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Abstract. - We consider two simplified models of the formation of patterns emerging from the 
growth and coalescence of water droplets on a substrate (breath figures). The study is restricted 
here to the case of a one-dimensional substrate. In the first model we assume a monodisperse 
distribution of droplet sizes. In the second model, obtained as a mean-field approximation of the 
first one, the distribution of distances between neighbouring droplets obeys a Smoluchowski 
equation. We solve this equation analytically to obtain the coverage of the line (fraction of it 
covered by droplets) and the distribution of distances between droplets. We conclude by 
discussing the relevance of the random parking problem for breath figures. 

Introduction. - The problem of the combined effects of the growth and coalescence of 
water droplets condensing on glass surfaces has motivated several recent works, both on 
experimental and theoretical aspects [l-71. This problem is the laboratory version of the 
well-known phenomenon of condensation of vapour on spectacles or dew on grass. 
Experimental studies of breath figures, i .e .  the patterns formed by the droplets, performed 
on two- and one-dimensional substrates [l, 6,7], show the following features: after a 
transient regime where the droplets grow individually, coalescences between droplets 
appear. The coverage of the substrate (the fraction of it occupied by droplets) reaches a 
constant value in time. In this stage the breath figures are self-similar, i .e . ,  up to a resealing 
of lengths, the figures look similar at successive times; the values of the 1- or 2-dimensional 
coverages are close to those of the random parking problem [%lo] in the same dimensions. 
In a third regime, new droplets nucleate and grow in the space left between the original 
droplets. 

Inspired by these experiments, and discarding the last regime, the following model has 
been proposed [2,3,5,71. At time t = 0, nucleation sites are randomly distributed on a 
substrate of dimension d (d = 2 corresponds to droplets on a plate of glass, d = 1 on a spider’s 
web). On these sites, droplets of dimensionality D grow (0=3 for real droplets); the 
intrinsic growth ( i .e .  between two coalescences) of the radius of a droplet follows some 
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power law in time. When a coalescence between two droplets (of radii R1 and R2) occurs, a 
new droplet forms at the centre of mass of these two droplets, with a radius R given by mass 
conservation 

(1) 

Numerical simulations have been performed for this model [3-71. They reproduce the 
experimental observations mentioned above, in particular the existence of a scaling regime 
at large times. However a detailed analytical treatment of this problem has not yet been 
proposed. 

The purpose of the present work is to introduce two simplified 1-d versions (models A and 
B)  of the above problem in which the polydispersity in size of the droplets has been 
eliminated. These models capture the essence of the physical phenomenon, i .e.  the existence 
of a scaling regime which, at least for the second model, can be described by an analytical 
approach. 

Model A. - We first consider a system of equally sized droplets on a line (1-d substrate). 
The radius R of these droplets grows in time. The precise form of this growth law is 
irrelevant in this model, as will become clear below. When two neighbouring droplets 
coalesce, a new droplet is created with the same radius R,  centred half-way between the 
coalescing droplets. This model can be formally viewed as a limit of the model of D- 
dimensional droplets on a 1-d substrate, described in the introduction, when D + m. Since at 
all times the radii of the droplets are all equal, the problem is reduced to studying the 
distribution of distances (or bonds) h between the centres of neighbouring droplets. When 
the radius of the droplets reaches a certain value R,  all the pairs of neighbouring droplets 
which are at a distance ho (= 2R) coalesce and all the remaining distances h are larger than 
ho. Therefore if the system is represented by a sequence of points along the line (which are 
the centres of the droplets), the dynamics of growth and coalescence reduces to searching 
the minimal distance ho between two adjacent points, and replacing these two points by one 
point midway between them. Hence the two bonds neighbouring the disappearing bond ho 
become longer by ho/2. 

If one starts at time t = 0 with a system of N bonds, and if we denote by Ngt(h) 6h the 
number of bonds of lengths between h and h + 6h at time t (at which time, the length of the 
minimal bond is ho), one can define the fractionf,(h) of bonds of length h by 

RD = Rf' -!- Rf . 

L 

The length ho of the minimal bond is a natural time scale in the problem. It is therefore 
convenient to rescale the distribution f,(h), defining the distribution F(x,  t )  of the reduced 
variable x = h/ho: 

The coverage Ct of the line at time t is then given by 

using the fact that the number of droplets (all of diameter ho) is equal to the number of 
bonds. 
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Figure 1 shows F(x,  t) ,  obtained by numerical simulations of model A, at 3 different 
times, namely when the number of remaining bonds are 100 000, 50 000 and 25 000, starting 
with a system of 400000 bonds randomly distributed between 0 and 1. These three curves 
are superimposable, giving evidence to scaling at large times. It is also found that for large 
times, C, 2: 0.72, to be compared to C, 2: 0.8 found in 1-d experiments and simulations [7]. 
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Fig. 1. - The scaled distribution F(z ,  t )  obtained by simulation of model A at 3 different times. 

Fig. 2. - The scaled stationary distribution F(z)  for model B obtained by iteration of eq. (6). 

Fig. 3. - Same as fig. 1, for model B. 
Fig. 4. - The distribution of distances between the centres of adjacent cars for the random parking 
problem. 

Model B. - This model is a mean-field approximation of model A: the correlations 
between bonds are neglected. Hence, a t  each time step, the shortest bond ho is cut into two 
pieces of equal length and the pieces are added to two randomly chosen bonds. If Ngt(h) 6h is 
the numer of bonds of length between h and h + 6h at  time t ,  and if during the time interval 
(t ,  t + 6t) all bonds of length between ho and ho + 6h are removed, one can write the following 
equation for gt(h): 

The two terms inside the brackets of the r.h.s. of eq. (5)  correspond to the gains and the 
losses in this Smoluchowski equation; the Heaviside function accounts for the fact that no 
bonds are smaller than h. If we introduce, as in model A, the fractionf,(h) of bonds of length 
h and the rescaled distribution F(x,  t )  (see eqs. (21, (3)), we find from eq. (5) (using the fact 
that 6h and 6t are small and that Jgt+&) dh = Jgt(h) dh - gt(ho)6h) that f,(h) and F(x ,  t )  
satisfy 

f,+,(h) =f,(h) +f,(hO) (6) 
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where y(t) = ho W6h represents the relation between the real time t and the minimal length 
&. Since this relation is arbitrary in this model, we will choose for simplicity y(t)  = 1. The 
whole time dependence of the process is reduced to solving eq. (7) with some initial condition 
F(x,  01, or, introducing the Laplace transform $(p ,  t )  of F(x ,  t )  

m 

to solving the differential equation 

Though we did not find a way of solving analytically eq. (7) or eq. (9) for arbitrary initial 
conditions, all the stationary solutions +(p) of eq. (9) may be obtained, since they satisfy an 
ordinary differential equation. These solutions are 

1 - 2 exp( - u/2) t 

$(PI = F(1) P \ T e x p  1- t + F(1) P I du 
U 

indexed by the continuous parameter F(1). The question is what stationary solution is 
reached for given initial conditions +(p, 0) or F(x ,  0), if any at all. We can argue that the 
stationary solution which is obtained for most initial conditions F(x,  0) satisfies 

F(l) = 1. (11) 

The argument is as follows. From eq. (10) one can show that for p small 

So since the first moment of x is given by 

and noting that +(O) = 1, the only stationary solution which gives a finite nonzero value of B 
satisfies F(1) = 1. F(1) < 1 corresponds to B = CQ, whereas F(1) > 1 corresponds to 33 = 0. 
This last case should be ruled out since F(x )  is positive and of support [l, 031. 

One can distinguish between the two remaining cases for F(1) by looking at the 
trajectories of the singularities of $(p)  [ll]. Assume that a t  time t ,  +(p ,  t )  has some power- 
law singularity in the complex plane of p at pi(t) 

+Sin&P, t )  - ( p  - Pi( t )Y .  (14) 

By equating the most singular terms of both sides of eq. (91, we get an equation of motion for 
the singularity pi(t)  
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If the initial condition F(x,  0) is such that $(p ,  0) has some singularities pi(0) 2 0  in the 
complex p plane, these singularities will go to infmity when t + W. One then expects $(p ,  t )  
to converge to a stationary solution analytic in p ,  implying that F(1) in eq. (12) has to be an 
integer. Moreover, since 0 < F(1) < 1, one finds that F(1) = 1. 

If the initial condition F(x,  0) decays slowly when x+ m, so that +(p, 0) is singular a t  
p = 0, then the singularity of &I, t )  might remain at  p = 0 and F(x,  t )  might converge to 
another stationary solution with F(1) < 1. 

Using eqs. (lo), (U), (13) one can calculate 3 

du]] = 1.547 
1 - exp [- u/2] t 

U 
z = r~ [ 1 - exp [ - t + 2 J 

0 0 

and deduce from eq. (4) the coverage C = 1/Z a: 0.64 in this mean-field approximation. 
In fig. 2 and 3 we compare the stationary distribution obtained by iterating eq. (6) for 

F(1) = 1 (fig. 2), and the results of a simulation of model B (fig. 3). We see that the 
agreement is quite satisfactory. 

As a final remark, let us mention that other cases of scaling solutions are known for 
Smoluchowski equations [E, 131. 

Conclusion. -We have performed simulations of the model presented in the introduction 
with D-dimensional droplets on a line. For all D 2 2, after a transient regime, the patterns 
emerging are self-similar in time: the distributions of droplet sizes and inter-droplet 
distances obey simple scaling relations. These distributions resemble, as D + 00, the 
distributions found for model A.  We will present these results in a future work. 

Breath figures display intriguing similarities with the random parking problem. In 1-d 
this is the problem of sequentially parking cars of length 1 at  random along an infinitely long 
street, until the street is .jammed.: the spaces between the cars are all smaller than 1. As 
mentioned in the introduction, the final density of cars along the street is close to the 
coverage found in breath figures experiments and simulations on 1-d substrates. The same is 
found for the 2-d versions of these problems. All the more, in 1-d, breath figures in the self- 
similar regime are in nearly-jammed states. This is seen in fig. 1, where almost all the 
weight of the distribution of bonds lies between h,, and Zh,,, implying that almost all gaps 
between the droplets are smaller than h,,. Nevertheless, the analogy is not complete: 
comparing fig. 1 and 4, we see that the distributions of distances between droplet- and car- 
centres are very different; in the random parking problem (fig. 4) the distribution diverges 
(logarithmically) at 1 and drops discontinuously to 0 at 2. 

In this paper we have seen that a very simplified mean-field model for the formation of 
breath figures, solvable analytically, possesses, at least qualitatively, the main features 
(scaling regime) of more complicated models (the model described in the introduction and 
model A).  Starting from this mean-field approach, one should be able to improve it by taking 
into account some correlations between the lengths of neighbouring bonds. Our first 
attempts in this direction are encouraging and we hope to present them in a forthcoming 
paper. 
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