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Abstract — The problem of direct polymers in a random medium has a mean-field theory similar
to, but simpler in form than, spin glasses. We propose here a method which allows one to expand
the free energy of directed polymers around the mean-field theory giving a 1/d expansion. Our
first results concerning the ground-state energy, the free energy and the transition temperature
are presented.

During the last ten years a lot of progress has been made in the mean-field theory of
strongly disordered systems such as spin glasses[1]. It is now broadly accepted that the
Parisi approach [2] with a broken replica symmetry is the best way of understanding spin
glasses. Extending this approach to finite-dimensional systems presents many
difficulties [3, 4] and at the moment the question of whether a spin glass phase with broken
replica symmetry exists in finite dimension is still controversial[5, 6, 7]. One difficulty in
trying to extend the Parisi solution to finite-dimensional systems is that the mean-field free
energy is sufficiently complicated to make all expansions around it technically very difficult.

The problem of directed polymers in a random medium([8, 9] also has a mean-field
theory[10] with broken replica symmetry. For that problem, however, the analytic
expression of the free energy, both in the low- and the high-temperature phases, is
extremely simple [10]. So one can try to expand around this mean-field solution and obtain a
1/d expansion.

Here, we describe a method which, we think, gives the 1d expansion for this problem and
we present our first results obtained using this approach. Our method consists of building a
family of tree models (n-tree approximations) which are better and better approximations to
a finite-dimensional lattice (which is recovered in the limit n— ).

Here firstly we define the model to be studied. Then we explain how the problem on a
lattice in dimension d can be approximated by # tree models which can be solved exactly in
the same way as in[10]. For d large, the calculation can be done for arbitrary n. We then
obtain the 1/d expansion for the original lattice by taking the limit n— .

We consider here the model on a hypercubic lattice in dimension d. On each bond j of the
lattice, there is a random energy e;. For convenience[11] (because this choice makes the
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calculation of several integrals which appear later possible) we choose the distribution ¢(e) to
be

ple) =exp[—e]. )
On this lattice, a directed walk of L steps which starts at a point r=(x,, ..., ;) is a walk
which reaches any point r' = (2, +n4, ..., €z +ny) With n; + ... + ng=L. So, the walk is

directed along the (1, 1, ..., 1) direction[12]. The partition function Z(r) of a walk of L steps
starting at r is, by definition,

ZL(T)=29XP[_' Ew/T]) (2)

where in (2) the sum runs over the d” directed walks w starting at r and the energy E,, is the
sum of the energies ¢; of the bonds i visited by w.
One can write the following recursion for Z,(r):

Zia( =S alr) Zu(r + €) ®)

i=1

with
ai(r) = exp (— 5r,r+ei/T> . 4

Since Z(r) = 1, this recursion gives, in principle, all the Z.(r). One would like to compute
(log Z,(r))/L for large L (where ( ) means the average over disorder).

The main difficulty in recursion (3) is that Z,(r+e;) and Z.(r +e;) both depend on
Z-1(r+e;+e) and thus are correlated.

Neglecting these correlations (i.e. considering the Z; (r + e in (3) to be uncorrelated) is
the same as replacing the lattice by a tree with d branches. The problem on a tree with an
arbitrary number d of branches has been solved exactly [10] for any distribution g(¢). The
solution is the following: if one defines Gy(y) by

d
i) = v 1og (5 (e~ ). )

i=1
where ¢; is the energy of the i-th branch, the free energy F(T) per unit length of the walk is
given by

-G /T) if T>Yvmin,
F(T)= (6)
- Gl(?’min) if T< l/YminJ

where y;, is the value of y which minimizes G,(y) (because yGi(y) is convex, one can show
that G,(y) has a single minimum).

The derivation of (5) and (6) can be obtained by several techniques (a replica method{13],
the GREM [18], the analogy with travelling waves [10]). It would be too long to repeat these
derivations here. Let us just mention that (5) and (6) express the fact that above T. = 1/ymn
the quenched and annealed free energies are equal, at T, = 1/yy;, the entropy vanishes and
below T, the free energy is equal to the ground-state energy. For ¢(¢) given by (1), one has

Gi(y) =y '[logd — log (v + 1)]. )
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Using (6) and (7) one can expand F(T) in powers of 1/d. For example one gets that for the
tree problem

T, = (ed)™' + 2(ed) ™% + 9(ed)~%/2 + 32(ed)~%/3 + 625(ed)~5/24 + O(d™9). ®

To extend these tree results to a finite-dimensional lattice, one has to include che cor-
relations between the Z,(r+e) in (3). In order to do this, we make a sequence of
approximations (the n-tree approximation), which are built by first iterating the recursion
(3) exactly n times on the d-dimensional lattice and by then neglecting the correlations
between the Z;. So for n =2, one gets

Zyor)= 3 alP)ar + €) Zylr + 26) + 3 3, [ar) ar + €) + D) ar + €)1 Z(r + e+ ) ()

i=1 j>i

and one neglects the correlations between the Z; on the r.h.s. of (9). So the original lattice is
replaced by a 2 tree.

This new tree problem can be solved as the previous problem. The only difference is that
instead of d branches, we now have d + d(d — 1)/2 branches. On d branches (1st term in (9))
there is an energy which is the sum of two independent random energies ¢, whereas on each
of the remaining d(d — 1)/2 branches (2nd term in (9)), there is an effective energy which
represents the contribution of the two paths forming this branch. As for the 1 tree, the
solution is obtained by defining a function Gu(y)

Goy) = 2y)tlog [i (exp[— y(ei+e)) + 3 ((exp[— (e + ¢/ )/T) + exp[— (g5 + ¢ )/T])*T>}, (10)

i<j

where all the energies which appear in (10) are distributed according to ¢(¢). The factor 1/2 in
(10) comes from the fact that if one iterates (9) L times, the length of the polymer is 2L.
From (10), one can calculate vy, and then obtain the free energy F(T) as in (6). Now yp, is a
function of T because T appears explicitly in (10) (but not in (5)).

As n increases, the formulae which generalize (5) and (10) to give G,(y) become more and
more complicated. For example Gi(y) is given by

Gs(y) = By) ' log[d(exp[— ye])* + d(d — D ((f(D)T) + d(d — 1)(d — 2)/6{(fuD)™)], (1)

where f; and f, are the partition functions associated with diagrams drawn in fig. 1 (e.g. f3 is
the sum over the 3 walks of 3 steps which connect the 2 marked points of the 8rd diagram).
The calculation of ((f3(T))") requires averaging over 7 bonds which is already a very hard
problem. So although increasing » should give successively better approximations to the
original lattice, the G,(y) quickly become so complicated that there is no hope of doing any
calculation for large n.

T
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f
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1 2

Fig. 1. - f; is the sum of the weights of all walks connecting the two marked points on the diagram 1.
For example fg = exp[— (51 + e+ Eg)/T] + exp [_ (84 + &5+ Eg)/T] + exp [_ (54 + g + E7)/T].
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However, for large d and for s(c) given by (1), one can expand the expressions for the G,
in powers of 1/d for arbitrary n. G, becomes simpler because one expects ym, = 1/T. = O(d)
(see (8)) and therefore the averages of the functions f; and f; can be simplified. Let us take as
an example the case of {((fz(T))'7). f; consists of the sum of 3 terms. When one averages over
the 7 energies, the leading contribution O(y™®) to f; (when v is large and T = O(y™!)) comes
from the situations where one of these 3 terms is much larger than the other 2. Then at order
y~5, one finds the contribution of pairs of walks which differ by only 2 bonds. Then pairs of
walks which differ by 3 bonds contribute at order y™%, and so on.

The general rule is that the contribution to G, coming from all the paths which pass
through K bonds is y7%. So the first contribution to G, comes from the d" single walks of n
steps, then from pairs of walks which differ by only 2 bonds, ete. So

did—1
Gy = niylog{d" (exp[— ye])"+ (n — 1)%.

- (exp[— yel)" E{(AD)T) — 2(exp [ ye])*] + 0(7'3)} .12

The function f; is the sum over the 2 walks of diagram 1 of fig. 1. (The next order would
involve f;.) In the sum which appears on the r.h.s. of (12), the leading term is of order 1
(because y ~ d), the 2nd term is of order y~2. Notice that 2(exp[— ye])? has to be subtracted
from ((f((T))T) because of situations where the weight of one of the two paths dominates
the other. So, to compute all the G, to a given order in y~!, a finite number of integrals
((exp[= yel), ((ADYT), ((fLD)T) ...) are needed.

Following the same rules which lead from (5) to (6), one gets from (12) the free energy
F(T) in the low-temperature phase:

F(T) = (ed)™ + (ed)™? + 3(ed)%/2 — (ed)*(g(T ed) — 3)(n — 1)/n + O(d™%), 13)
where

gt =t [ qu@+ 1) (1 +exp[-ul'—1) (14)

and e=2.71828... In the high-temperature phase, the free energy is the annealed free
energy F,(T)=Tlog[(T + 1)/dT] for all n. Equation (14) implies in particular that the
specific heat is linear at low temperature C,(T) ~ T/d. So the low-temperature phase is no
longer fully frozen.

From (12), the transition temperature can be obtained (by writing yum(T.) = 1/T0).

T.=(ed)™* + 2(ed) 2+ (ed)°[92 + (n — 1) g’ ()/n] + O™, (15)

where g'(1) = 7.527827... see (14). These expansions can be pushed further. The diagrams
which appear in this expansion have previously been used for directed percolation{12].
When doing these 1/d expansions, we observed that each term has a regular n-dependence
and has a limit when n— . For example, the ground-state energy obtained by this method
is in the limit n— «

E¢s = (ed)™! + (ed)™2 + 9(ed)3/2 + (110/3 — 3e)(ed)™ + (11297/24 — T4e)(ed)™® + O(d~®) . (16)

In this paper we have obtained 1/d expansions based on %-tree approximations. The main
assumption for the method to work is that the limits n— « and d— © commute. At the
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moment we have no proof of this. However, in all the calculations we have done so far, each
coefficient of the 1/d expansion has a limit when n— . Also for some cases (which we will
describe elsewhere) one can show that these two limits commute,.

The approach used here for the free energy can be extended to obtain various quantities:
overlaps, geometrical properties. It can also be used for other distributions ¢(¢) (leading to
noninteger powers of 1/d). These results will be presented in a future work.

The method presented here allows one to obtain the properties of the low-temperature
phase by expanding around the mean-field solution. It would be interesting to see whether
one can estimate the upper critical dimension from these expansions. Also it would be nice to
extend the present approach to other disordered systems such as spin glasses for which, up
to now, 1/d expansions can only be done in the high-temperature phase[14, 15].
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