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Abstract. We give the expression for both integer and non-integer moments of the partition
function Z of the random energy model. In the thermodynamic limit, we find that the
probability distribution P(Z) can be decomposed into two parts. Forlog Z —(log Z) finite,
the distribution is independent of N, the size of the system, whereas for log Z —(log Z)
positive and of order N, the distribution is Gaussian. These two parts match in the region
1« log Z —{log Z)«< N where the distribution is exponential.

1. Introduction

In spin-glass models, one is interested in the calculation of the average free energy,
i.e. the average of the logarithm of the partition function Z. For most models, both
this calculation and the calculation of the probability distribution of Z are extremely
hard and cannot be done exactly. The random energy model (Derrida 1980, 1981,
Derrida and Toulouse 1985) is simple enough to allow the calculation of the whole
probability distribution P(Z) of Z. This distribution (Derrida and Toulouse 1981) is
of interest in particular in relation to the determination of the correct analytic continu-
ation in the replica method (Parisi 1979, 1980, 1983, Mézard et al 1984a,b). The
purpose of the present work is to give the expressions for both integer and non-integer
moments of P(Z) and to deduce from these moments the shape of P(Z).

The random energy model is defined for a system of size N and consists of 2"
energy levels E; distributed independently according to a probability distribution p(E;):

1 E?
E)=—=———= -—. 1
P(E JﬂNﬂeXp< Nﬁ) (1)

The partition function Z is then given by

ZUEN =Y exp(—?). (2)

=1

In the present work we will derive the following result for the moments (Z*) of the
partition function

<z">=f f [T p(E) dE, Z'({E}) (3)

i=1
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where ( - ) denotes an average over disorder, and

, S T>T.and v>(T/T.)?
vy _ AN 272 4T2 { c
(Z27)~27 expINvJ'/4T"] for \ T<T.and v> T/ T.
(Z*y~ 2N exp[ NvJ?/4T?] for T>T.and v<(T/T.)? (4b)
Tra-»T,/T
(z"y~zy 1T/ D for T<T,and v<T/T, (4c)
ri-v»)
where Z; is given by
J T. |1 J?

Zy= exp{ N? Vlog T [5 log N —log[-T'(-T/T.)]+3 log(%)i“ (5)
and where the critical temperature T, is given by

T,=J/2V/Tog 2 (6)

(see figure 1).

In formulae (4), the sign ~ means the leading behaviour in the limit N »co. In
the limit » > 0 and for T < T, formula (4¢) gives the result for the average free energy
of the random energy model (formula (31) of Derrida (1981)).

In § 2, we will derive the results given in formula (4). In § 3, we shall describe the
shape of the probability distribution P(Z) of the partition function.

vilag 2+°4T0

c log 2 +v2Ji/ur?

Figure 1. Phase diagram in the plane (», T) of the moments (Z*) of the partition function
of the random energy model.

2. The moments (Z")

In order to calculate (Z"), we will use the following integral representation

vy 1 = n—v—1 _i 5 _
Z >—_l‘(n—v) J‘o dit ( al) {exp(—tZ)) (7)
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valid for any integer n larger than v
n>vy, (8)

Formula (7) is true even without averaging. For n =0, it is just the definition of the
gamma function and for n=1, it can easily be understood since (—4/9t)" e % =
(Z)"e™"%. So the knowledge of all the moments (Z”) reduces to the calculation of the
following average (e ~'*) which is greatly simplified by the fact that the energies E; are
independent. If we define ¢ by

exp(—¢) = (exp(—tZ)) 9)

then one has

exp(-¢/2") = f(1)= J- dy exp[-(y*+1e™)] (10)

—-aC

sl

where
A=VNIJ/T (11)

The evaluation of f(¢) defined in (10) for different ranges of the value of log ¢t has
already been given by Derrida (1981).

For
—pA/2<logt<—(p-1)A?/2 (12)
one has
/\2 t2 5 b tp—l (p_1)2A2
f(t)=1—texp(7)+zexp()\ Y+ .+ (-1 (p_l)!exp< 2 ) -

1 ~log? t>[ (2log t) 1 <2log t) (1)]
+ r -=Il—=)+0l=])]|.
ﬁAexP< A? A2 A? A? © A¢

Thus to compute the moments (Z*), we need to know for each » and T, the range of
values of log t which dominates the integral (7).

We have now to express ¢ as a function of t or t as a function of ¢ using (10)
and (13) in order to obtain (Z") through the integral (7). Since the expression of f(t)
changes with the range of values of log 1, one has to distinguish several cases. It turns
out that depending on the temperature T and on », the part of the integral (7) which
dominates is either ¢ ~1 or ¢ exponentially small in N: For T<T,, v<T/T. and
for T> T,, v <(T/T.)’ the part which dominates is ¢ ~ 1, whereas for T< T, »> T/T.
and for T>T., v>(T/T.) itis ¢ exponentially small with N.

For T> T, and ¢ ~ 1, formula (13) should be used in the range

log t<—A%/2 (14)
and this gives
t=¢ exp(—A?/4)/2"N. (15)

Clearly since ¢ ~ 1, (15) is consistent with (14) as long as T > T,. Then using (15) in
(7) one gets from the contribution of the range ¢ ~ 1

(Z")~[2" exp(A’/4)7". (16)
For T< T, and ¢ ~ 1, one has to use (13) in the case

-A%2<logt<0 (17)
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and this gives

é 1 < log® l) (2 log t)

L - r 18

N T T TEA TP\ A (18)
which, since ¢ ~ 1, becomes

logt=—log Z,+(T.,/T)log ¢ (19)

where Z; is given (5).
Then the contribution to (Z") from the range ¢ ~1 is

vy L 1 " n—v—1 __8_ ! —tZ
“ r(n—v)L' ( at) e

1 T. [~ T a\"
_ Zy =< d (TC/T)(n~V)—1<___ 1—TC/T_) _
T(n—2»)“° TL ¢ ¢ " as) PUY
(20)
and after some integrations by parts one obtains
T.T(—vT /T C(l—vT/T
zh=zele Ty 1), LA -vT/T) (21)

T T(-») “° T(-»)

Expressions (16) and (21) come only from the contribution of the range ¢ ~1. Let
us now discuss the range ¢ exponentially small in N. If ¢ is exponentially small with
N, one can replace (exp—tZ) in (7) by

(exp(—1Z)) =exp(—d)=1-¢ =1-2"log f(1). (22)
So f(1) is close to 1 and for the range
-pAi/2<logt<—(p-1)A%/2 (23a)
one can write from (13)
LA 1 log®r\ (2logt
logf(t)=q§l 9 lt;zcﬁ-\/;}\e)(p(— o )F( e +... (23b)

where the coefficients a, come from the polynomial term in (13).
For p=1, the condition that ¢ is exponentially small with N is equivalent to
2N exp—(log’ t)/A%« 1, i.e.

logt<—-AvNlog2=—-N/(2TT,) (24)

whereas for p > 1, this condition becomes 2Va, 1« 1, i.e.

N{1 1
logt<——; F-F-T—z . (25)

Assume that one wants to calculate the moment (Z") for p—1< v <p. One can
choose n=p in (7), and one sees that when replacing (exp(—tZ)) by (22) and (23) in
(7), the polynomial part in ¢ disappears and the dominant contribution comes from
the last term in (23). The integral (7) for ¢ exponentially small becomes

—-NJ32TT n N 2
R 3 2 log“ ¢ 2log ¢
J:x dlogt expl(n—v)log t](——at> oA exp(— e )T( e > (26)
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This integral is dominated by its saddle point

log t=—vNJ?/2T*=-vA?/2 (27)
and leads to the expression
. Nvij?
(Z7y=2" exp<4—T2—). (28)

The condition for (28) to be valid is that the saddle point (27) satisfies conditions (24)
and (25), i.e. that

v>T/T, for v <1 (29)
and
v>¥TYTi+1) for v>1. (30)

So the range ¢ exponentially small with N leads to (28) provided that (29) and (30)
are satisfied. Combining (16), (21) and (28) with conditions (29) and (30), one gets
the result (4). (One should notice that for T> T, even if the saddle point (27) exists
if (30) is satisfied, it is only for »> T?/ T2 that (28) dominates (16)).

One can recover the average free energy (Derrida 1981) (4¢) and (5) for T< T, by
taking the limit » > 0:

Z"-1

(log z>=1vi§3< =log(Zy)+I"(1)(1 =T,/ T). (31)

The term—3 log N coming from log Z, agrees with the prediction of Galves et al (1989).

3. The shape of P(Z)

From expressions (4a) and (4c¢), one can show that the probability distribution P(Z)
of Z has the form

z yA zZ
P(Z)dZ=g\ = }d| = for — fini
(Z) g(zo> <Zo) or Z nite (32a)
and
N T? T?
P(Z)dZ=2N/ -— log’
(Z)dz Ni7m exp( NI log Z)dlogZ
z . .
forE— exponentially large in N (32b)
0
where the function g(x) satisfies
r(1—-+7T./T) .
jx"g(x) dx=! " Ta=») if v<T/T, (33a)
0 if v>T/T,. (33b)

Depending whether v<T/T, or v>T/T,, it is (32a) or (32b) which dominates the
integral ]Z”P(Z) dZ and one recovers (4c) or (4a), respectively.
Except for T = T./2, where g(x) is given by

g(x)=#;x"3/2exp<—£;> (34)
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we did not find an explicit expression of g(x). However, it is possible to obtain the
tail (x - o0) of g(x) since it is related to the divergence of (Z") as v~ T/T.:

T/ _ 1 ) .

g(x)~x < Ty for x - co. (35)
This tail for g(x) implies (from (32a)) that
o [ o 2\ Z) o2 (1 ) . i}

(Z )—JZ g<Zo>d<Zo> T/Tc—v( r-T/T) as v>(T/T,) (36)

in agreement with (4c).
It is also interesting to notice that in the region 1« log Z —log Z,« N, the two
expressions (32a) and (32b) agree and give

1 Z —I—Tc/'T 1
Pm"Z(Z) (_r(—r/n)) 37

(equation (37) can either be obtained from (32a) and (35) by choosing log Z —log Z; > 1
or from (32b) and (5) by choosing log Z —log Z,« N).

So the distribution P(Z) has the exponential shape (37) in the intermediate regime
1< log Z —log Zy« N between the range log Z —log Z,=O(1) given by (32a) and the
range log Z —log Z,= O(N) given by (32b).

4. Conclusion

In the present work we have obtained the expressions (4) of the moments (Z*) for the
random energy model. The expression of (Z"), for large N depends both on T and
v and one obtains a phase diagram (figure 1) in the plane (», T) of the same nature
as that found (Kondor 1983) for the Sherrington-Kirkpatrick model using the replica
method.

For the random energy model the replica method (Gross and Mézard 1984) can
also be applied and the results (4) can be recovered: the replica symmetric solution
gives (4a) and (4b). Expression (4c) is obtained from the solution with one replica
breaking although the Parisi ansatz does not define a way of obtaining the finite-size
effect. One should notice that the replica symmetric solution would give (4¢) even for
v < T/ T, and this would imply that P(Z) is normalised to 2", In order to obtain the
correct normalisation 1 of P(Z), the part of P(Z) determined from the solution with
one replica breaking (32a) must be included.

It would be interesting to extend the calculation of the moments (Z") and of the
shape of P(Z) to the generalised random energy model (Derrida and Gardner 1986)
and to the p spin models (Gardner 1985) in order to see the effect of correlations of
the energies.

5. Epilogue (BD, December 1988)

Elizabeth wrote this paper in 1985 in the form which is presented here. I have just
added a few sentences and changed a few words to complete it. The reason why we
did not publish it earlier was that I had not fully understood the derivation that
Elizabeth gave of equation (28). Itried several times to obtain an alternative argument
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without success. It was only while trying once more to complete this work in December
1988 that I fully understood Elizabeth’s idea. Although I postponed the publication
of this work year after year and that Elizabeth was convinced that her proof was
sufficient, she kindly accepted to wait until I could agree with what she had written.
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