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Résumé. — Nous considérons deux versions du modele de Kauffman (le modele gelé et le modele
recuit) en présence de bruit. Quand on compare deux configurations soumises au méme bruit
thermique, on observe que, pour ces deux versions du modele de Kauffman, au dessous d’une
température critique T, le temps 7, qu’il faut pour que les deux configurations se rejoignent
augmente exponentiellement avec la taille N du systéme. Cela définit une hauteur de barriere qui
peut étre calculée analytiquement pour le modele recuit. Quand on compare plus que deux
configurations, on observe que les temps 7, pour qu’au moins deux configurations parmi
n se rencontrent augmentent aussi exponentiellement. La pente de log =, en fonction de
N semble étre la méme pour tout n et pour les deux modeles.

Abstract. — We consider two versions of the Kauffman model (the quenched and the annealed
models) in presence of thermal noise. When we compare the time evolution of two configurations
subjected to the same thermal noise, we find for both versions of the Kauffman model that below
a critical temperature T, the time 7, for these two configurations to become identical increases
exponentially with the system size N. This defines a barrier height which can be calculated
analytically for the annealed model only. When we compare more than two configurations, we
observe that the time 7, it takes for at least two configurations among n to meet increases also
exponentially. The slope of log =, versus the system size N seems to be the same for all
n and for both models.

1. Introduction.

The dynamical properties of a large class of disordered systems at low temperature are
dominated by the presence of many attractors or valleys [1-7]. The influence of each of these
valleys on the global dynamics depends on the size of its basin of attraction [3-5], on the height
of barriers [1, 2, 6] which separate it from the rest of phase space, on the dynamical properties
of this particular valley. When each valley can be characterized by a simple order parameter
[6] (like the magnetization for a ferromagnet) the valley structure can be understood by
studying the time evolution of this order parameter. However for systems with a complex
order parameter or for which no order parameter is known, one has to use other techniques
[3-5] to describe the multivalley structure of the system.
A dynamical method has been proposed [7] to try to approach this problem.
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It consists in comparing the time evolution of two (or more than two) configurations
subjected to the same thermal noise. For a large class of models [6-11] (spin models,
automata) several phases were observed as a function of temperature.

A high temperature phase where the two configurations subjected to the same thermal
noise meet very quickly. In that phase, the landscape in phase space consists of a single valley
and no barrier prevents the two configurations from meeting.

A low temperature phase where the two configurations never meet (at least if the system
size is large enough). Two reasons [12] have already been proposed to explain this behaviour
at low temperature.

I) Either phase space consists of several valleys separated by high enough barriers and the
two configurations do not meet because none of them is able to jump the barriers.

II) Or there is a tendency for the trajectories in phase space of two close trajectories to
diverge (chaotic dynamics) and this prevents the two configurations from meeting.

Among the models studied up to now, several examples of I and II have been found :
Ferromagnets belong to class I (the mechanism which keeps the two configurations different
is that below T, one configuration is in the + phase and the other one in the — phase) and one
can show [13, 9, 14] that the low temperature phase where two configurations subjected to the
same noise do not meet coincides with the ferromagnetic phase. Automata [10, 15] and non
symmetric spin glasses [9, 11, 12] belong to class II and the transition temperature below
which the two configurations do not meet does not seem to be associated with the existence of
any order parameter.

The main difference between cases I and 11 is that in case II, two configurations never meet
even if their initial distance is very small [15] (there is only a non zero probability of meeting if
the two initial conditions differ by a finite number of spins [16]) whereas in case I, they have a
finite probability of meeting [6, 7] even if the initial conditions differ by a finite fraction of
spins and this probability varies with the initial distance.

The low temperature phase where pairs of configurations never meet and the sharp phase
transition to the high temperature phase exist only in infinite systems. In finite systems, two
configurations always meet after a finite time. The difference between the high temperature
and the low temperature phases is that in the low temperature phase, the time it takes for two
configurations to meet increases exponentially with the system size. This exponential growth
is reminiscent of what happens in systems such as ferromagnets [6] where barriers appear in
the low temperature phase.

The goal of the present paper is to study the size dependence of the time it takes for two
configurations to meet in the Kauffman model [17-19]. In section 2, we introduce the two
(quenched and annealed) versions of the Kauffman model and we recall a few of their
properties. In section 3, we describe the results of Monte Carlo simulations to measure the
time 7, when two configurations among n meet for the first time. We will see that in the low
temperature phase these times 7, increase exponentially with the number N of automata.
This can be interpreted as the existence of barriers which prevent the two configurations of
meeting. The rate of the exponential growth seems to be the same for all the times
7, and for the two models (quenched and annealed). In section 4, we derive an analytic
expression for the barrier height in the case n = 2 for the annealed model. This analytic result
confirms the exponential growth observed in section 3.

2. The Kauffman model in presence of thermal noise.

In the present work we will consider two versions of the Kauffman model [17-19] with
sequential dynamics and in presence of thermal noise [10, 15] : the quenched model and the
annealed model.
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Let us start by defining these two models (quenched and annealed). In both models, one
considers a system of N Ising spins S; = + 1 which evolve according to sequential dynamics.
To each spin i, one assigns K input sites j,(i), ..., jx(i) chosen at random among the
N sites (these K inputs are not necessarily dlfferent) and a Boolean function f;( ==+1)
chosen at random among the 22" possible functions of K variables.

Then the configuration {S;(t)} of the system evolves in time according to the following rule
(random sequentiel dynamics) : during each time interval At

At =1/N (1)

one chooses a spin i at random among the N spins and one updates this spin
i as follows :

Si(t +At) = fi(S;,i)(t)s -5 Sjp)(¢)) with probability —12- + % tanh %
(2)
— fi(Sj,iy(#) -5 S )(¢)) with probability % — % tanh %

where T is a parameter that we define as the temperature. (Other noisy dynamics for the

Kauffman model have been considered in the literature which will not be discussed here [28]).
To implement these dynamics [27], one chooses at each time step ¢ — ¢ + A¢, a random

number z(¢) uniformly distributed between 0 and 1 and one obtains S;(¢ + At) by :

(¢ + A0) = sign | 545 £i(8j0)0)s s Sy () tanh 1~ 2(1) | 3)

The only difference between the two models is that :

for the quenched model, the input sites j;(i)... jx(i) and the Boolean function
fi of each site i are chosen once for all at time ¢ = 0 and they do not change with time.

for the annealed model, the input sites and the Boolean functions are changed at each time
step.

The annealed and the quenched version of the Kauffman model have already been
considered in the case of parallel dynamics [20] (i.e. dynamics for which all the spins are
updated at the same time) with deterministic rules (7 = 0). It was shown [21-23] that some
properties such as the time evolution of the distance between two initial configurations can be
calculated exactly in the thermodynamic limit (N — oo ) for the two models and that the
expression of the distance is the same in both models.

The distance D(t) between two configurations {S;(t)} and {S/(¢)} is defined as the
fraction of spins which are different in the two configurations

D)= 5L T 18,60) - 5] @)
2N

The reasons [21-23] which allowed one to calculate the distance exactly is that, in the limit
N - oo, the tree of ancestors of each site i has no repetition with probability one. Therefore
the different inputs of each site i are uncorrelated because they depend on branches which
have no overlap. This reason remains true for sequential dynamics and in presence of thermal
noise and thus one can extend the calculation of the distance to this case.

The distance between two configurations has often been considered in the case of
deterministic dynamics (parallel dynamics at 7 = 0) [20-23] : The two configurations evolve
according to the same rules and there is a unique definition of the distance.
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For stochastic dynamics (sequential dynamics at non zero temperature) one has to decide
how the stochastic forces which act on the two configurations are correlated and the value of
the distance depends on this correlation [15]. As for other models [6-14], we choose here to
use the same random force for the two configurations, i.e. to go from time ¢ to time
t + At, we update the same spin i and we use the same random number z(¢) for the two
configurations :

. 1 1 1
S.(t + Ar) = sign [5 +5 £i(8,6(), s S(1)) tanh 7. - z(t)]

)
' . 1 1 ) , 1
SI(t + At) = sign [ 245 1S 0(0); s Sy (0)) tanh 7.~ z(t)]
Then one can show that the distance D (t)evolves according to the following equation
dD (t) _ l _ _ K l _
% =3 [1-@0-D(@)) ]tanhT D) 6)

and D(¢) can be obtained from D(0) by integrating this equation.

The origin of (6) is easy to understand. If the distance is D (¢) at time ¢, this means that the
spin i which is updated at time ¢ is identical in the two configurations with probability
1 — D(¢) and is different with probability D (z). This site has a probability (1 — D (¢))X of
having all its K inputs identical in the two configurations (case A) and (1 — (1 — D (¢))¥) of
having at least one input different (case B). In case A, S;(t +At) = S/(t + At) with

probability 1 and in case B, S,(t + At) = S (t + Ar) with probability » + > (1 - tanh% )
since with probability % the function f; takes the same value for the two different sets of
inputs and with probability % it does not and in this latter situation there is a probability

1 —tanh% that S,(t + At) = S/ (t + At) if £;({S;}) # f:({S}}).

Therefore one can write

alt) &)

D(t+At)=D()+ N ~ (7)
where
e,() = 1 with probability %tanh ( % ) [1— (1= D())X]
— 0 with probability 1 — %tanh ( % ) [1— (1-D())X]
and

g,(t) = 1 with probability D (¢) 8
= 0 with probability 1 — D (¢) ®)
This gives, on average, (6) and since D(¢) is obtained by adding a large number of
£1(t) and &,(¢), D(t) is equal to its average with probability 1. From (6), one can expect to
observe two phases.

A high temperature phase T = T, where the only fixed point of (6) is D = 0 and where
D(t) >0 as t - oo . In that phase the effect of noise is strong enough to make the two
configurations meet.

A low temperature phase T < T, where the fixed point D =0 is unstable and where
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D(t) » D* the attractive fixed point of (6). The transition temperature is given by the
condition

dD(t) K 1
=—=tanh—-1=0 9
a lpp-o 2T ©)
ie.for K=2
2
Elx=2

whereas for K < 2, there is no transition.

Equation (6) and its consequences (phase transition, a high temperature phase where the
distance vanishes and a low temperature phase where it does not) are valid for the two models
(quenched and annealed) in the thermodynamic limit (N — oo ) only.

For finite systems, the transition temperature is no longer a sharp transition and two
configurations subjected to the same thermal noise always become identical after a finite
time. The main difference between the high temperature and the low temperature phase is the
size dependence of the time it takes for two configurations to meet. We will see in the next
section that for T < T, this time increases exponentially with the system size whereas above
T,, it increases logarithmically.

3. The time it takes for two configurations to meet.

The dynamical phase transition at a temperature T, given by (10) exists only in the limit of an
infinite system for both the annealed and the quenched models. For a finite system, the
reason (independence of the inputs of almost all sites) which led to (6) is no longer valid
(After a time ¢ ~ log N /log K, the number of ancestors in the tree of ancestors of each site
i is K'~ N and there must be repetitions in this tree). Thus one does not expect the time
evolution of the distance to be given by (6) for a finite system. In fact, for a finite system, the
distance always vanishes in the long time limit if the temperature is non zero. This is because
for the finite system, the only steady state is a steady state with two identical configurations.

It is interesting to study how the time 7, it takes for two configurations to meet depends on
the system size N. The time 7, depends on the network (choice of the inputs j,(i ) and of the
functions f;), on the random history (the choice of the spin i to update and of the random
number z(¢) used in Eq. (5)). Therefore 7, is a random variable and it varies with the sample
(for each new sample, we choose a new network, new random initial conditions and a new
history).

" In figure 1 we show (log 7,), the logarithm of 7, averaged over 5000 different samples for

the Kauffman model in its low temperature phase. The calculations were done for
K =4 and tanh % = 0.7 whereas the transition temperature 7, would correspond to
1 —
T =
model in figure 1b.

We see that for both models, if one excludes the results for the smallest sizes,
(log 7,) increases linearly with N. The results are similar for the two models. The slopes
have close values. One cannot however simulate big enough systems to be sure that these
slopes are equal for both models.

So as N increases, it takes longer and longer for the two configurations to meet. One can
say that there is a barrier which has a height increasing linearly with the system size
N and which prevents the two configurations to meet.

tanh 0.5. The plot for the quenched model is shown in figure 1a and for the annealed
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Fig. 1. — (a) Quenched model in the low temperature phase : K = 4 and tanh % = 0.7. Survival time

{log T,) for n=2,3,4 and 5 configurations as a function of the number N of automata. The times
7, increase exponentially with N. The slope measures the height of the repulsion barrier. The average is
done over 5000 samples. (b) Annealed model: the same as figure la. The curve is the analytic
expression obtained in section 4 of (log 7,).

This results is very reminiscent of the case of the (mean field) ferromagnet for which
(log 7,) increases linearly with the system size[6] in the low temperature phase. In the case of
the mean field ferromagnet, the exponential increase of 7, was due to the free energy barrier
the system has to overcome in order to go from the + phase to the — phase.

For the Kauffman model, one cannot define a free energy (there is no hamiltonian and no
Boltzmann weight to describe the equilibrium). Nevertheless, the results concerning
7, of figure 1 show clearly the existence of a barrier between the two configurations.

One can extend the above calculation to the comparison of more than 2 configurations. If
one considers n configurations subjected to the same noise, one can define [6] a time
T, as the first time when two among these n configurations meet. In the study of mean field
ferromagnets [6], the size dependence of 7; was very different from 7,. Since for a mean field
ferromagnet, there are only two phases, the time ; is always short because two
configurations at least fall into the same valley and thus meet very quickly.

The values of (log 73), (log 7,) and (log 75) are shown in figure 1a (quenched model)

and figure 1b (annealed model) for K = 4 and tanh 7= 0.7. We see that the behaviour of

74, 74 and 75 is very similar to the behaviour of 7,. They all increase with N and the results of
figure 1 seem to indicate that for large N all the (log 7,) increase with N with similar slopes.
Here again, N is not large enough to decide wether these slopes are equal or slightly different.

These results indicate that the structure of the attractors in the Kauffman model is very
different from what it is in the mean field ferromagnet [6]. If one starts with 2, 3, ..., n (any
finite number n) configurations, there are always barriers between all the possible pairs which
prevent the configurations of meeting.

On can notice that the numerical results of figure 1 indicate that the averages
(log 7,) have very close values in the quenched and the annealed model with the tendency
for the times to be slightly longer in the annealed than in the quenched model. We could not
find any argument which would show that these times should be identical or different. Only at
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T = 0 and for finite N, (log 7,) should be infinite for the quenched model because one can
build samples with more than » distinct attractors, whereas (log 7,) should be finite for the
annealed model. Also the slopes (for N large) seem to be the same for all » and for both
models.

We will see in the next section that one can get an analytic expression of (log 7,) for the
annealed model and that this expression (curve in Fig. 1b) agrees with the results of the
Monte Carlo simulations. We were not able to find an analytic expression for the other times
7, in the annealed model #» = 3 and in the quenched model n = 2. So the possibility that the
slopes of all the (log 7,) are the same is purely based on the numerical results shown in
figures 1.

It is interesting to notice that a model (the annealed random map model) for which all the
times 7, can be calculated was studied recently [24] and that it was found in that case that all
the slopes are identical with even a further relation

27,

T )

On the basis of the numerical results presented in figure 1, we see that the Kauffman model
(in both its annealed and quenched versions) seems to behave in a very sin(lilar way. Even the
( nn—1)

result (obtained for the random map [24]) (log 7,) = (log 7,) — log 3

) seems to

" be not a too bad approximation for the Kauffman model.

It takes very long for different configurations subjected to the same noise to meet only in
the low temperature phase. For T = T,, one does not expect an exponential growth of the
times 7,.

For the quenched model, we repeated our Monte Carlo calculations for K = 4 for two
temperatures tanh % = 0.5 and tanh % =03ie T>T.

C

At T, figure 2 shows (log 7,) versus log N. For large N, we see that the (log 7,) seem to
increase linearly with log N. So the 7, are power laws (which could be expected since
T =T, is a critical point)

¥4
T,~N

and the exponent z = 0.50 seems to be the same for all # for the quenched model. (When we
tried to plot (log 7,) versus N or exp((log 7,) ) versus log N, our results were much more
curved for large N and this indicates that the power law 7, ~ N ?is the best fit of our numerical
data).

For T > T,, exp((log 7,) ) seems to increase like log N for large N (Fig. 3). This can be
understood easily : the distance (6) between 2 configurations decreases exponentially with
time. The time it takes for two configurations to meet is of the order of the time such that the
two configurations differ by a finite number of spins (0, 1, 2 spins)i.e. the distance is of order
1/N. Hence exp — a7,~1/N leads to 7,~1log N.

4. Analytic expression of the barrier height for the annealed model.

In this section we will show that one can obtain an analytic expression of the slope
(log 7,) versus the number of automata N for the annealed model in the low temperature
phase. The calculation can be reduced to the problem of a random walk in a one dunensmnal
landscape in presence of a trap.

At time ¢, one can characterize the two configurations by the number » of automata which
differ between the two configurations (i.e. the distance D(¢) = n/N). With sequential
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Fig. 2. — Quenched model at T, : K = 4 and tanh 0.5. Survival time (log 7,) forn =2,3,4 and 5

Fig. 3. — Quenched model in the high temperature phase : K = 4 and tanh % = 0.3. The same as figure

2. The survival time increases logarithmically with the number N automata. The average is over 5000
samples.

dynamics, only one automaton can change during a time step At =1/N : the variable
n performs a one dimensional random walk.

n
Let us call B ( N

the two configurations, when the distance at time ¢ is

) the probability that a site, which is updated at time ¢ + % is different in
n
N

B(D)=%tanh(%>[1— (1 - D)X] (12)

. We have seen in (8) that

With D(t) = ]l:,- , D <t +%— ) can be equal to or with the following

Zz
2z
Z|x

probabilities

wo =252 5(5)

b(n)=%[1—3(%>] (13)
c(n)y =1-a(n)->b(n)
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The probability P,“n) that two configurations differ by » spins at time ¢ evolves according to
the Master equation :

P oiynn)=a(n-1)P,(n—-1)+b(n+1)P,(n+1)+c(n)P,(n) (14)

One can check that » =0 is a trap : this means that two identical configurations remain
identical for ever.

Because the variable n is bounded (0 < n < N ), one can consider that equation (14) is valid
for 0 = n < N with the following boundary conditions P,(-1) = P,(N +1) = 0.

Equation (14) is valid for both the quenched and annealed models when ¢ = 0. For
t >0, the inputs of each site i become correlated in the quenched model and the Master
equation becomes wrong. On the contrary, for the annealed model, since at each time step all
the functions and inputs are changed, the Master equation (14) remains valid at any time
t > 0. The calculations which follow are based on (14) and therefore are valid for the annealed
model only.

Using (13), the Master equation (14) can be written as

P,+%(n)—P,(n)=R(n+1)—R(n) (15)

where
R(n)=bn)P,(n)—a(n-1)P,(n-1) (16)

(At the boundaries, R(0) = R(N +1) =0).

The Master equation -(14) or (15)- describes also the evolution of a population of particles
in a landscape. Particle positions are n=0,1,..., N and P,(n) is the density at time
t and position n. Each particle can jump from n to n+1 or n—1 with probability
a(n) and b(n). Within this picture, R(n) defined in (16) is the flux of particles between
nand n—1.

The steady state P (n) satisfies P, +1':1' (n) = P,(n). Using (15),

R(n)=R(0)=0 foralln. (17)
Then (16) gives
_aln-1)
Peq(n)—_W—Peq(n_l) (18)

Because a(0) = 0, the steady state solution is

Peq(n) = 6n,O (19)

This means that the steady state corresponds to two configurations identical with probability
one.

At initial time f, = O the two initial configurations {S;(0)} and {S;/(0)} are chosen at
random, and the initial probabilities are

1 N!

Po(n) = % ot =yt

(20)

Then, at time ¢, P,(n) can be obtained from (20) by iterating (14). The probability that the
two configurations meet at time ¢ (in other words, the probability that 7, = ¢) is given by :

P(0)-P,_1(0)



1596 JOURNAL DE PHYSIQUE N°13

Therefore, the average of log 7, is given by :
(log2) = ¥ [P (0)~ Pz (0)]1og ( 51 ) 1)
m=1

We could not find a direct method of calculating (log 7,), but we can calculate all the
moments { 72> with k = 1. Then (log 7,) can be obtained from these moments in the limit

k0.
The initial distribution, Py(n) is normalized and from (14), one can easily check that it
remains normalized at ¢ > 0. Therefore

N
P0)=1-F P,(n) (22)
n=1
By definition, the moment (75) is given by
k < m \k m m_
(=3 (§)Pe@-PuiO) (23)

Then using (22) :

(b = Niz T PEOlen+ 1Y @4)
It we define S,(n) by
S = T Prmien 1 ~m] (25)
(24) can be written as :
(15) = %( i Si(n) (26)

The sum in (25) is finite for n = 1. In fact, the Master equation has only one eigenvalue equal
to 1, with eigenvector P, (19), and the modulus of the other eigenvalues are less than 1.
Then, for large time, P,(n) decreases exponentially (n = 1) and this implies that the series
(25) converges for n = 1. Let us notice that S,(0) is infinite.

The main advantage of (26) is that S, is the solution of a linear recursion. Using the Master
equation (14) and the definition (25) of S, we obtain :

Si(n) — [a(n —-1)Si(n-1)+b(n+1)Si(n+1)+c(n)S(n)]
Z [(m+1) - "][P’"(n)—P'"“(n)] (27)

Z

i Pmn)[(m+1)=2mk+ (m—1)] + Py(n)

Using the binomial formula, one can see that

(m+ 1 —2m* 4 (m— 1) = z( e () 1oy -my 8)
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From (27) and (28), we see that S, is the solution of :

Si(n)—[a(n—-1)S,(n—=1)+b(n+1)S(n+1)+c(n)Si(n)] = Fr(n) (29)

where
k-1

Fe) = ¥ [0 (F) sim] + 141 Pot) (30)
i=1
S, (n) is finite only for n = 1 and S; is the steady state of the Master equation (29), with a right
hand side : Fy(n). In F,;, we find only Py(n) and S;(n) for i < k. So we can try to solve this
hierarchy of equations by starting with k = 1, k = 2, etc. For example,

Fi(n) = Po(n),
F,y(n) =28,(n) — Py(n), etc.

If we interpret S,(n) as a stationnary density of particles, F(n) corresponds to an external
flux of particles in n, and compensates the loss of particles which get trapped at
n=0.
N
The total population ) Si(n)is N "<~r§>. For k = 1, we could have anticipated this result
n=1
as F{(n) = Py(n): each time that one particle is added to the system, one particle gets
trapped in n = 0. The average survival time (divided by N) is equal to the number of particles
in the system.
As (16), we define :

Ri(n) =b(n) S(n) —a(n—-1) S (n - 1) (31)

(R (n) is the flux between n and n — 1). Now, (29) is equivalent to

Ri(n) — Ri(n +1) = Fi(n) (32)
At the boundary : R,(N) = F;(N). Then
Ri(n) = ¥, Fili) (33)
(31) gives :
_Rk(") a(n-1) _
Sk(n)_ b(n) + b(n) Sk(n 1) (34)
_Rk(") a(n—1)Ry(n-1) a(n—l)...a(l)Rk(l)
=% T Th() b1 T Th(m)...b@2) bA)
Defining
_a(n-1)...a(1)
EM) =gy v 50) (35)
(34) can be written as
S = B § oot
f PR B (36)

u 1 y :
= E(n)i;m—(i—)jg Fi(j)
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This solution is not particular to our specific problem. It would be valid for any 1-D random
walk, with a trap. (The trap appears in (36) because b(1) # 0 and a(0) = 0). We see that
log E(n) plays the role of a potential. In fact, if we were studying a system with a
hamiltonian : H(n) the probabilities of jumping would be :

= [Hn + 1)~ HO))

a(n) =e
S (He - 1) - H) 7
b(n) =e 2T
These expressions satisfy the detailed balance and, in this case
E(n) = cte e HM/T
Now, we can look for the specific form of a(n), b(n) and E(n).
With the definitions (35) and (13)
log E(n) = z log a(i) —logb(n)
b(i) (38)
_ 1-i/N B(i/N) )_
= ,; log( N T-BG/N) ) ~leebm
For large N, % becomes a continuous variable. E(n) has the scaling shape :
Liog E(n) = f(n/N)+0 ( 1 )
N N
where
D
_ 1-x B(x) >
£0) = [Mtog (L5229 ) 0 (39)

This integral can be calculated. We will not give its analytic expression because it would be
too complicated. We are just interested here by the extrema of f(D). The shape of
f(D) depends on the function B(x).

B(D) = %tanh ( % ) [1— (1 -D)X] has an attractive point: D* = B(D*). In the

chaotic phase (T'<T,), D*=0; f(D) increases for D < D* and decreases for D = D*.
Then f(D*) is the maximum of f(D). Now, we can calculate, in the chaotic phase

S0 = B0 § ot 3 0) (40)

E(n) = exp (Nf< % ) ) is very peaked around n ~ ND* for large N and b_(lle_—(l) is very

peaked around i = 1. Then S (n) is very large for n ~ ND*. For these n, in (40), the sum over
i can be restricted to i close to 1. In the definition (30), F,(j) is a sum of Py(j) and
S;(j) with i < k.

Py(j) = L (7) is very peaked around j ~% and S;(j) around j = ND* : Thus we can

replace Z Fk(]) by Z Fi(j). Then, for n close to ND*,

j=i j=1
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s =£@) (D) ( T 5075 ) (a1)
With B(i/N) = B,(O)'Z{/‘_ for i close to 1, (13) and (35) gives
E(G@)b(i)=B'(0)y!
Then the solution Si(n) is
e = | £ 10| £ 5 42)
The moment (75) are given by :
1< 1 B'(0 ul NI
(#h) = 5 5:0) = g | £ 1| £ £ o) )
In the case, k =1,
Fi(m) = Po(m) = 25 (7)) (44)
then the average time is :
(m) =% ( L E)) g2 (45)
nd (78) =i (5 A () (46)

Using, the definition (30) of F;(j)
(73) = (72 (i (%)k - l( )(Tz)) (47)

For large N, (47) gives

<’r§> =k(7y) <’r§‘1>
then (7§) = k!(m)* “8)

This relation between the moment (75) means that the probability law of 7, the time it
takes for two configurations to meet, is a exponential law. This distribution of time is the same
as the one found recently on supercritical contact process [26]. Then (log 7,) is given by :

(log 75) =log(my) — ¥ 49)
where vy is the Euler’s constant : 0.577. Using the expression (39), we find :
C_ NfD*)
Ty) ~——¢€ (50)
< 2> \/ﬁ

for large N.
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Then
~ Clog 72) = £(D*) (51)

where f(D*) is the maximum of :

D _ —_ —_ K

f(D)=J dxlog| L= tanh (%) 1 1(1 x) (52)
0 x z—tanh(_T-)[1-(1_x)K]

In the chaotic phase 7, increases exponentially with N. The exponential rate f(D*) is similar

to a free energy barrier height.
With the parameters chosen of the figure 1 (K = 4 and tanh % = 0.7), this barrier height is :

f(D*) = 0.0408.

If in figure 1b we measure the slopes of the (log 7,) obtained by Monte Carlo simulations
for the annealed model, we find 0.031 for 7,; 0.028 for 7;; 0.025 for 7, and 0.023 for
7s. For the quenched model (Fig. 1la), we find 0.026 for =,; 0.023 for 75; 0.021 for
74 and 0.019 for 75. The difference between the predicted value 0.0408 and the measure 0.031
for 7, is due to finite size effects. From equation (50), we expect :

5 (ogmy = £(D*) 55 (3)

The curve on the figure 1b is (log 7,) computed with the Master equation (14) and (21) for
finite N. For N =< 100, it agrees with the simulations. For larger N, the slope of this curve
increases to the predicted value f(D*). This means that at N <100, 7, is not yet in its
asymptotic regime. Since the measured value of the slope 0.031 for 7, has not yet reached its
asymptotic value 0.0408, we believe that the slopes of all the other 7, for the annealed and
quenched models are also far from convergence. Therefore the measured values 0.031, 0.028,
0.025, 0.022 of the slopes of the (log 7,) for the annealed model and 0.026, 0.023, 0.021,
0.019 for the quenched model do not allow to conclude that these slopes would remain
different in the large N limit.

Up to equation (36), the results are valid at all temperatures. From (36), it would be
possible to show that in the high temperature phase (7,) increases like log N whereas at
T, (7,) is a power law in N.

5. Conclusion.

In the present work, we have seen that the times 7, for at least two configurations among
n to meet increase exponentially with the number N of automata for the (two versions of the)
Kauffman model in the low temperature phase. The exponential rate of increase of these
times 7, seems to depend neither on the model (annealed or quenched) nor on
n. In the case n = 2 for the annealed model, we have obtained an analytic expression of the
barrier height.

When we compare these results with those of similar calculations done for the mean field
ferromagnet [6], we see that the main difference is that for the Kauffman model, all the times
7, (n=2) seem to increase exponentially with N whereas for the ferromagnet only
T, increased exponentially with N (because in the mean field ferromagnet there exist only two
valleys).
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The results of the present work are much closer to what was found for the annealed random
maps model [20] for which the ratios 7,/7, have a finite limit n(n — 1)/2 as N — oo . In the
annealed random map model [24] it was possible to obtain a much more detailed information
on the weights of the attractors since one could calculate the full probability distribution of
these weights. In the Kauffman model, it seems to be much more difficult to do the same
because we have not been able to find a method which allows one to calculate the times
7, for n =3 even in the annealed case.

We see that the method which consists in comparing several configurations subjected to the
same noise can be used to define and measure barrier heights in a large class of systems
without any need of a free energy. One can imagine other definitions [25] of barrier heights
which would not rely on the trick of using the same noise for two or more configurations. It
would be, of course, very interesting, to compare all these possible definitions of barrier
heights in order to know under what conditions the idea of using the same noise for several
configurations gives a good measure of barriers.
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