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The asymmetric exclusion model describes a system of particles hopping in a preferred 
direction with hard core repulsion. These particles can be thought of as charged particles in a 
field, as steps of an interface, as cars in a queue. Several exact results concerning the steady 
state of this system have been obtained recently. The solution consists of representing the 
weights of the configurations in the steady state as products of non-commuting matrices. 

1. Introduction 

Systems of particles with hard core repulsion and stochastic dynamics have 
been studied for a long time both in the mathematical [l-6] and the physical 
literature [7-191. They are among the simplest examples of systems out of 
equilibrium. The goal of this paper is to review the content of a recent work 
[20] describing a matrix approach which allows one to solve exactly the one 
dimensional asymmetric exclusion model with open boundaries. 

The system we consider is a one dimensional chain of N sites and each site is 
either occupied by one particle or empty. A configuration {or, r2, . . . , TV} of 
the system is characterised by N binary variables ri = 1 or 0 (T, = 1 if site i is 
occupied by a particle and TV = 0 if it is empty). During an infinitesimal interval 
of time dt, each particle in the system has a probability dt of jumping to its 
neighbouring site on the right provided that this site is empty (otherwise the 
particle does not move). Moreover, if site i = 1 is empty, there is a probability 
(Y dt that a new particle is introduced into the system (at site i = 1) and if site 
i = N is occupied, there is a probability /3 dt that the particle on site i = N will 
leave the system. Given these rules, it is easy to write equations for the time 
evolution of any correlation function: for example, one has for 2 <i <N - 1 

d(r) 
L = (Ti_r(l - ri)) - (Ti(l - Ti+,)) dt (1) 
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or for 26iSN-2 

d(qTi+l> 
dt = (T-It1 -‘i17i+l) - (TiTi+*(l-Ti+,)) 7 

whereas at the boundaries one has 

d(r,) 
-=cX((1-71)) - 

dt Ml - 72)) > (3) 

(2) 

dhv) 
- = h-1(1 - TN)) - p&) ) dt 

where ( ) denotes an average on the history. 
Once these relations are written, one can in principle calculate the time 

evolution of any quantity of interest. The problem however is that the 
computation of the one point functions (ri) requires the knowledge of the two 
point functions (~~5)) which themselves require the knowledge of higher 
correlation functions. This is a situation quite common in statistical mechanics 
where one can write relationships between different correlation functions but 
there is an infinite hierarchy of equations which makes the problem hard to 
solve. 

Even the properties of the steady state are difficult to obtain, as can be seen 
from (l)-(4), h w ere the steady state condition amounts to replacing the left 
hand side of these equations by zero. 

Our approach to describe the steady state of this system is inspired by a 
technique [21,22] which has previously been applied to the problems of 
directed lattice animals [23] and quantum antiferromagnetic spin chains 
[24,25]. For the asymmetric exclusion process the present approach simplifies 
the derivation of known results [16-191 and facilitates their generalisation. 

The idea is to write the weights fN(7i, . . . , TV) of the configurations in the 
steady state as 

fN(71, . . * 7 TN) = twl lfiI lITiD + C1 - Ti)EIIV) 7 (5) 

where D, E are matrices, (WI, IV) are vectors (we use the standard bra-ket 
notation of quantum mechanics) and 7; are the occupation variables. In other 
words in the product we use matrix D whenever ri = 1 and E whenever ri = 0. 
In general, since the matrices D and E do not commute, the weights 

fN(~lP . . . , T,,,) are complicated functions of the configuration {pi, . . . , TV}. AS 
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the weights f,(~,, . . . , TV) are usually not normalised, the probability 

PN(71,. . . 7 TV) of a configuration {or, . . . , TV} in the steady state is given by 

Of course, from looking at (5) it is not obvious that such matrices D, E and 
vectors (WI, IV) exist. We shall see, however, that it is possible to choose 
these matrices and vectors so that f&-r, . . . , T-~) given by (5) are indeed the 
actual weights in the steady state. 

Before presenting explicit forms for the matrices and vectors involved in (5) 
let us discuss the advantages of this approach. If one defines the matrix C, 

C=D+E, 

it is clear that (Eli> N defined by 

can be calculated through the following formula: 

(~,> = (W/C’-‘DCN-‘IV) 
I N owNIv) . (9) 

(7) 

(8) 

Similarly, higher correlation functions will have simple expressions in terms of 
these matrices. For example, when i <j, (~~5)~ is equal to 

(~,~,) = (w(c’-~Dc~-‘-‘Dc~-~~v) 
‘I N WICNIV) . (10) 

Therefore, if we have convenient forms for the matrices D, E and the vectors 
(WI, IV) so that matrix elements of any power of C = D + E have simple 
expressions, then formulae for the density profile (TV) N and for higher 
correlations ( 7i . * * q) N will follow easily. 

One can show [20] that if the matrices D, E and the vectors (WI, IV) satisfy 

(II)-(13), 

DIV) = WPW) 7 (11) 

DE=D+E, (12) 
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then (5) does give the steady state. 
We shall not repeat here the proof that (ll)-( 13) are sufficient conditions to 

give the weights in the steady state. It is however easy to check that the 
relations (l)-(4) will be satisfied in the steady state provided that the 
corresponding identities hold, 

DE(D +E)=(D+E)DE, (14) 

DED(D+E)=(D+E)DDE, (15) 

a(wIE(D+E)=(wIDE, (16) 

DElV)=j?(D+E)DIV), (17) 

and that these relations are immediate consequences of the algebraic rules 
(ll)-(13). Another easy check that (ll)-(13) do give the right steady state is 
to look at some special configurations. If one takes the case of a configuration 
where the first p sites are empty and the last N -p are occupied, it is easy to 
show that in the steady state one must have 

since this expresses that during a time interval dt the probability of entering the 
leaving the configuration are the same. Here again, this equality appears as a 
very simple consequence of the algebraic rule (ll)-(13). 

There is one line (CX + p = 1) where one can choose commuting matrices D 

and E which solve (ll)-(13). This can be seen by writing 

(ih +~~~)(~~v)=(w~D+E~v)=(w(DEIv)=(wIEDIv) 

= (ll@)( WlV) . (19) 

As (WIV) # 0, this clearly implies that (Y + p = 1. This is a well known special 
case where the steady state is factorised (fN(~l, . . . , TV) depends only on Ci ri 
and all connected correlations vanish). Under this condition (CX + p = l), one 
can choose the matrices D and E to be unidimensional, with D = /I -' and 
E=a-'. 

The previous remark also shows that for CY + p # 1, the size of the matrices 
D, E must be greater than one. The next question is whether one can find finite 
dimensional matrices that will satisfy (ll)-(13). It turns out that one can prove 
that this is impossible (if D and E were finite dimensional matrices, the 
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relation DE = D + E would imply that D = E(l - E)-’ which itself would 
imply that the matrices D and E commute). So the only possibility left is to use 
infinite dimensional matrices. There are several possible choices for the 
matrices D, E and vectors (WI, IV) that satisfy (ll)-( 13). One particular 
simple choice, which has proved useful in extensions of this approach to other 
cases, is 

. . 

. . 1 P-3) 

I ! . (21) 

This choice makes the particle-hole symmetry of the problem apparent since 
the matrices D and E have very similar forms and the boundary conditions (Y 
and /3 only appear in the vectors (~1 and IV). For this choice (20) of D, E the 
elements of CN (where C = D + E and N denotes the Nth power of matrix C) 
are given by 

mm = (N i’,“- ,) - (N +2;+ ,) . (22) 

Expression (22) can be obtained by noting that (C”),, is proportional to the 
probability that a random walker who starts at site 2m of a semi-infinite chain 
with absorbing boundary at the origin, is at site 2n after 2N steps of a random 
walk. This probability may be calculated by the method of images. 

An apparent disadvantage of this choice (20), (21) is that, due to the form of 
(WI and IV), one has to sum geometric series to obtain the correlation 
functions and these series diverge in some range of (Y, p (in fact (Y + /I s 1). 
However, at least for finite N, all expressions are rational functions of (Y, p so 
that in principle one can obtain results for (Y + /3 =S 1 by analytic continuation 
from those for LY + p > 1. 

In many cases calculations may be done directly from (ll)-(13) without 
recourse to particular forms of the matrices. For example, one can calculate 

(WlC”lV> ( w h ere C = D + E) for all values of CY and p, 
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wIcNIv) 
WI IV 

= i p(2n - 1 -p)! p-“-l- 0-l 

P=o n!(n -p)! P-‘-a-l * 
(23) 

The derivation of (23) is given in [20]. The first few cases can easily be checked 
directly: (WICNIV) = 1 for N=O; (Y-’ +p-’ for N= 1; (Y-’ + (Y-‘/Z-~ + 
p-2+&1+p-1 for N=2; (Y-~+(Y-~~-~+(Y-~~-~+~-~+~((Y-~+~-’~-’ 

+P -2 + (Y -’ + /3 -‘) for N = 3, against direct calculation from (ll)-(13). 

2. Some results 

Once the matrix elements of C are known, expressions for several quantities 
can be derived. For example, in the steady state, the current through the bond 
i is simply J= (~~(1 --T~+~)), b ecause during a time dt, the probability that a 

particle jumps from i to i + 1 is T~( 1 - ri+l) dt. Therefore, J is given by 

(24) 

where we have used the fact (12) that DE = C. This expression is independent 
of i, as expected in the steady state. From the large N behaviour of the matrix 
elements (WICNIV) given by (23) one can show [20] that there are three 

different phases where the current J is given by 

(i) for ff ~3 and /?z=+ 

J=+ ; 

(ii) for (Y < + and /3 > (Y 

J=a(l-a); (26) 

(25) 

(iii) for p < + and CY > p 

J=p(l-p). (27) 

Thus, the phase diagram consists of three phases: (Y > +, p > ij ; a < +, p > a; 
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PC:7 (Y > p. This is exactly the phase diagram predicted by the mean field 
theory [11,16,19]. 

From the knowledge of the matrix elements ( WICNIV), one can obtain [20] 
exact expressions for all equal time correlation functions. For example the 
profile ( 7i ) N is given by 

n-1 

bjAv =p.o @(;T l)! ‘;g:;‘; 
+ (w~c’-‘~v) nil (p - 1)(2n -p>! p-” 

(KqPp) p=2 m+1-PY ’ 
(28) 

where n = N - i. Several limiting behaviours (N large, i large) are discussed in 
[20]. In the case CY = p = 1, one can even perform the sum in (28) to obtain 

[W 

(29) 

3. Conclusion and extensions 

The matrix method of solving the asymmetric exclusion process is much 
simpler than previous approaches [16-191. The problem is reduced to finding 
the elements of products of matrices that satisfy the algebra (ll)-(13). This 
gives a fast way of obtaining analytic expressions of the profiles (TV) N and 
correlations ( 7i . . . TJ N. 

This approach can be extended to several situations: 
-The partially asymmetric exclusion problem where particles can jump 

either to the right with probability p or to the left with probability q = 1 -p. 

In that case one can show [20] that replacing (12) by 

pDE-qED=D+E, (30) 

still gives the steady state. 
-The case of second class particles and of shocks: Using the matrix 

approach, one can solve exactly a two species problem [26] (with K, first class 
particles and K2 second class particles on a ring of N sites). During each time 
interval dt, each first class particle has a probability dt of jumping to its right 
provided that its nearest neighbour on the right is empty or occupied by a 
second class particle. In the latter case, the second class particle jumps 
simultaneously to the left. Also, during the time dt each second class particle 



32 B. Derrida et al. I Matrix solution of asymmetric exclusion model 

has a probability dt of jumping to the right if its right neighbour is empty. One 
can show that the weights in the steady state can be written as 

tr(XIXz+ - ax,) , (31) 

where X, = D if site i is occupied by a first class particle, Xi = A if it is 
occupied by a second class particle and Xi = E if it is empty. The algebra 
satisfied by the matrices D, A and E is then 

DE=D+E, DA=A, AE=A. (32) 

Using this description, one can obtain exact expressions of shock profiles 
[4,5,26,27]. 

- One can also extend the approach to calculate exactly more general steady 
state properties than equal time correlation functions. The first result of this 
kind [28] is the exact expression of the diffusion constant A for the system of K 

particles on a ring of N sites in the fully asymmetric case (each particle jumps 
to its right neighbour with probability dt when the right neighbour is empty). If 
Y, denotes the distance travelled by a particle after time t, one can show that in 
the long time limit 

0-J ==vt > (Yf) - (Y,+At, (33) 

where the exact expressions of v and A are 

N-K 
v=N_1> 

(2N - 3)! 

‘= (2K-1)!(2N-2K-l)! 

(K - l)!(N - K)! 

(N-l)! > 

2 . (34) 
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