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Abstract - The problem of direct polymers in a random medium has a mean-field theory similar 
to, but simpler in form than, spin glasses. We propose here a method which allows one to expand 
the free energy of directed polymers around the mean-field theory giving a l ld  expansion. Our 
first results concerning the ground-state energy, the free energy and the transition temperature 
are presented. 

During the last ten years a lot of progress has been made in the mean-field theory of 
strongly disordered systems such as spin glasses[l]. It is now broadly accepted that the 
Parisi approach [Z] with a broken replica symmetry is the best way of understanding spin 
glasses. Extending this approach to finite-dimensional systems presents many 
difficulties [3,4] and at  the moment the question of whether a spin glass phase with broken 
replica symmetry exists in finite dimension is still controversial[5,6,7]. One difficulty in 
trying to extend the Parisi solution to finite-dimensional systems is that the mean-field free 
energy is sufficiently complicated to make all expansions around it technically very difficult. 

The problem of directed polymers in a random medium[8,9] also has a mean-field 
theory [lo] with broken replica symmetry. For that problem, however, the analytic 
expression of the free energy, both in the low- and the high-temperature phases, is 
extremely simple [lo]. So one can try to expand around this mean-field solution and obtain a 
lld expansion. 

Here, we describe a method which, we think, gives the Id expansion for this problem and 
we present our first results obtained using this approach. Our method consists of building a 
family of tree models (n-tree approximations) which are better and better approximations to 
a finite-dimensional lattice (which is recovered in the limit n+ 00). 

Here firstly we define the model to be studied. Then we explain how the problem on a 
lattice in dimension d can be approximated by n tree models which can be solved exactly in 
the same way as in[101. For d large, the calculation can be done for arbitrary n. We then 
obtain the l ld  expansion for the original lattice by taking the limit n+ 03. 

We consider here the model on a hypercubic lattice in dimension d. On each bond ij of the 
lattice, there is a random energy cij. For convenience[ll] (because this choice makes the 
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calculation of several integrals which appear later possible) we choose the distribution P(E) to 
be 

(1) @(E) = exp [ - E] . 
On this lattice, a directed walk of L steps which starts at  a point r = (x, , . . . , xd) is a walk 
which reaches any point r' = (xl + n,, ..., x d  + nd) with n, + ... + nd = L. So, the walk is 
directed along the (1, 1, ..., 1) direction [U]. The partition function ZL(r) of a walk of L steps 
starting at  r is, by definition, 

where in (2) the sum runs over the dL directed walks w starting at r and the energy E ,  is the 
sum of the energies czj of the bonds ij visited by w. 

One can write the following recursion for ZL(r): 

with 

Since Z,(r) = 1, this recursion gives, in principle, all the ZL(r). One would like to compute 
(logZ,(r))/L for large L (where ( ) means the average over disorder). 

The main difficulty in recursion (3) is that ZL(r + ei) and ZL(r + ej) both depend on 
ZL-l(r + ei + ej) and thus are correlated. 

Neglecting these correlations ( i . e .  considering the ZL(r + ei) in (3) to be uncorrelated) is 
the same as replacing the lattice by a tree with d branches. The problem on a tree with an 
arbitrary number d of branches has been solved exactly[lO] for any distribution @(E). The 
solution is the following: if one defines Gl(y) by 

where 
given by 

is the energy of the i-th branch, the free energy F l ( T )  per unit length of the walk is 

if T < l /ymin, 

where ymin is the value of y which minimizes Gl(y) (because yGl(y) is convex, one can show 
that Gl(y) has a single minimum). 

The derivation of (5) and (6) can be obtained by several techniques (a replica method [131, 
the GREM [13], the analogy with travelling waves [lo]). It would be too long to repeat these 
derivations here. Let us just mention that (5) and (6) express the fact that above T, = l l y m i n  

the quenched and annealed free energies are equal, at T, = l/ymin the entropy vanishes and 
below T, the free energy is equal to the ground-state energy. For @(E) given by (l), one has 



J. COOK and B. DERRIDA: DIRECTED POLYMERS IN A RANDON MEDIUM: lid EXPANSION 197 

Using (6) and (7) one can expand Fl(T)  in powers of l ld.  For example one gets that for the 
tree problem 

T,  = (ed)-' + 2(e~l)-~ + 9(e~l)-~/2 + 32(e~i)-~/3 + 625(e~l)-~/24 + 0(uF6). (8) 

To extend these tree results to a finite-dimensional lattice, one has to include che cor- 
relations between the ZL(r + ei) in (3). In order to do this, we make a sequence of 
approximations (the n-tree approximation), which are built by first iterating the recursion 
(3) exactly n times on the d-dimensional lattice and by then neglecting the correlations 
between the ZL. So for n = 2 ,  one gets 

ZL+,(r) = 2 ai(r) ai(r + ei) ZL(r + 2eJ + 
d d d  

[ai@) uj(r + ei) + aj(r) ai(r + ej)l ZL(r + ei + ej) (9) 
i=l i=l j>i 

and one neglects the correlations between the ZL on the r.h.s. of (9). So the original lattice is 
replaced by a 2 tree. 

This new tree problem can be solved as the previous problem. The only difference is that 
instead of d branches, we now have d + d(d - 1)/2 branches. On d branches (1st term in (9)) 
there is an energy which is the sum of two independent random energies E, whereas on each 
of the remaining d(d - 1)/2 branches (2nd term in (9)), there is an effective energy which 
represents the contribution of the two paths forming this branch. As for the 1 tree, the 
solution is obtained by defining a function Gz(y) 

G2(y) = (2y)-I log ((exp [- ( E ~  + €;)/TI + exp [- (cj  + c I ) / T ] ) y T )  , (10) 

where all the energies which appear in (10) are distributed according to ,G(E). The factor 1/2 in 
(10) comes from the fact that if one iterates (9) L times, the length of the polymer is 2L. 
From (lo), one can calculate ymin and then obtain the free energy Fz(T) as in (6). Now ymin is a 
function of T because T appears explicitly in (10) (but not in (5) ) .  

As n increases, the formulae which generalize (5)  and (10) to give GJy) become more and 
more complicated. For example G3(y) is given by 

1 (exp [- y(ci + E;)) + [,I, icj 

G ~ Y )  = (3y)-'log[d(exp[- ~ € 1 ) ~  + d(d - 1) ((f3<T)IYT) + d(d - l)(d - 2)/6((h(T))rT)1, (11) 

wheref3 a n d 5  are the partition functions associated with diagrams drawn in fig. 1 (e.g. f3 is 
the sum over the 3 walks of 3 steps which connect the 2 marked points of the 3rd diagram). 
The calculation of ( ( f 3 ( T ) ) r T )  requires averaging over 7 bonds which is already a very hard 
problem. So although increasing n should give successively better approximations to the 
original lattice, the G,(y) quickly become so complicated that there is no hope of doing any 
calculation for large n. 

fl f i  '3 f& 

Fig. 1. - 
For example f3 = exp[- (cl + c2 + c3)/T1 + exp C- (e4 + c5 + cJ/TI + exp C- (e4 + c6 + c,)/TI. 

is the sum of the weights of all walks connecting the two marked points on the diagram i. 
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However, for large d and for F ( E )  given by (l), one can expand the expressions for the G, 
in powers of lld for arbitrary n. G, becomes simpler because one expects ymin = UT, = O(d) 
(see (8)) and therefore the averages of the functionsf, andf4 can be simplified. Let us take as 
an example the case of ( (f3(T))yT). f3 consists of the sum of 3 terms. When one averages over 
the 7 energies, the leading contribution O(f3) to& (when y is large and T = O(7-l)) comes 
from the situations where one of these 3 terms is much larger than the other 2. Then at order 

one finds the contribution of pairs of walks which differ by only 2 bonds. Then pairs of 
walks which differ by 3 bonds contribute at order Y - ~ ,  and so on. 

The general rule is that the contribution to G, coming from all the paths which pass 
through K bonds is Y - ~ .  So the first contribution to G, comes from the d" single walks of n 
steps, then from pairs of walks which differ by only 2 bonds, etc. So 

dn-'(d - 1) 
2 d" (exp [ - 7 ~ 1 ) ~  + (n - 1) 

The functionfi is the sum over the 2 walks of diagram 1 of fig. 1. (The next order would 
involvefi.) In the sum which appears on the r.h.s. of (12), the leading term is of order 1 
(because y - d), the 2nd term is of order Y-~. Notice that 2( exp [ -  YE])^ has to be subtracted 
from ( ( f l ( T ) ) y T )  because of situations where the weight of one of the two paths dominates 
the other. So, to compute all the G, to a given order in y-l, a finite number of integrals 
(( exp [- YE]), ( (fi(T)IyT), ( ( .MT))YT) . . .) are needed. 

Following the same rules which lead from (5) to (6), one gets from (12) the free energy 
F,(T) in the low-temperature phase: 

F,(T) = (ed)-'+ (ed)-2 + 3(edY3/2 - (ed)-3(g(Ted) - 3)(n - l)/n + O(d-4) , (13) 

where 
c 

g(t) = t 1 du (2 + tu) ((1 + exp [- 2 ~ 1 ) ~  - 1) 
0 

and e = 2.71828 ... In the high-temperature phase, the free energy is the annealed free 
energy F,(T) = Tlog[(T+ 1)ldTl for all n. Equation (14) implies in particular that the 
specific heat is linear at  low temperature C,(T) - Tld. So the low-temperature phase is no 
longer fully frozen. 

From (12)) the transition temperature can be obtained (by writing ydn(Tc) = UTc). 

T, = (ed)-' + 2(ed)-2 + (ed)-3[9/2 + (n - l)g'(l)/n] + O(d-4), (15) 

where g'(1) = 7.527827 ... see (14). These expansions can be pushed further. The diagrams 
which appear in this expansion have previously been used for directed percolation [121. 
When doing these l/d expansions, we observed that each term has a regular n-dependence 
and has a limit when n+ CQ. For example, the ground-state energy obtained by this method 
is in the limit n+ CQ 

EGS = (ed)-' + (ed)+? + 9(ed)-3/2 + (11013 - 3e)(ed)-4 + (11297/24 - 74e)(ed)-5 + O(d-?. (16) 

In this paper we have obtained l/d expansions based on n-tree approximations. The main 
assumption for the method to work is that the limits n-+ CQ and d+ CQ commute. At the 
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moment we have no proof of this. However, in all the calculations we have done so far, each 
coefficient of the l l d  expansion has a limit when n+ w.  Also for some cases (which we will 
describe elsewhere) one can show that these two limits commute. 

The approach used here for the free energy can be extended to obtain various quantities: 
overlaps, geometrical properties. It can also be used for other distributions F ( E )  (leading to 
noninteger powers of l ld ) .  These results will be presented in a future work. 

The method presented here allows one to obtain the properties of the low-temperature 
phase by expanding around the mean-field solution. It would be interesting to see whether 
one can estimate the upper critical dimension from these expansions. Also it would be nice to 
extend the present approach to other disordered systems such as spin glasses for which, up 
to now, l l d  expansions can only be done in the high-temperature phase[l4, 151. 

* * *  
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