
EUROPHYSICS LETTERS 

Europhys. Lett., 18 (4), pp. 361-366 (1992) 

21 February bis 1992 

A Model of Directed Walks with Random 
Self-Interact ions. 

B. DERRIDA, R. B. GRIFFITHS(*) and P. G. HIGGS 
Service de Physique ThSorique (**) de Saclay, CEN-Saclay 
F-91191 Gifsur-Yvette Cedex 

(received 18 November 1991; accepted 3 February 1992) 

PACS. 75.10N - Spin-glass models. 
PACS. 87.15B - Structure, configuration, conformation, and active sites at  the biomolecular 

level. 

Abstract. -We study a simple one-dimensional model of a folded polymer with random self-inter- 
actions. A numerical study of the specific heat shows two regimes: at  high temperature, the spe- 
cific heat looks smooth and sample independent, whereas at  low temperature it possesses many 
narrow peaks which change with the sample considered. The model is simple enough to allow for 
a full description of its ground states. We obtain numerical evidence for the presence of a .weak 
freezing,, transition and derive an upper bound for the transition temperature. Heuristic argu- 
ments provide an estimate of a critical exponent y ( T )  which varies continuously with the tem- 
perature in the low-temperature phase. 

Many models have been proposed describing polymer chains with random self-interactions 
(e.g. proteins) [l-51. The purpose of this letter is to consider a very simple one-dimensional 
model for the folding of random chains. The model is too simple to represent a real protein. 
However, it possesses interesting properties, there is evidence for a phase transition and the 
model may be simulated for rather long chains (lo5 monomers). Most other numerical 
simulations of random chain models[6-81 are limited to very short chains, making the 
comparison with theoretical predictions difficult. 

Our model is a chain of N monomers, with the i-th monomer carrying a charge qi = * 1. 
These charges are chosen at  random with equal probability for + 1 and - 1, and are then 
considered fured for a given sample. The Z N - '  possible configurations {x i}  are directed walks 
one a one-dimensional lattice: xi is the site occupied by monomer i, x1 = 1, and ei = xi + - xi 
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is either 0 or 1. The energy is 

where d,, = 1 if x = y, = 0 if x f y; and Q(r) is the sum of the charges of the monomers on site 
r. Clearly this model is over-simplified (zero-range interaction, directedness, no excluded 
volume). Nevertheless, it contains an important ingredient of several other models in that 
there is a quenched random sequence of charges. 

Since the chain is directed, one can use transfer matrices in a simple way[9-131. For 
similar problems with nondirected walks [6,7], the only reliable method seems to be exact 
enumeration. Using the right side of (11, one can write a recursion relation for the partition 
function of a chain of i monomers, 

with Zo = Z1 = 1, where k is the last monomer on the site immediately preceding the site 
containing i. From (21, it is clear that the time required to compute 2, is at most proportional 
to N2.  

By iterating numerically eq. (2) and its first derivatives [U] for randomly generated 
sequences we could measure the specific heat (fig. 1). One can see two ranges of temperature: 
i) at  high temperature, the specific heat is smooth and does not depend on the sample; ii) at 
low temperature, it has peaks due to rearrangements of the chain which are very sample 
dependent. As N increases (fig. l), the peaks look denser and steeper, but the range of the 
low-temperature regime seems to narrow down. We believe that for N + m, the specific 
heat becomes self-averaging (sample independent). However, from the data of fig. 1, it is 
hard to know if the low-temperature regime indicates the existence of a freezing temperature 
for N + CC or is only due to a crossover from high- to low-temperature behaviours. The 
average end-to-end distance per monomer, (xN - x l ) / N ,  not shown here, varies smoothly 
with temperature when N is large, and shows no visible dependence on size or sample, and no 
sudden collapse. Here and below, ( )  denotes a thermal average with the qi held fixed. 

However, evidence for the existence of a freezing transition emerges from a study of the 
probability 
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Fig. 1. - Specific heat vs. temperature for a random chain of length N = 500 (a)) ,  N = 5000 ( b ) )  and 
N = 50000 (c)).  



B. DERRIDA et al.: A MODEL OF DIRECTED WALKS WITH RANDOM SELF-INTERACTIONS 363 (p;.om 0.8 

0 0.2 0.4 0.6 0.8 1.0 

Fig. 2. - The integrated distribution F ( p )  of the pi (see eqs. (3) and (4)) at temperatures T = 0.2, 0.4, 
0.6, 2.0, 5.0. In the low-temperature phase, F ( p )  seems to be a power law near p = 0, whereas in the 
high-temperature phase F ( p )  vanishes below a certain pmh(T). Three samples of length lo5 are plotted 
and the curves are indistinguishable. 
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that monomers i and i + 1 are not on the same site. Numerical simulations show that many pi  
have a rapid and sometimes nonmonotonic temperature variation, not unlike the  chaotic^> 
behaviour of the local magnetization mi in a spin glass[14]. 

Figure 2 shows the integrated distribution F ( p ) ,  the fraction of monomers for which pi is 
less than p ,  for 3 samples of lo5 monomers each, at  temperatures T = 0.2, 0.4, 0.6, 2.0 and 
5.0: 

For increasing N we checked that F ( p )  reaches a limit and becomes self-averaging. We see 
from fig. 2 that at high temperatures there seems to be a positive lower bound pmin(T) S pi 
for all i. At low temperatures there appear to be p i  arbitrarily close to  zero. Plotting F ( p )  on 
a log-log plot suggests that, at least over some temperature range, F ( p )  is a power law close 
to p = 0, 

F ( p )  - py(T) 9 (5)  

where y ( T )  varies with the temperature. We estimate from the data: y(0.2) = 0.15; 
y(0.4) 2: 0.5; y(0.6) = 1.0; y(0.8) = 1.5; y(1.0) = 2.1. 

Thus there appears to be a transition temperature T ,  above which all the pi are strictly 
positive and below which there exist bonds with pi arbitrary close to  zero (for an infinite 
chain). We call this a <<weak freezing,, transition since at  low temperature there are bonds 
completely frozen in their collapsed state, although the whole chain is not yet in its ground 
state (the entropy is nonzero below T,). 

To discuss the model from a more analytical point of view, we need two new quantities: the 
cumulated charge Qi defined by 

Q i =  C. 
i s j s z  

and the partition function Yi of the right part of the chain (Yi is the partition function of the 
chain of length N - i + 1 with charges gi , gi + 1, . . ., qN). The Yi satisfy a recursion similar to 
(2) with YN = Y N +  = 1. It is then easy to check that 

(7) pi = zi Yi + l/zN = zi Yi + 1 /(zi Yi+ 1 + Ri) 
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where k is the last monomer on the site preceeding the site of i and i + 1, and 1 is the first 
monomer on the site which follows that of i and i + 1. 

To first order in a 1/T expansion, (7) gives 

1 1 + - T k s i l a i + l  
qkql/21-h) + 0(1/T2). 

We see that at high temperature, p ,  depends only on the local values of the charges around 
monomer i. 

At T = 0, if one restricts our discussion (for simplicity) to  t h  case where the total charge 
QN = 0, one can easily describe all the ground states: from (l), it 3 clear that in a ground state 
the charge on each site must be zero. The chain has the choice I : moving to  the next site only 
when Q, = 0. Hence p ,  = 0 if Q, f 0 and p ,  = 1/2, when Q, = 0 Since Q, as a function of i is a 
random walk, it should vanish a number of times of order fl. So the entropy at T = 0 
increases like fi. In striking contrast with the high-T case, a p ,  depends on charges which 
can be arbitrarily far apart along the chain at T = 0. In fact the numerical results shown 
above were done for chains with QN = 0, and we checked that there was no difference 
between this case and the general case of unrestricted random sequences. 

We did not succeed in finding a proof of the existence of the transition indicated by fig. 2, 
but we obtained an upper bound of 2.08 for T, by showing that for T > 2.08, 

a lower bound which is independent of i. Let us discuss briefly the origin of (10). Removing 
from (8) the term (Ql -  - Qk)', one gets 

(11) 

Now using the fact that 2, - d Zk , and Zk - (1 + exp [ - l/T]) d Zk and similar inequalities 
for the Yl one gets 

Substituting (12) into (7) gives the result (10). Notice that the bound for T, is true for any 
choice of the q i .  

While we have not been able to prove that a low-temperature .frozen>, phase (with 
arbitrarily small p i )  exists, the following argument is at least plausible. For a pure chain with 
all charges qi = + 1, the largest eigenvalue 1 of eq. (2) satisfies 

1 = 2 ,ITn exp [(n - n2)/2Tl. 
n > l  

One can show that a chain with qi = + 1 for i d N/2 and - 1 for i > N / 2  will collapse at a 



B. DERRIDA et al.: A MODEL OF DIRECTED WALKS WITH RANDOM SELF-INTERACTIONS 365 

temperature TCp"" = 1.43 determined by the equation I I  = exp [1 /2T]  since below T,P" the 
free energy of the completely collapsed state is lower than - Tlog A. Thus, for T c T,P" 
almost all of the monomers are on one site, as the cancellation of positive and negative 
charges minimizes the energy. 

When the qi are random the polymer will still contain occasional segments of length 21 
consistent of 1 positive charges followed by 1 negative charges, and it is plausible that at  low 
temperature such segments will tend to collapse on a single site, making pi  small for i in the 
interior of the segment. When I is large, the fraction of monomers belonging to such 
segments is roughly proportional to 4-l, while the corresponding pi should be of the order of 
A2' exp [ - Z/T]. Assuming such segments give the dominant contribution to F ( p )  when p is 
small, y (T)  in (5 )  is the solution (for T < T,P") to 

ZnfYexp[- n 2 / 2 T ]  = 1. (14) 

The y ( T )  obtained from (14) is in rough agreement (y(O.2) = 0.3, y(0.4) = 0.6, y(0.6) = 1.0, 
y(0.8) = 1.7, y(1.0) = 2.3) with our numerical simulations. Discrepancies could be due either 
to problems in extracting y from the simulations or to the approximations used to obtain (14). 
Thus it seems plausible that weak freezing at low temperatures is produced by a mechanism 
in which some relatively long and relatively rare segments of the polymer chains find it 
energetically favourable to collapse onto a single site. 

The random nature of the charge distribution is essential for this type of transition in that 
one can show that if the qi are periodic, the pi have a strictly positive (independent of i) lower 
bound at all temperatures. The role played by relatively rare .ordered. segments has 
analogies in other random systems [15,16]. 

In summary, we have obtained rather convincing evidence of a weak freezing transition in 
this simple model. This includes an upper bound on T,  (which could surely be improved), and 
a heuristic argument relating the low-temperature exponent y(T) to the presence of some 
special and relatively rare segments in the polymer. While our methods could probably be 
extended to certain more complicated models, the directedness of the walk is essential when 
using a transfer matrix or recursion of the form (2), and thus there is little hope of extending 
our approach to the undirected case[7]. 
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