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Distribution of the activities in a diluted neural network
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Abstract. The dynamics of asymmetrically diluted neural networks can be solved exactly.
In the present work, the distribution of the neural activities is calculated analytically for
zero-temperature parallel dynamics. This distribution depends on the number of stored
patterns and is a continuous function in the good retrieval phase. The continuous part of
the distribution of activities is due to the asymmetry of the synapses since it is known that
networks with symmetric interactions always have a distribution of activities which is a
sum of a few delta functions. The expression for the distribution of activities is also given
for a mixture of two patterns which have a non-zero overlap.

1. Introduction

Neural network models with symmetric synapses (J; = J;) have been extensively studied
in the last few years, (Little 1974, Hopfield 1982, 1984, Amit er al 1985a, b, 1987).
The main approach to these systems was to investigate their properties at thermal
equilibrium, trying to relate the appearance of phase transitions or of metastable states
in the mean-field equations to the structure of the attractors for Glauber-like dynamics.
At present, the properties of these networks at thermal equilibrium are considered to
be well understood, at least if one believes in the validity of the replica approach,
whereas less is known of the dynamics when the initial condition is far from equilibrium.
At zero temperature, the dynamics of these models becomes simpler and one can show
that starting with any initial condition, the system converges to a fixed point in phase
space (for sequential dynamics) implying that the activity of each neuron does not
change with time. Once the attractor has been reached, a given neuron is either quiet
for ever or firing for ever. This is a direct consequence of the assumption that the
synapses are symmetric. Of course, these fixed activities as well as the symmetry of
the synapses have no justification from a neurobiological point of view.

For non-symmetric synapses (J, # J;) the equilibrium approach is no longer possible
(with one exception (Coolen and Ruijgrok 1988)) and the properties of the network
have to be understood by directly studying its dynamics. This usually makes the
problem much harder since the dynamics is always more difficult to understand than
equilibrium properties. There exists, however, a class of models for which the asym-
metry of interactions makes the problem easier, allowing for a full analytic solution
of the dynamics (Derrida er al 1987). This class of diluted models has the following
two properties.
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(i) When the number, N, of neurons becomes infinite, each neuron i receives
non-zero synaptic inputs from only a finite number of other neurons j chosen at random
among the N neurons.

(ii) The events (neuron j has an input to neutron i) and (neuron i has an input
to neuron j) are not correlated, implying that almost all the synapses are unidirectional.

For several models belonging to this class (Derrida et al 1987, Derrida and Nadal
1987, Kree and Zippelius 1987, Gutfreund and Mézard 1988, Noest 1988), properties
like overlaps, projections on stored patterns and storage capacities have already been
calculated analytically. The purpose of the present work is to extend these results by
calculating the full probability distribution of the neuronal activities. As a consequence
of the non-symmetry of the synapses (J;, # J,;), we will see that even for zero-temperature
dynamics, the states of almost all neurons change with time.

In this work the calculation of the distribution of activities will be described for
the simplest diluted neural network (Derrida e al 1987). There should be no difficulty
in extending these calculations to more complicated models (Derrida and Nadal 1987,
Gutfreund and Mézard 1988, Noest 1988) which belong to the same class of diluted
neural networks.

The model is defined as a system of N neurons S;==+1 (S;(¢)=+1 if neuron i is
firing at time ¢ and —1 if itis quiet). The synaptic strengths J; are given by the expression

=Cy Z ErEN (1)

where p is the number of stored patterns, ¢“’'= =1 is the value of the wth pattern at
site i and C;; represents the dilution and has a statistical distribution given by

p(Cy)=(C/N)S(C;—1)+[1-C/N]8(Cy). (2)

By definition of the model, C; and C; are independent random variables. Thus if
Jij #0, one has J; =0 with probability 1.

For this neural network, only zero-temperature parallel dynamics will be discussed
here:

Si(t+1) =sgn(h;(1)) (3a)
with
h(1) =3 J,;S;(1). (3b)

Zero-temperature parallel dynamics means that at each time step, all the neurons are
updated simultaneously according to (3). (If h;(t) =0, one can choose, for example,
S;(t+1) = =1 at random but the results presented below will not depend on this choice
because only the limit of large C will be considered and in that limit h;(z) is non-zero
with probability 1.)

If one defines the projection m,(t) of the configuration {S,(t)} of the system at
time ¢ on the uth pattern by

m,(t)=

||Mz

N I s @

it was shown that in the thermodynamic limit (N - o) the evolution of m,(t) is given

by equation (9) of Derrida et al (1987):
m(t+1)=f(m(1)) (5



Distribution of the activities in a dilutal neural network 2071

with

& -C

n

x(K(;;—l)) sgn(Kp—2n—2s). (6)

K Ke-D(1+m)*"(1-m)"/K
r:g sgo ( m) ZKP( m) ( )

It is assumed here that the patterns {£*’} are chosen at random (with probability 3
for the two orientations £/ = +1) and that the initial configuration {S;(0)} has a finite
projection on a single pattern only:

m,(0) =O(1) m, (0)~ N2 (7
For large C and p, (6) simplifies to

2 m 2
f(m)=y/;;J1) dy exp<—-2}—);)=erf(\/.%) (8)

where « is defined by
a=p/C 9)

and where

X

erf(x)=%J. exp(—z°) dz (10)

0

There is a critical value which is the storage capacity of the network
a.=2/7=0.6366.... (11)

For a > «a,, the only fixed point of (5) is m; =0 and m,(7) always converges to 0. For
a <a., m =0is an unstable fixed point and there appear two attractive fixed points
m¥ and —m7 where m¥ is solution of m¥ = f(m¥).

2. The probability distribution of activities

The projection m,(t) represents the activity averaged over all the neurons (see (4)).
One can define a more microscopic quantity a;(t), the activity of neuron i at time ¢:

a(1)=Si(1)¢" (12)

where the overbar means an average over an ensemble of initial conditions. If this
ensemble of initial conditions consists of the set of {S;(0)} which have a given non-zero

projection m,(0) on a single pattern {¢;'’} and zero projections on the other patterns,
one has

(0= T (. (13)

The probability distribution Q,(a) of local activities which will be calculated in the
present work is defined by

Q(a)= ; 8(a—ai(1)). (14)

_1_
=N
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Let us assume that the neurons are uncorrelated in the initial condition, i.e. that
the probability distribution 2({S§;(0)}) has the form

N 1+ 5,(0)5:(0)

2US0p =11

1 5 (15)

If one defines b;(1) to be the value of neuron i at time ¢ averaged over the initial
conditions (15):

bi(1) = S(1) (16)

then one can write a relation between b;(r+1) of neuron i at time r+1 and the
b(t),..., b, (1) of its K inputs ji,..., jc at time ¢ (asuming that for site i, only
J; ., J, are non-zero):

h(t+1)= ¥ ... ¥ (ﬁ”ab )gn<z ) (17)

o,l=x1 U,K=Il r=1

Expression (17) is valid for almost all sites i. It expresses the fact that, at time ¢, the
states of the neurons S, (1), ..., S, (t) are uncorrelated. This is true for almost all sites
i because (Derrida et al 1987, Derrida and Flyvbjerg 1987, Flyvbjerg 1988) the tree
of all the ancestors of a site i from time ¢ to time 0, has no loop and the K immediate
ancestors of this site are uncorrelated. (Equation (17) for the activities of the neurons
is the analogue of equation (7) of Derrida and Flyvbjerg (1987) for the Kaufiman
model.)

Equation (17) gives the activity b,(r+1) as a function of the activities b; (t) and
of the patterns {¢}*’} through the J,,. Letus define P,(b, 7', ..., n'?') as the probability
that a site i has an activity b;(¢) at time t knowing that the values of the patterns on
this site i are n'",..., "7’ (i.e. knowing that n*’ = ¢*’ for 1 < u < p).

From (17) one can write:

PH-l(b,n(“s""n‘pJ)
~ K
= 5 O (b by, e, [ abePibe, g )
K (1+ob, K2
ofo- 5 % [f1(222) |sen( £ £ neen)])
o =x1 ag=x1 Lr=1 r=1p=1

(18)

where ( ) means the average over the patterns {£,*'}.

This equation gives the time evolution of the 27 distributions P,(b, n'",..., n'?)
for arbitrarily correlated patterns {¢“’}. It plays the same role as equation (8) of
Derrida and Flyvbjerg (1987) for the Kauffiman model.

Equation (18) is valid provided that the statistical properties of the patterns are
homogeneous in space (i.e. (£/*1'... £} is independent of i) and that the spins S;(t)
are not correlated in the initial condition.

Equation (18) is general (arbitrary correlations between the patterns) but compli-
cated: b is a continuous variable and 1", ..., »'?" can take 2” possible values. So
one has to iterate 2” functions of one variable. This difficulty can be greatly simplified
if one considers simple cases for which, in the initial condition, the spin configuration
has non-zero projections on a few patterns only.
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3. Finite projection on a single pattern
Let us first consider the case of a finite projection on a single pattern and no correlation
between the patterns. We choose the initial condition at =0 to be

Po(b, 7", ...,n'"") = Qo(bn'™). (19)

So P, depends only on the product bn‘"’. One can easily check by looking at (18)
(and by using the fact that the patterns are not correlated) that if P, has the shape
(19), then P, has exactly the same shape:

P(b,'",..., ") = Qi(bn'"). (20)
Therefore the recursion (18) becomes a recursion for a single function of one variable:
= CXexp(~=C)
Q@)= L —F— | daiQ(ay)... | daxQuax)
K=0 .
K 1+7a, X g &
x<6[a-— )} (H —2——> sgn(z D) df,(p,)f,)]>
T=x1 Tk =x1 \r=1 r=1 u=2r=1
(21)

where 7, = 0,£V = £1 and y'*' =V n* V¢ = £1, Equation (21) means that a is
a random variable given by

a=sgn<27+z Y ' ) (22)

r=1 w=2r=1

where the overbar in (22) is an average over the 7, only (7, =+1 with probability
1(1+a,) and —1 with probability 3(1 —a,)). So a is a random variable which depends
on the ¢!*’=x1 and on the a,. One can rewrite (22) in the form

a=sgn(A+ B) (23)
with
l K
Ase L (ma)rg £ Y oin-a) (24)
and
1 K
B=2 1 a Z 3 e, (25)
r=1 u=2r=1

Since the 7, variables appear only in A, this means that in (23) the overbar average
is an average on A only. When K-, A is a sum of a large number of random
independent variables. So A becomes a Gaussian variable whose distribution p,(A)
is given by

(A)=-——-l—-ex <~————-——A2 ) (26)
P \/277(1(1*-<az),) P 2a(1-{a?,) .
Since
A=0 (27)
s 1k :
Ak (1—a3)<1+ ) w:“’) - a(l-(a),) (28)
r=1 u=2
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when K » 00, So (23) becomes

a=J dA p(A) sgn(A+B)=erf< (29)

V2a(l —<a2>,))'
The variable a as given by (29) is still a random variable since it depends on the a,
and the ¢'*’ through B. When K -, B is again a sum of a large number of random
variables and so becomes Gaussian.

For K »

(B)={(a), = j ada Qr(a)

(30)
(B—(B)*- a(a®), = J a*da Q,(a)
and the distribution of B becomes
(B—<a>,)2>
Bl=—— — ——— ), 31
p(B) J2mala?), exp( 2a{a?), (31)

So we see that for large K, (21) becomes

Qi+i(a) =J dsz(B)B(a —J dAp,(A)sgn(A+ B))

B
J‘ pa(B) [a o (Jza(1—<a2>,))] (32)

It is possible to find a parametrisation which allows one to draw Q,.(a):
1—<a2>,)‘*2 o (zz_wl—<a2>,—<a>./¢“za>2)
(@, P (a®),

o,ﬂ(a)%( (33)

where a =erf (z).

Clearly Q,.(a) is fully known once the first two moments (a), and (a?), are known.
This is not surprising because in the limit K - o0, one has to deal with sums of a large
number of random variables. If K or C had been finite, more information than (a),
or (a?), would be needed and one would have to solve (21).

From (32), one can show that

(@ =J a da o,ﬂ(a)=erf(%> (34)

2 (™ V1+(a®, +(a),/Va
a2,+=—1+—J exp(—y>) d rf(’y — )
(@%en ) p(=y)dye Nrprey (35)
Starting with an arbitrary distribution Qo(b), one can iterate (a), and (a°), using (34)
and (35) and then calculate the distribution Q,(a). Of course the expression (34) is
identical to (8) since, by definition, {a), = m(1).

When 1> o, (a), and (a’), converge in general to fixed-point values (a)* and (a®)*
and Q.(a) converges to a fixed distribution Q. (a). For all e, the fixed point (a)* =
(a®)* =0 always exists. It corresponds to

Qx(a)=4d(a). (36)

This fixed point describes the configurations which are attracted by no pattern.
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For a < a., this fixed point becomes unstable ({(a)* =0 is an unstable fixed point
of (34)) and a new solution Q..(a) appears corresponding to the attractive fixed point
(a)*# 0 of (34). This fixed distribution Q..(a) is shown in figure 1(a) for &« =0.4 and
figure 1(b) for & = 0.6. One can see that for small « the distribution is very concentrated
near a =1 and a = —1 with a stronger weight near a = 1. As a increases, the divergences
at a = =1 disappear (they disappear when (a®)* =1 (see (33)) and the distribution of
activities becomes a broad distribution with a maximum at a positive value of a.

It is interesting to note that the fixed distribution Q.(a) has another interpretation.
One can replace the averages over the initial conditions by time averages. Until now,
we have defined q;(f) as an average over initial conditions (see (12)).

One can also define &; as the activity averaged over time for a given initial condition

{S:(0)}
d; = lim — Z S(newr. (37)

As long as the thermodynamic limit (N - o) is taken before the limit T > o0 in (37)
or, more precisely, as long as T« log N (Derrida et al 1987) the argument leading to
equation (17) about the absence of correlation between the inputs j, (i), ..., jx (i) of
almost all sites i remains valid and one can write for the @; an expression similar to (27):

. K 1+0,4 K
=y ... X (E[l 2” ”)sgn( Zl §f-”§j-r”]l-jra'jr>. (38)

a,,=i:1 D'IK=:tl

One can then define the probability distribution C)(d) of these activities
1 N
Q(4) =—]\7; é(a—a,). (39)
The calculation is identical to the calculation of Q,(a) and one finds that

Q(d) = Q(d). (40)

So Q«(a) is the distribution of activities when these are defined as averages over initial
conditions. It is also the distribution of activities when the activities are defined as
averages over time for one fixed initial condition.

If we come back to the possible distributions Q(a), we see that for Q.(a) = 8(a),
all the neurons have an average over time d =(0. This means that all neurons flip all

the time, probably in a random manner, spending half of their time +1 and half of
their time —1.

a, @

-1.0 -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 1.0
a a
Figure 1. The distribution of the neural activities Q.(a) for (a) a =0.4 and (b) a =0.6.
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For a < a., the attractive distribution (figure 1) Q.(a) is continuous with no delta
function. This means that all neurons keep moving for ever. This is very different
from what would happen for networks with symmetric synapses (J; =J;): at zero
temperature, systems with symmetric interactions are always attracted by metastable
states with all spins fixed (for sequential dynamics) or cycles 2 (for parallel dynamics).
This means that Q(d) for a system with symmetric interactions is always the sum of
delta functions at +1 and —1 (and O for parallel dynamics). So it is in the shape of
the distribution Q(d) that the non-symmetry of the interactions is the most apparent.

The shapes of the Q.(a) in figure 1 corresponding to an attractor near a pattern
are very different from the delta function corresponding to an attractor far from all
patterns. So the activity of the neurons is very different when the system remembers
a stored pattern and when it does not. This again is a major difference from systems
with symmetric interactions for which these activities are the same (Parisi 1986).

Lastly one can relate the distribution Q,(a) defined in (20) to another interesting
quantity (Derrida et al 1987) which is the overlap between two configurations. If one
starts at =0 with two initial conditions {S;(0)} and {$,(0)}, one can show (Derrida
et al 1987) that the time evolution of their overlap

l N
q(1) =X?§ (08(1) (41)

is given by

ywWliltg(t)+m
V1—g(1)
when the two configurations have the same projection m,(t) on pattern 1. We see that

since m, (1) =(a),, the time evolution of ¢g(t) is exactly the same as the time evolution
of (a*), given in (35). This equality between g(¢) and (a?),

q(t~4—1)=—1+%J-ﬂC exp(—y*) dy erf( c ) (42)

—x

q0)=.[azdaQAa)=<a5. (43)

is due to the fact that if two initial configurations {Si(Q)} and {§,-(0)} are chosen at
random according to (15), the probability that §;(r) = S;(¢) = £" is 4(1+a,(1))?, the
probability that S;(#) = —S;(t) = ¢ is (1 —a?(¢)) and so on. Therefore one has:

S(0)8.(1) = ak(1) (44)

for almost all sites i, and this implies (43).

4. Finite projections on two patterns

The calculations carried out in § 3 can be repeated to study situations where the initial
configuration {S§;(0)} has finite projections on more than one pattern. One can then
describe the activity of the neurons in mixed patterns and try to see whether the
distribution of activities allows one to distinguish between single-pattern attractors
and attractors corresponding to mixed patterns. In this section, an example of mixed
patterns will be discussed and we will see that the distribution of activities is rather
different to that corresponding to a single-pattern attractor.
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Let us consider an initial configuration {S,(0)} with finite projections on two patterns
{£V} and {£/*'} and zero projections on the p —2 other patterns. We assume that the
two patterns {£!"} and {¢/”’} have a finite overlap Q

__1_ & (1) £(2)
- N i;] §l gl (45)

whereas the p—2 other patterns ({¢*'} for u =3) are random and uncorrelated. If
one defines the projections

min=y LS mn=r L €S (0) (46)

it was shown in equation (30) of Derrida et al (1987) that the time evolution of m,;
and m, is given for zero-temperature dynamics by

_1+0Q m(D+my(1))  1-Q m1(l)_m2(1)>
m(t+1)= 3 erf( NoT )+ 2 erf( T (47)
_1+Q m(+my()\ 1-Q (m(1)—-my(1)
my(t+1)= > erf( Ner ) 5 erf( e ) (48)
For Q #0, there exist two thresholds a(' and «'”, given by
d=21+QF  aP=20-0n 49)
e w

for @ <al”, each pattern has its own attractor (there is an attractive fixed point

0# m¥# m¥#0) and the mixed state is unstable. For o\’ <a <a!", only the mixed
state (m§ = m¥ #0) is stable. For a > a'”, the only attractive fixed point of (47) and
(48) is m¥f=mi=0.

Following the calculations done in 8§ 2 and 3 we have to introduce two functions
Q'Y and Q!* defined by

Q' (bn)=P(b,n, 0, ..., ") (50)

and

Q(bn)=P,(b,n,—n, 7", ..., 7" (51)

Q'V(b) represents the distribution of activity of the N(1+ Q)/2 neurons i such that
&Y = ¢ whereas Q' is the distribution of the activities of the N(1— Q)/2 neurons
i such that &V = —¢{*. The calculation is a direct generalisation of what was done in
§ 3. Let us just discuss here the final result, which is analogous to (33):

. :1<1—<c12>,>”2 ( 2_[le—<az>,—(ml(t)+mz(t))/\/2a]2>
ala) N\ @ exp| z @, (52)
(2 1 1—<a2>,)”2 < 2_[2J1—<a2>,—(ml(t)—mz(t))/v2a]2>
.+’1(a)—2(—<02>1 expl| z a, (53)

where a =erf(z).

The time evolutions of m,(t) and m,(¢) are given in (47) and (48) whereas (a?), is
defined by

<a2>,=1—-+2—oj a*da o&”ww%f a’da 0\(a) (54)
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and evolves according to
(1+Q)J'+°° g f( yY1+(ad) +(m (D) + my(1)/Va >
va o J. Py dyer J1-(a%,
(I—Q) J+Oc .2 d f( Y‘/l+<az):+(m1(t)—mz(l))/v01
VT o, xpLmy) dyer J1-(a?,

<a2>t+1 =-1+

+

(55)

So, as in § 3, in the limit C - cc, one needs to iterate only three parameters m (1),
m,(1) and (a?),, to describe the distributions Q!" and Q!*.

In the long-time limit, these distributions converge to fixed distributions Q%’(a)
and Q?(a) and again these distributions are identical to Q'"(d) and Q¥(4) where
d; is the time average of S:(7).

In figure 2, the distributions QY’(a) and Q%'(a) are shown for an attractor
corresponding to mixed patterns (Q = 0.2, @ =0.7 so that i’ < a < a!"). We see that
the distribution of activities of the neurons such that &' = ¢ (figure 2(a)) looks
rather similar to what it was for single-pattern attractors whereas the activities of the
neurons such that ¢ = —¢ (figure 2(b)) look rather different. So again we see that
the distribution of activities has rather different shapes for single-pattern attractors
and mixed-patterns attractors.

: (g}
100 1o} 12

5 : \
o 05 | 3 o.srf—\\
] 'cs!i v

0 : . ] 0 . ‘ ‘ |

-1.0 -0.5 0 0.5 1.0 1.0 -0.5 0 0.5 1.0

a

Figure 2. The distribution of the neural activities (a) Q'}’(a) and (b) Q'2’(a) for a mixture
of two patterns which have an overlap Q=0.2 for @ =0.7. QY’(a) represents the neurons
for which the two patterns are the same and QZ'(a) represents the neurons for which the
two patterns are opposite.

5. Conclusion

In this work, we have seen that the probability distribution of activities can be calculated
analytically for asymmetrically diluted neural networks. These distributions are con-
tinuous and not delta functions as in the case of symmetric synapses. It should be
possible to extend the calculations of the present work to other diluted models (Derrida
and Nadal 1987, Gutfreund and Mézard 1988, Noest 1988), to layered networks (Meir
and Domany 1987a, b, 1988, Meir 1988, Derrida and Meir 1988), to finite-temperature
or to sequential dynamics (Derrida et al 1987) (for sequential dynamics it is probably
sufficient to replace everywhere recursions in time x,,, = f(x,) by differential equations
dx/dt=f(x,)—x,). In particular it would be interesting to study systems with low
activites (i.e. for which the distribution of activities is concentrated around —1) because
they should be more relevant from a biological point of view.
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From the point of view of the statistical mechanics of disordered systems, finding
the distribution of activities is a problem very similar to the problem of finding the
distribution of local magnetisation or local fields of spin glasses on Bethe lattices
(Bowman and Levin 1982, Thouless 1986, Mottishaw 1987, de Oliviera 1988a, b), of
diluted spin glasses (Viana and Bray 1985, Orland 1985, De Dominicis and Mottishaw
1987, Mézard and Parisi 1987, Kanter and Sompolinsky 1987, Katsura 1987) or other
automata models (Derrida and Flyvbjerg 1987, Kanter 1988). Itis interesting to dispose
of a case like the one described here for which the distribution of activities is known
exactly and has a rather simple analytic expression (33). It would be interesting to
see how this distribution is changed when the connectivity decreases and to know
whether the singularities observed by Derrida and Flyvbjerg (1987) in the case of
automata with finite connectivity are also present in asymmetrically diluted neural
networks. It would also be interesting to study how a non-zero fraction of symmetric
bonds would medify the distribution of activities.
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