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Abstract. The dynamics of asymmetrically diluted neural networks can be solved exactly. 
In the present work, the distribution of the neural activities is calculated analytically for 
zero-temperature parallel dynamics. This distribution depends on the number of stored 
patterns and is a continuous function in the good retrieval phase. The continuous part of 
the distribution of activities is due to the asymmetry of the synapses since it is known that 
networks with symmetric interactions always have a distribution of activities which is a 
sum of a few delta functions. The expression for the distribution of activities is also given 
for a mixture of two patterns which have a non-zero overlap. 

1. Introduction 

Neural network models with symmetric synapses ( J ,  = J I )  have been extensively studied 
in the last few years, (Little 1974, Hopfield 1982, 1984, Amit er al 1985a, b, 1987). 
The main approach to these systems was to investigate their properties at  thermal 
equilibrium, trying to relate the appearance of phase transitions or of metastable states 
in the mean-field equations to the structure of the attractors for Glauber-like dynamics. 
At present, the properties of these networks at  thermal equilibrium are considered to 
be well understood, at least if one believes in the validity of the replica approach, 
whereas less is known of the dynamics when the initial condition is far from equilibrium. 
At zero temperature, the dynamics of these models becomes simpler and  one can show 
that starting with any initial condition, the system converges to a fixed point in phase 
space (for sequential dynamics) implying that the activity of each neuron does not 
change with time. Once the attractor has been reached, a given neuron is either quiet 
for ever or  firing for ever. This is a direct consequence of the assumption that the 
synapses are symmetric. Of course, these fixed activities as well as the symmetry of 
the synapses have no justification from a neurobiological point of view. 

For non-symmetric synapses (Jl, f J I )  the equilibrium approach is no longer possible 
(with one exception (Coolen and Ruijgrok 1988)) and the properties of the network 
have to be understood by directly studying its dynamics. This usually makes the 
problem much harder since the dynamics is always more difficult to understand than 
equilibrium properties. There exists, however, a class of models for which the asym- 
metry of interactions makes the problem easier, allowing for a full analytic solution 
of the dynamics (Derrida er a1 1987). This class of diluted models has the following 
two properties. 
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( i )  When the number, N, of neurons becomes infinite, each neuron i receives 
non-zero synaptic inputs from only a finite number of other neurons j  chosen at random 
among the N neurons. 

(ii) The events (neuron j has an input to neutron i) and (neuron i has an input 
to neuron j) are not correlated, implying that almost all the synapses are unidirectional. 

For several models belonging to this class (Derrida et af 1987, Derrida and Nadal 
1987, Kree and Zippelius 1987, Gutfreund and Mezard 1988, Noest 1988), properties 
like overlaps, projections on stored patterns and storage capacities have already been 
calculated analytically. The purpose of the present work is to extend these results by 
calculating the full probability distribution of the neuronal activities. As a consequence 
of the non-symmetry of the synapses ( J ,  # J , , ) ,  we will see that even for zero-temperature 
dynamics, the states of almost all neurons change with time. 

In this work the calculation of the distribution of activities will be described for 
the simplest diluted neural network (Derrida et al 1987). There should be no difficulty 
in extending these calculations to more complicated models (Derrida and Nadal 1987, 
Gutfreund and  MCzard 1988, Noest 1988) which belong to the same class of diluted 
neural networks. 

The model is defined as a system of N neurons S, = *l (SI( t )  = $1 if neuron i is 
firing at time t and -1 if it is quiet). The synaptic strengths J0 are given by the expression 

P 

where p is the number of stored patterns, 5 ; ” ’  = +1 is the value of the p t h  pattern at 
site i and C,, represents the dilution and has a statistical distribution given by 

( 2 )  
By definition of the model, C,, and C,, are independent random variables. Thus if 
J,, # 0, one has J,, = 0 with probability 1. 

For this neural network, only zero-temperature parallel dynamics will be discussed 
here: 

dC,) = ( C / N ) G ( C , ,  - 1 ) + [ 1 -  C/NlG(C,). 

S ( t +  1) = sgn(h , ( t ) )  i 3 a )  
with 

Zero-temperature parallel dynamics means that at each time step, all the neurons are 
updated simultaneously according to ( 3 ) .  (If h,( t )  = 0, one can choose, for example, 
S,( t + 1)  = i l  at random but the results presented below will not depend on this choice 
because only the limit of large C will be considered and in that limit h , ( r )  is non-zero 
with probability 1.) 

If one defines the projection m , ( t )  of the configuration { S , ( t ) }  of the system at 
time t on the p t h  pattern by 

1 4  

it was shown that in the thermodynamic limit ( N  + a) the evolution of m l (  t )  is given 
by equation (9) of Derrida et a1 (1987): 

m,(r+ 1)  = f ( m , ( t ) )  ( 5 )  
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with 

It is assumed here that the patterns {tir’} are chosen at random (with probability f 
for the two orientations tf = k l )  and that the initial configuration {S,(O)} has a finite 
projection on a single pattern only: 

= O(1) m,(O) - N - 1 ’ 2 .  (7) 

For large C and p ,  (6) simplifies to 

where a is defined by 

a = p l C  

and where 
e r x  

erf(x) = - exp( -z2) dz. AJ0 

( 9 )  

There is a critical value which is the storage capacity of the network 

a, = 2/rr = 0.6366. . . . (11) 

For a > a,, the only fixed point of ( 5 )  is m1 = 0 and m,( t )  always converges to 0. For 
a < a,, m, = 0 is an unstable fixed point and there appear two attractive fixed points 
m f  and - m f  where mf  is solution of mT= f ( m T ) .  

2. The probability distribution of activities 

The projection m l ( t )  represents the activity averaged over all the neurons (see (4)).  
One can define a more microscopic quantity a i ( [ ) ,  the activity of neuron i at time t :  

where the overbar means an average over an ensemble of initial conditions. If this 
ensemble of initial conditions consists of the set of {S,(O)} which have a given non-zero 
projection m,(O) on a single pattern {.$IJ} and zero projections on the other patterns, 
one has 

The probability distribution Q ( a )  of local activities which will be calculated in the 
present work is defined by 
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Let us assume that the neurons are uncorrelated in the initial condition, i.e. that 
the probability distribution 9 ( { S i ( 0 ) } )  has the form 

If one defines bi(r) to be the value of neuron i at time t averaged over the initial 
conditions (15): 

b , ( t ) = s i ( t )  

then one can write a relation between b , ( t + l )  of neuron i at time t +  1 and the 
b,!(t), . . . , b,,(r)  of its K inputs j l , .  . . , j K  at time t (asuming that for site i, only 
Jt,! , .  . . , J,,, are non-zero): 

Expression (17) is valid for almost all sites i. It expresses the fact that, at time t ,  the 
states of the neurons S,,( t ) ,  . . . , S,, ( t )  are uncorrelated. This is true for almost all sites 
i because (Derrida et a1 1987, Derrida and Flyvbjerg 1987, Flyvbjerg 1988) the tree 
of all the ancestors of a site i from time t to time 0, has no loop and the K immediate 
ancestors of this site are uncorrelated. (Equation (17) for the activities of the neurons 
is the analogue of equation (7) of Derrida and Flyvbjerg (1987) for the Kauffman 
model.) 

Equation (17) gives the activity b , ( t + l )  as a function of the activities b,,(t) and 
of the patterns {.$’”}through the J,,. Let us define P,( b, q ( l ) ,  . . . , v ( p i )  as the probability 
that a site i has an activity b , ( t )  at time t knowing that the values of the patterns on 
this site i are q“’,. . . , q ( p ’  (i.e. knowing that v(*) = 6;”’ for 1 < p < p ) .  

P,+,(b, v ’ l ’ ,  . . . , v’”) 
From (17) one can write: 

(18) 

where ( ) means the average over the patterns {(?I}. 

This equation gives the time evolution of the 2” distributions P,(b, ~ ( l ’ ,  . , . , 7‘”)) 
for arbitrarily correlated patterns {(!”I}. I t  plays the same role as equation (8) of 
Derrida and Flyvbjerg (1987) for the Kauffman model. 

Equation (18) is valid provided that the statistical properties of the patterns are 
homogeneous in space (i.e. ( ( ! + I i .  . . (!pJi) is independent of i )  and that the spins S , ( t )  
are not correlated in the initial condition. 

Equation (18) is general (arbitrary correlations between the patterns) but compli- 
cated: b is a continuous variable and q“’, . . . , q‘”’ can take 2p possible values. So 
one has to iterate 2” functions of one variable. This difficulty can be greatly simplified 
if one considers simple cases for which, in the initial condition, the spin configuration 
has non-zero projections on a few patterns only. 
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3. Finite projection on a single pattern 

Let us first consider the case of a finite projection on a single pattern and no correlation 
between the patterns. We choose the initial condition at t = 0 to be 

Po(b, Til), . , . , 7”’) = Q o ( b T ( l ) ) .  (19) 

So Po depends only on the product b T i l ) .  One can easily check by looking at (18) 
(and by using the fact that the patterns are not correlated) that if Po has the shape 
(19), then P, has exactly the same shape: 

P,(b,  ? ( I ) ,  . , . , 7”)) = Q , ( b T i L ) ) .  (20) 

Therefore the recursion (18) becomes a recursion for a single function of one variable: 

(21) 

where T~ = aX(r”= *1 and $:’= ~ ( l ) q ( @ ’ [ ~ l ) [ ~ ) =  *l. Equation (21) means that a is 
a random variable given by 

(22) 

where the overbar in (22) is an average over the T, only ( ~ , = + 1  with probability 
f ( l +  a,) and -1 with probability f ( 1 -  c y r ) ) ,  So a is a random variable which depends 
on the $I“’= *l and on the a,. One can rewrite (22) in the form 

a = sgn(A + B) (23) 
with 

and 

Since the rr variables appear only in A, this means that in (23) the overbar average 
is an average on A only. When K +CO, A is a sum of a large number of random 
independent variables. So A becomes a Gaussian variable whose distribution p l (  A) 
is given by 

Since 

A=O 
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when K +CO. So (23) becomes 

a = {  d A p , ( A ) s g n ( A + B ) = e r f  

The variable a as given by (29) is still a random variable since it depends on the a, 
and the through B. When K + CO, B is again a sum of a large number of random 
variables and so becomes Gaussian. 

For K +CO 

( @ + ( U ) ,  = [ a d a  Q, (a )  

5 
(30) 

( B 2 ) - ( B ) 2 + ~ ( ~ ’ ) ,  = a’da Q ( a )  

and the distribution of B becomes 

So we see that for large K ,  (21) becomes 

=[ d B ~ ~ ( B ) 6 [ n - e r f ( ~ ~  
f f ( 1  - (a ’ ) , )  

It is possible to find a parametrisation which allows one to draw Q,+,(a):  

) (33) 
1 1 - ( a 2 ) ,  ( z J 1  - ( a 2 ) ,  -(a),/J27;)2 

( a 2 ) ,  
9, + I ( a  I = 5 (K) ex p( z2 - 

where a = erf (z) .  
Clearly Q,+l(a) is fully known once the first two moments (a ) ,  and ( a 2 ) ,  are known. 

This is not surprising because in the limit K +CO, one has to deal with sums of a large 
number of random variables. If K or C had been finite, more information than ( a ) ,  
or ( a 2 ) ,  would be needed and one would have to solve (21). 

From (32), one can show that 

a d a  Q,+,(a)  = erf (34) 

I). (35) 
Y J l  + ( a 2 ) , + ( a ) , / &  

J 1  - (d), 
( a 2 ) , + ,  = -1 +- exp(-y2) dy erf( I - 

Starting with an arbitrary distribution Q,(b), one can iterate ( a ) ,  and (a ’ ) ,  using (34) 
and (35) and then calculate the distribution Q,(a) .  Of course the expression (34) is 
identical to (8)  since, by definition, ( a ) ,  = m , ( r ) .  

When f +  E, ( a ) ,  and (a ’ ) ,  converge in general to fixed-point values (a)* and (a2)*  
and Q,( a )  converges to a fixed distribution (?=(a). For all a, the fixed point (a)* = 
(a2)* = 0 always exists. I t  corresponds to 

Q J a )  = 6 ( a ) .  (36) 
This fixed point describes the configurations which are attracted by no pattern, 



Distribution of the activities in a dilutal neural network 2075 

For (Y < c y c ,  this fixed point becomes unstable ( (a)*  = 0 is an unstable fixed point 
of (34)) and a new solution & ( a )  appears corresponding to the attractive fixed point 
(a)*  # 0 of (34). This fixed distribution Q,(a )  is shown in figure l ( a )  for (Y = 0.4 and 
figure 1 ( b )  for (Y = 0.6. One can see that for small (Y the distribution is very concentrated 
near a = 1 and a = -1  with a stronger weight near a = 1 .  As a increases, the divergences 
at a = *l disappear (they disappear when (a2)* = (see (33))  and the distribution of 
activities becomes a broad distribution with a maximum at a positive value of a. 

It is interesting to note that the fixed distribution Qm( a )  has another interpretation. 
One can replace the averages over the initial conditions by time averages. Until now, 
we have defined a , ( t )  as an average over initial conditions (see (12)). 

One can also define a'i as the activity averaged over time for a given initial condition 
{Si(O)) 

As long as the thermodynamic limit ( N  + CO) is taken before the limit T +  03 in (37) 
or, more precisely, as long as T<< log N (Derrida et al 1987) the argument leading to 
equation (17)  about the absence of correlation between the inputs j l ( i ) ,  . . . , j,(i) of 
almost all sites i remains valid and one can write for the a'i an expression similar to (27): 

One can then define the probability distribution &a') of these activities 

l N  
N i - 1  

&a')=- (39) 

The calculation is identical to the calculation of Q , ( a )  and one finds that 

dG) = Qda'). (40) 

So Q s ( a )  is the distribution of activities when these are defined as averages over initial 
conditions. It is also the distribution of activities when the activities are defined as 
averages over time for one fixed initial condition. 

If we come back to the possible distributions Qcc(a) ,  we see that for Q,(.a) = S ( a ) ,  
all the neurons have an average over time a' = 0. This means that all neurons flip all 
the time, probably in a random manner, spending half of their time +1 and half of 
their time - 1 .  

0 0.5 1.0 

Figure 1. The distribution of the neural activities Qm(o) for ( a )  a =0.4 and ( b )  a = 0.6. 

O U  
-1.0 -0.5 

a cl 
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For (Y < ac,  the attractive distribution (figure 1) Qm(a) is continuous with no delta 
function. This means that all neurons keep moving for ever. This is very different 
from what would happen for networks with symmetric synapses ( J ,  = A l ) :  at zero 
temperature, systems with symmetric interactions are always attracted by metastable 
states with all spins fixed (for sequential dynamics) or cycles 2 (for parallel dynamics). 
This means that &a') for a system with symmetric interactions is always the sum of 
delta functions at +1 and -1 (and 0 for parallel dynamics). So it is in the shape of 
the distribution &a') that the non-symmetry of the interactions is the most apparent. 

The shapes of the Qm(a) in figure 1 corresponding to an attractor near a pattern 
are very different from the delta function corresponding to an attractor far from all 
patterns. So the activity of the neurons is very different when the system remembers 
a stored pattern and when it does not. This again is a major difference from systems 
with symmetric interactions for which these activities are the same (Parisi 1986). 

Lastly one can relate the distribution Q,(a)  defined in (20) to another interesting 
quantity (Derrida er a1 1987) which is the overlap between two configurations. If one 
starts at t = O  with two initial conditions {S,(O)} and {g,(O)}, one can show (Derrida 
er a1 1987) that the time evolution of their overlap 

is given by 

when the two configurations have the same projection ml(r)  on pattern 1. We see that 
since m,( r )  = ( U ) , ,  the time evolution of q( t )  is exactly the same as the time evolution 
of ( a 2 ) ,  given in (35). This equality between q ( r )  and ( a 2 ) ,  

is due to the fact that if two initial configurations { S , ( O ) }  and { g l ( 0 ) }  are chosen at 
random according to (15), the probability that S , ( r )  = gl(t) = i$" is a(l+ a , ( r ) ) 2 ,  the 
probability that SI( r )  = -g,( t )  = 6;') is a( 1 - af( t ) )  and so on. Therefore one has: 

for almost all sites i, and this implies (43). 

4. Finite projections on two patterns 

The calculations carried out in 8 3 can be repeated to study situations where the initial 
configuration {S, (O)}  has finite projections on more than one pattern. One can then 
describe the activity of the neurons in mixed patterns and try to see whether the 
distribution of activities allows one to distinguish between single-pattern attractors 
and attractors corresponding to mixed patterns. In this section, an example of mixed 
patterns will be discussed and we will see that the distribution of activities is rather 
different to that corresponding to a single-pattern attractor. 
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Let us consider an initial configuration {S , (O)}  with finite projections on two patterns 
{ 55”) and { S;”}  and zero projections on the p - 2 other patterns. We assume that the 
two patterns {.$Ii} and {S;”} have a finite overlap Q 

whereas the p - 2  other patterns ({.$@’} for p a 3 )  are random and uncorrelated. If 
one defines the projections 

it was shown in equation (30) of Derrida et a1 (1987) that the time evolution of m, 
and m, is given for zero-temperature dynamics by 

For Q # 0, there exist two thresholds a:” and ai-”, given by 

2 
, ;a=- (1 - Q)’. 

2 
rr - (1+Q)’  rr (49) 

for a < each pattern has its own attractor (there is an  attractive fixed point 
0 Z m:’ # m f  # 0) and the mixed state is unstable. For a y i  < a < a:”, only the mixed 
state ( m f  = mT # 0) is stable. For a > a:’), the only attractive fixed point of (47) and 
(48) is m f  = m; = 0. 

Following the calculations done in $ 5  2 and 3 we have to introduce two functions 
0:” and defined by 

Q : l ) ( b v )  = P,(b ,  7, 7, v ‘ ~ ) ,  . . . , 7”)) 

Q : ” ( b q )  = P,(b, 7, -7, 7I3j,. . . , 7”)). 

(50) 

( 5 1 )  

and 

Ql”( b )  represents the distribution of activity of the N(1+ Q ) / 2  neurons i such that 
5;’) = 5;” whereas Q;” is the distribution of the activities of the N (  1 - Q ) / 2  neurons 
i such that 5;’) = -5;”. The calculation is a direct generalisation of what was done in 
0 3. Let us just discuss here the final result, which is analogous to (33): 

where a = erf( 2 ) .  

defined by 
The time evolutions of m l ( t )  and m,(t)  are given in (47) and (48) whereas (a’), is 

(a ’ ) ,  = li0 I a’ d a  Q i ” ( a )  +- - 5 a’ d a  Ql” (a )  (54) 2 2 
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and evolves according to 

( 5 5 )  

So, as in § 3, in the limit C+m, one needs to iterate only three parameters m l ( t ) ,  
m2( t )  and (a ’ ) , ,  to describe the distributions Q;” and 0:”. 

In the long-time limit, these distributions converge to fixed distributions Q g ) (  a )  
and @ ) ( a )  and again these distributions are identical to @‘)(a ‘ )  and @2’(a ’ )  where 
a’, is the time average of S , ( r ) .  

In figure 2 ,  the distributions Q g ’ ( a )  and Qd,’(a)  are shown for an attractor 
corresponding to mixed patterns ( Q  = 0.2, a = 0.7 so that ay’ < a < a:’)). We see that 
the distribution of activities of the neurons such that St”= [ t 2 ’  (figure 2 ( a ) )  looks 
rather similar to what it was for single-pattern attractors whereas the activities of the 
neurons such that St”= -[:2) (figure 2 ( b ) )  look rather different. So again we see that 
the distribution of activities has rather different shapes for single-pattern attractors 
and  mixed-patterns attractors. 

-0 =:OsLJ 1 2 3 * o . f / - - ~ 7  

0 
-1.0 -0.5 0 0.5 1 0  0 0.5 1 .o -1 0 -0  5 

a a 

Figure 2. The distribution of the neural activities ( a )  Q:) (a)  and ( b )  @’(a )  for a mixture 
of two patterns which have an overlap Q = 0.2 for (I = 0.7. @ ’ ( a )  represents the neurons 
for which the two patterns are the same and Q $ ’ ( a )  represents the neurons for which the 
two patterns are opposite. 

5. Conclusion 

In this work, we have seen that the probability distribution of activities can be calculated 
analytically for asymmetrically diluted neural networks. These distributions are con- 
tinuous and  not delta functions as in the case of symmetric synapses. It should be 
possible to extend the calculations of the present work to other diluted models (Derrida 
and Nadal 1987, Gutfreund and MCzard 1988, Noest 1988), to layered networks (Meir 
and Domany 1987a, b, 1988, Meir 1988, Derrida and Meir 19881, to finite-temperature 
or to sequential dynamics (Derrida er a1 1987) (for sequential dynamics it is probably 
sufficient to replace everywhere recursions in time x,,’ =f(x,)  by differential equations 
d x / d r  =f (x , )  -x,) .  In particular it would be interesting to study systems with low 
activites (i.e. for which the distribution of activities is concentrated around -1) because 
they should be more relevant from a biological point of view. 
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From the point of view of the statistical mechanics of disordered systems, finding 
the distribution of activities is a problem very similar to the problem of finding the 
distribution of local magnetisation or local fields of spin glasses on Bethe lattices 
(Bowman and Levin 1982, Thouless 1986, Mottishaw 1987, de  Oliviera 1988a, b), of 
diluted spin glasses (Viana and Bray 1985, Orland 1985, De Dominicis and Mottishaw 
1987, Mkzard and Pafisi 1987, Kanter and  Sompolinsky 1987, Katsura 1987) or  other 
automata models (Derrida and Flyvbjerg 1987, Kanter 1988). It is interesting to dispose 
of a case like the one described here for which the distribution of activities is known 
exactly and  has a rather simple analytic expression (33). It would be interesting to 
see how this distribution is changed when the connectivity decreases and to know 
whether the singularities observed by Derrida and  Flyvbjerg (1987) in the case of 
automata with finite connectivity are also present in asymmetrically diluted neural 
networks. It would also be interesting to study how a non-zero fraction of symmetric 
bonds would modify the distribution of activities. 
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