6,7,8]. The simplest case is

that of periodic boundary conditions, where the dynamics conserve the number of particles
in the system. It has been shown [10,17] that steady states correspond to having an equal
weight for all possible configurations (with the right number of particles). Thus for periodic
boundary conditions, the occupation variables of the different sites have no correlation and

the correlation functions are trivial. The time dependence is more complicated, nevertheless

the eigenvalues of the Master equation can be computed by the Bethe ansatz method [17,9].
Another situation which has recently been considered [7] is that of the system with periodic
boundary conditions, but with

a
blockage inserted to break the translational invariance. The

blockage takes the form of
a special bond where the hopping rate differs from the value it takes

for the other bonds. The presence of this single impurity, which
can

be thought of
as a

kind

of boundary condition, is sufficient to create long range correlations in the system.
The

case of open boundary conditions where particles enter at the left end and leave at the

right end has also been studied II 8,6,8], and is the situation we consider here. Again, the elTect

of the boundary conditions is to give rise to power law decays in the density profile (the time

average of the occupancy as a function of the position along the chain).
The model

we consider, which is exactly the same as in [8], is defined
as

follows: each site

I (I < I < N) of a one dimensional lattice of N sites is either occupied by
a

particle (q
=

I)

or empty (r;
=

0). The evolution of this system is governed by the following rule: at each

time step t
-

t + I, an integer I is chosen at random between 0 and N (I.e. the probability of

choosing I is I /(N + I)). If the integer I is between I and N I, the particle on site I (if there

is one) jumps to site I + I (if this site is empty), I-e-

ri(t + I)
=

r;+i(t)r;(t)

(i)
ri+i(t + I)

=
T;+i(t) + (I r;+i(t))r;(t)

If the integer chosen is I
=

0, then if site I is empty it becomes occupied with probability

tY, whereas if it is occupied it remains occupied. Similarly, if the integer chosen is I
=

N, then

if site N is occupied it becomes empty with probability fl whereas if it is empty it remains

empty. The values of
tY

and fl define the (open) boundary conditions and phase transitions

can occur as tY and fl are varied [6,8].
The exact solution of this model [8] was obtained by writing a recursion which gives the

steady state of a lattice of N sites in terms of the steady state for a lattice of N I sites. This

recursion is recalled in the Appendix, however, it is rather complicated and the calculation of

observables like correlation functions is not straightforward. In reference [8], the expression for

the density profile (r;)N (I.e. the one point correlation function) for all system sizes N, was

derived in the
case

tY=fl=1. (2)

In this case
(and

more generally when
tY =

fl < I) one can show that the dynamics of particles
moving to the right is identical to that of holes moving to the left. This particle-hole symmetry
implies that in the steady state

(Ti> TiniN
"

((I TN+i-;i (I rN+i-;» )iN
,

(3)
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where (.. )N indicates
an average in the steady state of a system of size N.

The main purpose of this paper is to present, for the same values of o and fl equal to one, a

similar result for the two point correlation function, to that of [8] for the one point correlation

function, and to propose a conjecture (that
we checked

on the computer) for the three and the

four point functions. A main consequence of our results is that for this exactly soluble model,

we can show the existence of long range correlations.

The paper is organised
as

follows. In section 2, we recall the exact expression of the one

point correlation function [8], and we give our main results: the exact expressions for the pair
correlation functions and conjectures (that

we checked on the computer) for the three point
and four point correlations. In section 3, we obtain the expression of (T;Tj )N in two continuous

limits of this problem: firstly, the boundary region, for which N becomes infinite first, and

then (T;Tj)N is estimated for I and j large; secondly, the bulk of the chain, where N becomes

large with I
=

Nz and j
=

Ny,
z

and y being fixed. In section 4, we use
the equivalence of this

one dimensional exclusion problem with that of
a growing interface to interpret our results in

terms of height variables.

2. Exact expressions of the correlation functions.

The key to obtaining exact expressions correlation functions is to consider the steady state of

the weights fN(Ti;. TN) of occupancy configurations (Ti; TN). The stationary probability
pN(Ti; TN) of an occupancy configuration is then given by

PNITI, TN = r~
~

~)j~ ii jj~j~~
~~~

14)

~-
,

~-,

The steady state of the weights may be written in the form of
a

recursion [8] which we provide
in the Appendix. In principle the knowledge of the correlations of arbitrary order n follows by
computing the correlation functions

L~i#1,0...L~N=1,0~>Ga .Gn/N(Tl;. -TN)
~'~~ ~~~ L~,=1,0. Lm=1,0fN(Tl; T

'

~~

however the recursion is sufficiently complicated that the way to do this calculation is not

immediately obvious.

The I-point correlation function (T;)N was obtained from a generating function formed by
summing over

indices I and N [8]. The result could be written in two forms: as a sum

N-k

iTk)N
= ~j ~ ~ ~~

~ AIP)AIN P) 16)

where
j2m)!

(7)Aim)
" ~,j~ ~ ~~j ?

or alternatively as a
closed expression

(Tk)N = +
~~~~~~~~~~~~~ ~~ ~ ~~~

~
IN 2k + 1) (8)

2 4 lk!)~12N + ii! llN k + il!I

We have followed the same generating function approach to obtain the 2-point correlation

functions. However, because the derivation is rather tortuous and gives no physical insight
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into the problem we
do not present it here. The result we

obtained is

~~'~~~~~ ~~~~
~~

~~ ~~~~~

~

~'~~~~~~~~ Pi p2) jg)

where ki > k2.
We checked this expression against a direct evaluation of is)

on the computer for system
sizes up to N

=
10 and found

a
perfect agreement. On comparing the expressions (6) and (9)

for (Tk) and (Tki Tk~), we conjectured the following expressions for higher order correlations

N-k> N- I-ha-p>

iTki Tk~Tk~iN = ~j~ + 11

~ AiPii L AiP21

p>*0 pa=0

N-2-k3-P>-pa

x
£ A(p3)A(N 2 pi P2 P3) (10)

p3*0

where ki > k2 > k3, and

-pz N-3-k4 -p, -pz-p3
X £

p3*0 4=0

where
ki

>
k2 > k3 > k4.

As before we
in excellent

agreement.

~ N

iTk>

k>~ N

k>~ N

iTk> Tkz Tk~Tk,)N = ~j~ ~ ~j L
A(q)A(N

- iTkzTk~Tk~)q-1 ,

iTkiTkz TknlN
= ~j

/+
i~

~ AiqlA(N qliTkz Tkniq-i Where ki > k2 > kn

q

,

(is)
We feel that there should be a physical reason for (IS) (that would in turn furnish a more

direct derivation for the solution of the model although we could not think of it.

A simple relationship between the I and 2 point correlation functions
was

derived in [8]:

(Tk)N (Tk+iTk)N
"

(TN)N where I < k < N -1 (16)
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This relationship expresses a
conserved current of particles along the chain. To see that (6)

and (8) satisfy (16), we rewrite (6) as

A(k)A(N k)
i~kiN

=
i~k+i

N + AjN +1)
i17)

and (9) as

~ ~~
~-~~i

i~~+i~~i~
=

i~~+~~~+ii~ +
~~ ~ ~ ~~

L Aip)AIN i k p) i18)
p=o

A(k)AIN k)
=

~k+2~k+1)N + A(N + 1) '

(19)

where
we

have used the identity

N£ A(m)A(N m)
=

A(N + 1)
,

(20)
m=o

which follows from the fact that

~j A(m)z~
=

@
(21)~o

~

Subtracting (19) from (17) then gives

(Tk)N (Tk+iTk)N
#

(Tk+i)N (Tk+2Tk+1)N where I < k < N 2. (22)

At the right hand boundary (TN-i)N, (TNTN-i)N have the simple expressions (17),(9)

jTN-i)N
"

ITNIN + ~)(
~

)
l~~~

A(N I)
(TNTN-i)N

" ~j~~T~il' ~~~~

so
that (16) is satisfied when k

=
N I. Application of (22) then implies that (16) is satisfied

for I < k < N I.

From now on we will focus
on

the 2-point correlation functions. From these
we can calculate

the fluctuations in the total number of particles M in the system, which is given by

N

fit
=

£Tk. (25)

k=I

The average (M)N is equal to N/2 because of the particle-hole symmetry in the problem which

implies from (3)
(T;)N

"
I (TN+1-1)N (26)

The mean square particle number is given by

(M~)N
=

+ 2 £(TjTk)N. (27)

»k
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The second term in this expression may be evaluated by using (9) and rearranging the sums

to give

~(TjTk)N
j>k

=
~j/+

i~
~ ~ L AiPi) ~ AiP2)AIN i Pi P21

=)> j+ij ~ ~~

" A(~/+I)
~~~~~~jj~~~

~~ ~~
/~~~ ~~~~~~~~~~~~~

~~ ~~~'

P>- Pa=

(ji~+I)l~~~~~~~~l'~~~~~~~~
~~ ~~~~~ ~~ /~~~

~~~

j~
A(pi)

~

i~~' ~~~ ~ ~~~~ A(p2)A(N I pi P2) (28)

p,=o p~=o
~

The labels pi,p2 may be interchanged in the second term on the r-h-s- of (28) which allows

the two terms in (28) to be combined to give

[iT>TkiN =
~j/+

i~
j~ N (~

~~ j
AiPi)

~ (
~AiP2)AIN i Pi P2) 129)

>> p>= pz=

Use of the identity (20) and

N
~£ mA(m)A(N m)

= ~A(N + 1)
,

(30)

m=o

which follows from (7) leads to

We then obtain

In the limit of large N the leading ehaviour of (M~)N -
(M)

( is

with the value N/4 that would be
obtained for the leading

behaviour if were
ignored. learly,

long range correlations due to the
presence

of the boundaries have a
ignificant

lTect in reducing the
fluctuations

of M. Our aim in the
ollowing

sections

3. The continuous lindt.

For large system sizes, there are two simple regimes one may consider for the density profile

(T;) N,
which is the average occupation number

as a
function of position along the chain. Firstly



N°2 CORRELATION FUNCTIONS IN AN ASYMMETRIC EXCLUSION MODEL 317

we have the boundary regions where the profile decays rapidly from the boundary values.

Secondly there is the bulk where the density profile approaches
a

plateau with corrections to

occupancy 1/2 that follow a power law in N [6]. An analytic form for the density profile has

been obtained in these two regimes [8] by considering two continuous limits of (8). For the

boundary region one lets N
- cc first and then lets the distance from the boundary become

large. For the bulk [19] one considers distances from the boundary that are proportional to N

and lets N
- cc.

A result of [8] was that in the bulk the corrections to the occupancy 1/2
are

N~~'~ rather than N~~
as

would be predicted by the mean field theory [6,8]. This suggests
that the effect of the boundary conditions extends beyond the boundary region into the bulk.

In the present section we shall repeat this kind of analysis for the 2-point correlation functions.

The bo~ndary region.

For the boundary region we consider sites at a fixed position relative to the left hand boundary
and let N

- cc. The behaviour at sites near the right hand boundary
can

be related to the

behaviour
near

the left hand boundary via the particle-hole symmetry (3) which implies

(TkiTkz)N~(Tk,)N(Tkz)N
"

(TN+I-kzTN+I-k,)N~(TN+I-kz)N(TN+I-k,)N (34)

=
i~~+i-~a~~+1-~,i~ ii (~~ii~)ii i~~zi~) 13s)

In the following ii,e shall make use of Stirling's approximation which determines the large N

behaviour of A(N)
as

A(N)
=

j$
Ii + °iN-~)l (36)

On letting N
- cc

in (9), ki and k2 being fixed with ki > k2,
we

find

j~
~ _~

~ A(Pl) ~'jj~' A(P2)
~~~~~+~~~' ~+~~~2 ~ 4P>+1 4p2+1

p,=0 p2*0

'Ve now assume ki, k2, ki k2 are
large

so
that we may replace k2 by k2 and hi I by ki

on the right hand side of (37), and use

f Alp)
~_

i
~~~ j~~~e m

,

(38)

~=o
4~~~ ~ ~/~

to give

(TN+I-kzTN+I-k, IN ~

4~ ~0 ~~~ ~~
~~~~

The sum in (.39) may be writtcn as

~j A(pi) ~~ A(pi) I I l~~ A(pi)

p,=o
~~~~~ 2~

(o
2V~4~~~~ (ki pi)~'~ k)'~

~/~~
2@4P>+lk('~ ~~~~

for which the first term may be evaluated
as an

integral, after using (3G), and tl)e second term

is given by (38). E,,entually
we

find

~~~~~~~'~~~~~~~~~ ~

lx k~/2
~

~/21+
~~j

~)~~~~ (41)

2 2
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The average occupancy in the boundary region is given from (8) when N
- cc

by

lTkl«
~b~ +

~
+ Olk~~'~l

,
1421

so that as N
- cc the connected correlation (35) becomes

l~ki~ka)m lTk,)mlTka)m C~

~jjjj~~l/2 ~ )~~~j
l~31

It is worth noting that expression (43), which was obtained for ki » 1,k2 » 1, ki k2 » 1,
remains valid when ki k2

=
1. This may be checked by making use of the relationship (16)

in the limit N
- cc.

The b~lk.

To take the continuous limit of (12) in the bulk,
we

will make N large keeping the ratios ki IN
and k2 IN fixed:

ki
"

Ny
,

k2
"

Nz
,

where ki > k2
,

v > z
(4i)

We first rewrite (12)
as

In going from (45) to (46),
we

have used the relationship (16). The mean occupancy in the

bulk is given from (8) (in the limit defined by (44) and N
- cc as

~~~~~~ ~ 2j~Nl/2 jzj~- ~~jl/2 ~ ~~~ ~~~~
'

~~~~

whereas the
mean occupancy on the right hand boundary is given from (6)

as

~~~~~
(~~i~/1)

~
~~i

~ ~~~ ~~ ~~~~

On inserting (36,44,47,48 into (46) we have

~~~Y~Nt)N
= +

~

l ~~

l

(Y-z)-~~~~~
~~~~ ~)]~~~

~i

4@N3/2
£

~ ~
~~ ~ ~~~~~~~ ~ ~~~~~

~~~~~~~~+z) + °(N-3/2)
~~~~

where

q =
Nz. (50)

We
now

make
use

of the bulk expression (47) for the average occupancy in the final term of

(49). At first glance this does not appear justified for the small values of q in the sum. However
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the error produced by using the bulk expression (47) in these terms is O(N~~'~). Thus,
as

long
as we are

ultimately interested only in orders up to O(N~~), this substitution is valid and

we find, after replacing the
sums

by integrals,

(TNyTNX)N "

I I I 2z

/Y~~
dz

I ~
N~/2 2@ jzji z)]~'~ 8@

o
ii

z
z)3/2(z + z)3/2

~ ~~ ~ lx
~ ~

ii
z

)~~2(z
+ z)3/2 jzzjj~+

)jl/2
~ ~~~ ~~~~ ~~~~

The integrals in (51) may be evaluated and
one

finds that within the connected correlation

the terms up to order O(N~Q~) in (51) are cancelled. The leading term for the connected

correlation is then given (for y > z) by

IT~~T~~)~ iT~y)iT~~)~
=

l larctan II zii~ '~j I (zii-i~
~'~

Ii
1 l

-I yll~
y~lllizl'i~ I+ °~N~'~) 152)

One should note that on replacing
z

by k2/N and y by ki/N in (52) and taking the limit

N
- cc, (43) is recovered. As was the

case
for (43),

one can also check that (52) remains valid

when N(y z)
=

I even though it was derived for N(y z)
- cc.

4. Equivalent growth model.

There is
a

well-known equivalence between one-dimensional exclusion models and single-step
growth models [10,11,7] which in the case of the asymmetric exclusion process may be formu-

lated
as

follows: the occupancy configuration (Ti,
.,

TN ) represents a surface interface; the

presence of
a

particle T; =
I represents a

decrease in the surface height of one unit at position
I whereas T; =

0 represents an
increase _in surface height of one unit. The surface height h(k)

at site k relative to the left hand boundary is then related to number of particles in this region
by

k

hlk)
"

L Ii 2~'l 153)

I=I

When the total particle number is N/2,
so that h(N)

=
0, the two boundaries are at the same

absolute height.
The dynamics of the asymmetric exclusion process describes the growth of the surface

as

follows. When a
particle moves from site I to I + I a local minimum of the surface height

between sites I and I + I has become
a

local maximum. A deposition event has thus occurred

between I and I + I. Deposition at non-boundary sites
can only occur if the site is at a lower

height than both of its neighbours, whereas deposition at a
boundary can occur if the boundary

site is at a
lower height than its single neighbour. The boundaries can thus be thought of as

inhomogeneities in the deposition process [20,18,21,7]. The parameters tY
and fl represent

the deposition acceptance rate at the two boundaries and varying tY and fl corresponds to

varying the inhomogeneity in the deposition model. For the case tY =
fl

=
I considered here,
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the two boundaries are on average at the same absolute height, however the bulk is at a
lower

absolute height. The boundary region ofthe density profile ofthe asymmetric exclusion process

corresponds to the decrease in the height of the surface from the boundary value, whereas the

bulk density profile corresponds to the shallow minimum of the surface height about the middle

ofthe interface. We find on integrating (42,47) that the mean height in the boundary region is

and in the bulk is

lhlNz)1
=

-~
lNzli zll~'~ 1551

One should note here that the average height at a site in the bulk is governed by the O(N~~'~)
corrections to occupancies 1/2 in the asymmetric exclusion model (47). It is thus in the growth

model interpretation that the long-range correlations implied by these O(N~~'~) corrections

become most significant.
To see

this further
we

shall consider fluctuations in the relative height between different

positions on the interface. These fluctuations are related to the fluctuations in particle number

between two sites in the asymmetric exclusion model by

ilhiJ) hit)l~) (h(J) hit))~

=
4

ii L Tk)~) L Tk))~j 156)

j-I j j

"
8 L L ll~k,Tk2) l~kill~k211 + 4 L ll~k) lTk)~] (57)

ka=I+I k,=ka+I k=I+I

To determine the fluctuations in particle number in the boundary regions and in the bulk we

can integrate (43) and (52) respectively. The task is straightforward if tedious, and we obtain

for the boundary region (1 < k2 < ki < N)

llhlki) hlk2)l~) lhlki) hlk2))~

~ -8 II' dq~ II' dqi
,~q~l~~ii~ i

Ii i) '~j
+ 4il~ dq Ii il

158)

=
4k2 (1(( (( + +

~ iii )41+
+ l) arctan(41)j (59)

' ' ' ' '

where I
=

ki/k2,
and for the bulk

llhlNv) hlNz)l~l lhlNvl hlNz)l~

=

8N~ /~ da /~ db llTNaTNbl lTNallTNbll + 4N /~ da [lTNal (TNal~l
~ +iNi'2j ~

j60j

=
4N ((v z)

i jig zlj +
)

Iv z + 3z(1 v)I arctau

(~)~~)~
~~j

-)
[xii vllv z)l~'~ ([vii v)l~'~ [xii z)l~'~)~ + O(N~'~) (61)



N°2 CORRELATION FUNCTIONS IN AN ASYMMETRIC EXCLUSION MODEL 321

If we consider the limit of y z small in (61), which corresponds to two sites well sepa-
rated microscopically but close to each other

on the scale of the interface, then
we

find that

[h(Ny) h(Nz)]~) (h(Ny) h(Nz))~
~M

N(y z). This is the result one would obtain

from considering the interface as random walk by assuming the steps of the interface to be

uncorrelated. Locally, therefore, the correlations do not significantly affect the shape of the

interface. However on
larger scales the interface is significantly different from a random walk

because (55) indicates a curvature of the interface and (52) implies non-trivial fluctuations in

the surface height. Thus the apparently weak connected correlations, which in the bulk
are

of magnitude O(N~~ (52), accumulate over large scales to lead to a
smoothing effect on the

interface. This is reminiscent of what has already been found for
a Toom interface [22] there

the smoothing effect was even stronger since the power of N of the height fluctuations
was

altered by the boundary conditions).

5. Conclusion.

To summarise, we
have given an exact expression for the 2 point correlation functions of a

simple asymmetric exclusion model and have conjectured expressions for all higher correlations.

The effect of correlations is highlighted when the model is mapped onto a
growth process, for

then the leading behaviour is different from mean-field predictions. This implies that long

range correlations exist and play an important role in the model. The origin of these long

range correlations
can

be traced back to the boundary conditions. It would be interesting
to investigate the effect of different boundary conditions, for example by considering general
values of

tY
and fl. To this end an easier route to the exact solution would be most desirable.

At the time of finishing the present manuscript,
we

found with V. Hakim and V. Pasquier an

alternative way of writing the steady state which may hopefully give a more direct derivation

of the correlation functions and be extended to more general values of
tY

and fl.

In the context of growth, it would be useful to know whether the continuum limits of the

height profile and height fluctuations of
a

microscopic model, as
considered in the present work,

could be obtained directly from a continuous description, like the KPZ equation [12] with an

inhomogeneous deposition at the boundary [20].

Note added in proof Since completing this work we have found with V. Hakim and V. Pasquier

[23] an alternative approach to the problem that allows
a

proof of the validity of the expressions
(IS) of the correlation functions conjectured here.
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Appendix A :
recursion for the weights.

In [8] it
was

shown that for the model described in the introduction, the weights fN(Ti TN)

can be calculated explicitly for all N. Ref [8] gave the following recursion of the steady state

of the weights:

If TN =
I

fN(~l; TN-I,TN)"*fN-I(~l; TN-I) (Al)

IfTN"TN-i"..."Tp+1"0 and Tp=I

fN(Tl; ,Tp-I,1,0,. 0)=all[fN-I(Tl; >Tp-I,1,0,. 0)

+fN-I(Tl; >Tp-1,0,0,. 0)] (A2)

If Tl "T2" -.-TN "0

iJv(o; o)=fliJv-i(o; o). (A3)

This recursion together with the initial conditions

fi(I)
= ~Y

and fi(0)
=

fl
,

(A4)

determines the steady state for all system sizes and for all choices of a
and fl.
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