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This talk is an introduction to neural network models which have been studied
recently using methods of statistical mechanics.

1. INTRODUCTION

It would be a formidable task to re-
view all the recent and interesting
works on neural networks and this would

not be very wuseful because several
excellent reviews'-® have already been

published. Therefore, in these few pa-
ges, I will only introduce the neural
network models which are considered by
most of the physicists of the field and
mention a few recent results. My hope is

that this will encourage the reader to
go deeper into the subject!-®.

One of the reasons why physicists
(from statistical mechanics) are inte-
rested by the brain is rather obvious.
The brain is composed by a large number
N (~ 10'?2) of neurons which interact
through synapses (10%2-10°* per neuron).
It is therefore tempting to try to des-
cribe the properties of such a system by
the technics of statistical mechanics.

The simplest neural network models
which have been considered consist in
assuming that the state of each neuron i
at time t is represented by an Ising
variable S, (t)

Si(t) = + 1 if the neuron i is firing
(1)
S;(t) = - 1 if the neuron i is guiescent

and that the synapsis Jij between neuron
J and neuron i is a real number
(Jij > 0 if the synapsis is excitatory
and Ji; < 0 "if it is inhibitory). In
general the matrix J; is nonsymmetric
(Jij = in) because the synapses are non
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gymmetric. One then has to choose a dyna-
mical rule to make the system evolve in
time. A simple way consists in saying
that at time t the neuron i receives a
potential V, (t) given by

v,() = 2 3, s;(t) (2)
J

and that the state of neuron i at time

t + 1 depends on V;(t) in a probabi-

listic way

§; (t+1)=+1 with probability £(V; (1))
(3)

S; (t+1)=-1 with probability 1-f(V,(t))

f(x) is an increasing function such that

f(x) - O if x % -0 and f(x) =+ 1 if
X < +o, For example

f(x) =

N+

1 X
+ 2 tanh(;] (4)

where T plays the role of a temperature.

Dynamics like (2-4) are commonly used
in Monte Carlo simulations. The main
difference with more usual spin models
of Statistical Mechanics is that here
the matrix Jij is non symmetric. There-
fore there is no hamiltonian, no par-
tition function.

The first property of such neural
network models is that they can memorize
patterns by choosing properly the
synapses J‘j. Assume that we have N neu-
rons Si = * 1 and we want to store p
patterns ( 5) of N bits each
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1°* pattern &{!)= +1 or -1 1 <i<N
L 2
. (5)
L ]

p‘" pattern &{P’= +1 or -1 1<i<g<N

We will say that pattern {Ei“)} is

memorized if for the dynamics (2 -4)
there is an attractor near this pattern.
So the problem is to choose the Jij in
order to make the attractors as close as
possible to +the stored patterns. A
simple way of measuring the distance
between a spin configuration {S,(t)} and
a pattern is to calculate their overlap

m,(t) = E(") 8, (t) (6)

1

WMz

1
N

There exist
J,; which give
bourhood of the stored patterns &{").So-
me of these choices lead to interesting
effects 1like short on long term memory,
forgetting'?-13. For the moment I will
limit the discussion to one of the sim-
plest rules (the Hebb rule®) which give
an expression of the JiJ in terms of the
patterns

several choices of the
attractors in the neigh-

J

Qlr

iy

p
2: g{M) B(W) (7)
w=1

where C is the number of synapses of
each neuron (for simplicity one can
assume that C does not depend on i).

2. THE HOPFIELD MODEL’-8-4
As long as the matrix J, ., is non sym-
metric, it is not easy +to use the me-
thods of Statistical Mechanics (Parti-
tion function etc ...). The idea of Hop-
field was to consider a simpler situa-
tion where
C=N-1 (8)

i.e. each neuron interacts with each
other neuron and the J;. are given by
(7). Then one knows that with the dyna-
mics (2-4) the system will evolve to an
equilibrium described by an Hamiltonian
H at temperature T

H((S,)) = - = 3., S, S, (9)

. 1] 1 ]
1]

i.e. each configuration {S;} is visited
in the 1long time 1limit with a proba-
bility P, ({S;}) = exp [- R({S })/T].
When one considers the Jij given by
the Hebb rule (7), the Jij take both po-
sitive and negative values and phase

space 1is composed of many valleys like
in spin glass problems®-1°,

Amit, Gutfreund and Sompolinsky? 11!
have studied the equilibrium properties
(the thermal equilibrium) in great de-
tail wusing replica technics which had
been developed previously in the study
of spin glasses. They found a phase dia-
gram with the following shape :

paramagnetic

spin glass

ferromagnetic

when the p patterns are chosen at random
(i.e. : E{") = 41 or -1 with equal pro-
bability). The parameter a which appears
in figure 1 is defined as the ratio of
the number of stored patterns p divided
by the number of synapses C per neuron
(in the case of the Hopfield model
C =N - 1 but this will not be the case
for the diluted model discussed in sec-
tion 3)

o« = p/C (10)

The important line is the phase boun-
dary between the ferromagnetic phase and
the spin glass phase. In the ferromagne-
tic phase, there exists a minimum in the
free energy landscape with m, > 0, i.e.
one expects a valley near each pattern
£("™), In the spin glass and the parama-

gnetic phases m, = 0 and therefore this
local minimum disappears. The phase dia-
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gram obtained by Amit at al?-!! has more
structure than what is shown on figure 1
(transition 1line where the symmetry of
replica is broken, spin glass phase, etc
...) but this will not be discussed
here.

We see that with the Hebb rule (7)
the system is able to memorize the pat-

terns as long as the number of stored
patterns p = Cx does not exceed a cer-
tain value o« _(T). For a > a_{(T), there

is a complete deterioration and no pat-
tern is memorized. It turns out?-!! that
the transition from the ferromagnetic
phase to the spin glass phase is a first
order transition and that m, has a jump.
At T = 0, one finds that

x, ~ .14

[of
from a wvalue ~ .95 to O.
the fraction of wrong bits is gi-

l—mH
ven by 5

and m, jumps
Since

we see that up to «_ the

patterns are
mistakes.

The calculations done on the Hopfield
model can be generalized to various si-
tuations (see the reviews 4-5) by modi-
fying or by replacing the Hebb rule (7)
by other rules'?-!3 (this can be used in
particular to describe short or long
term memory effects).

There are however several difficul-
ties in the Hopfield model

(1) The calculations are done at equi-
librium (using replica) but one does not

memorized with very few

know how to describe analytically
dynamics.
(2)The symmetry of the synapses

(Jij = in) is essential in this ap-
proach although the synapses are known
to be non symmetric in the brain.

(3) All the neurons are connected
(C = N -1)and that too is not realistic.

(4) The forgetting catastrophe : if
@« > o_,i.e. the number of input patterns
exceeds a maximal value, all the pat-
terns are forgotten at once.

(5) Various difficulties when one ex-
tends the calculations to the case of
correlated patterns.

(6) With symmetric interactions, one
can expect minima in the free energy
landscape but there is no way to memori-
ze temporal sequences of patterns.

3. NON SYMMETRIC - DILUTED NETWORKS

It turns out that one can construct a
neural network model with non symmetric
synapses for which the dynamics can be
solved exactly'?. The model consists of
N neurons S; = *1 and the synapses Iy
are given by

j &

J, C, E:

ij ij
po=1

ey &b (11)
where the {E:} is the p'® pattern and

Cij is a random number which represents
the dilution

Ciy = 1 with probability C/N

iy = 0 with probability 1 - C/N (12)
The C;, and C,; are independent random
variables and %herefore

the matrix Jg
is no longer symmetric. The spin still
evolve according to the following rules

S, (t+1) = +1 with prob p, (t)
5, (t+1) = -1 with prob 1 - p,(t) (13)
where

1 1
p; (t) = 3 + D) tanh :: Ji; Sj(t)/T (14)
J
which gives in the low temperature limit

S; (t+1) = sgn 2: Jij Sj(t) (15)
J

The situation for which this model
can be solved is the 1limit N » o, C
being finite or infinite with the cons-
traint that

C < log N (16)
The reason why this condition makes the
model soluble would be too long to ex-
plain here in detail!® !4, Let me just
say that because the system is very di-
luted (see eqg. 12), the structure of the
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network is locally a tree. At zero tem-
perature, and for 1large C, one gets a
simple expression for the time evolution
of m, (t)

m, (t+1) %ﬁjt: dy e v? sign[mg(t)—yqia]

(17)

where @ = p/C (p is the number of stored
patterns). The dynamics are fully des-
cribed by the map (17). One sees from
(17) that there is a critical value o
of «
@, = 2/m (18)

If « > a,, the number of patterns me-
morized is too 1large and the only at-
tractive fixed point of (17) is m) = Q.
The system does not remember anything.

If @ < a,, there appears an attracti-
ve fixed point mj = 0 of (17) correspon-
ding to the attractor near the pattern
K. One should notice that the retrieval
is not perfect since m; = 1 (the frac-
tion of wrong bits is given by
(1 - m;)/2).

In the above calculation, the typical

projection of one pattern ¢ on another
pattern v was Nt o

L3 e gon oo n (19)
N i 1 1

for all pairs p and v. On can generalize
it to describe other situations. If one
considers that p patterns are random but
that two of them (patterns 1 and 2) are
correlated

1
E_Z (1) g(2) = g (20)
1

one can writell4] equations similar to
(17) +to describe the time evolution of
m, (t)and m, (t). Because of (20), the ti-
me evolution of m, (t) and m,(t) are cou-
pled and one finds that there are two
critical values of a :

(1-q)*
(21)

ERESERE I

(1+g)?

For a > «,, the only fixed point is

*

m, = m; = 0. Too many patterns have been
stored. The system does not remember
anything.

For «, < a < o,, there is an attrac-
tive fixed point m; = m) = 0. The system
remembers patterns 1 and 2 but cannot
distinguish them.

For o < a,, there is an attractive

*

fixed point m; > m;. The system can dis-
tinguish the two patterns.

There are some 1limiting cases which
can be easily understood.

If g » 0, the patterns become uncor-
related and «; and o, -+ «_.

If g+ 1, o, » 0. If the 2 patterns
become identical, it is impossible to
distinguish them.

For diluted networks, one can extend

the above calculation to describe more
complex situations!®-17, For example,
one can produce short and long term me-
mory effects by considering that the
synapses Jij are bounded (IJijI < L) and
that adding a new pattern changes the
synapsis only if the constraint
IJijI < L is satisfied. One can also

choose the Jij in order to produce
temporal sequences of patterns!’.

4. CONCLUSION

The two models described in sections
2 and 3 have the following two
simplifying features :
(1) - there is no architecture : all the
neurons play similar roles
(2) - the synapses are given explicitly
in terms of patterns

Recently it has been shown that none
of these two symplifying assumptions is
essential for the model to be soluble.

One can construct layered networks

for which the dynamics can still be sol-
ved exactly? 1%, The solution and the
properties are similar to those of the
diluted model.

One can also use J;; which are no
longer given explicitly in terms of the
patterns (like in the Hebb rule (7)) but
which are arbitrary with the condition
that there are attractors near the sto-
red patterns!®-2°, This might be a first
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step in understanding the various lear-
ning rules which have been proposed and
consist in using iterative procedures to
modify the J,. in order to create or to

1
enlarge the %asins of attraction near
stored patterns?!-23,
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