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INTRODUCTION TO NEURAL NETWORK MODELS 
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This talk is an introduction to neural network models which have been studied 
recently using methods of statistical mechanics. 

i. INTRODUCTION 

It would be a formidable task to re- 

view all the recent and interesting 

works on neural networks and this would 

not be very useful because several 
excellent reviews I-6 have already been 

published. Therefore, in these few pa- 

ges, I will only introduce the neural 

network models which are considered by 

most of the physicists of the field and 

mention a few recent results. My hope is 

that this will encourage the reader to 
go deeper into the subject I-6 

One of the reasons why physicists 

(from statistical mechanics) are inte- 

rested by the brain is rather obvious. 

The brain is composed by a large number 
N (~ 1012 ) of neurons which interact 
through synapses (102-104 per neuron). 

It is therefore tempting to try to des- 

cribe the properties of such a system by 

the technics of statistical mechanics. 

The simplest neural network models 

which have been considered consist in 

assuming that the state of each neuron i 

at time t is represented by an Ising 

variable Si(t ) 

Si (t) = + 1 if the neuron i is firing 

(1) 

Si(t) = - 1 if the neuron i is quiescent 

and that the synapsis Jij between neuron 
j and neuron i is a real number 

(Jij > 0 if the synapsis is excitatory 
and Jij < 0 'if it is inhibitory). In 
general the matrix J~j is nonsymmetric 
(Jij ~ Jji ) because the synapses are non 
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symmetric. One then has to choose a dyna- 

mical rule to make the system evolve in 

time. A simple way consists in saying 

that at time t the neuron i receives a 

potential Vi(t ) given by 

Vi(t) = Z Jij Sj(t) (2) 
J 

and that the state of neuron i at time 

t + 1 depends on Vi(t ) in a probabi- 
listic way 

Si(t+l)=+l with probability f(Vi(t)) 

(3) 

S i (t+l)=-I with probability l-f(V i(t)) 

f(x) is an increasing function such that 

f(x) ~ 0 if x ~ -~ and f(x) ~ 1 if 

x ~ +~. For example 

f(x) = ~ + ~ tanh (4) 

where T plays the role of a temperature. 

Dynamics like (2-4) are commonly used 

in Monte Carlo simulations. The main 

difference with more usual spin models 

of Statistical Mechanics is that here 

the matrix Jij is non symmetric. There- 
fore there is no hamiltonian, no par- 

tition function. 

The first property of such neural 

network models is that they can memorize 

patterns by choosing properly the 

synapses Jij " Assume that we have N neu- 
rons Si = ± 1 and we want to store p 
patterns (~) of N bits each 
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i st pattern ~i)= +i or -i I < i < N 

• (5) 

pth pattern ~JP)= +i or -i 1 ~ i < N 

We will say that pattern {~)} is 

memorized if for the dynamics (2 -4) 

there is an attractor near this pattern. 

So the problem is to choose the Jij in 
order to make the attractors as close as 

possible to the stored patterns. A 

simple way of measuring the distance 

between a spin configuration {Si(t) ] and 
a pattern is to calculate their overlap 

N 

m~(t) = ! Z ~ )  S i (t) (6) 
N i=l 

There exist several choices of the 

Jij which give attractors in the neigh- 

bourhood of the stored patterns %~) .So- 
me of these choices lead to interesting 

effects like short on long term memory, 
forgetting 12-13 . For the moment I will 

limit the discussion to one of the sim- 
plest rules (the Hebb rule & ) which give 

an expression of the Jij in terms of the 
patterns 

P 

i Z ~ ~ (7) 
Jij = ~ ~=i 

where C is the number of synapses of 

each neuron (for simplicity one can 

assume that C does not depend on i). 

2. THE HOPFIELD MODEL 7"s'4 

As long as the matrix J is non sym- 
metric, it is not easy to use the me- 

thods of Statistical Mechanics (Parti- 

tion function etc ...). The idea of Hop- 

field was to consider a simpler situa- 

tion where 

C = N - 1 (8) 

i.e. each neuron interacts with each 

other neuron and the Jij are given by 
(7). Then one knows that with the dyna- 

mics (2-4) the system will evolve to an 

equilibrium described by an Hamiltonian 

at temperature T 

X({S i }) = - /-~ Jij S i Sj 
ij 

(9) 

i.e. each configuration {Si} is visited 
in the 10ng time limit with a proba- 

bility Peq({Si}) = exp [- M({Si})/T ]. 
When one considers the Jij given by 

the Hebb rule (7), the Jij take both po- 
sitive and negative values and phase 

space is composed of many valleys like 
in spin glass problems 9,1° 

Amit, Gutfreund and Sompolinsky 4'11 

have studied the equilibrium properties 

(the thermal equilibrium) in great de- 

tail using replica technics which had 

been developed previously in the study 

of spin glasses. They found a phase dia- 

gram with the following shape : 

T parama~edc 

m# = 0 

spin glass 

m~>O 

ferromagnetic 

when the p patterns are chosen at random 
(i.e. : ~i (~) = +i or -i with equal pro- 
bability). The parameter ~ which appears 

in figure 1 is defined as the ratio of 

the number of stored patterns p divided 

by the number of synapses C per neuron 

( in the case of the Hopfield model 

C = N - 1 but this will not be the case 

for the diluted model discussed in sec- 

tion 3 ) 

= p/C (i0) 

The important line is the phase boun- 

dary between the ferromagnetic phase and 

the spin glass phase. In the ferromagne- 

tic phase, there exists a minimum in the 

free energy landscape with m~ > O, i.e. 
one expects a valley near each pattern 
~(~) . In the spin glass and the parama- 

gnetic phases m~ = 0 and therefore this 
local minimum disappears. The phase dia- 
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gram obtained by Amit at al 4'11 has more 

structure than what is shown on figure 1 

(transition line where the symmetry of 

replica is broken, spin glass phase, etc 

...) but this will not be discussed 

here. 

We see that with the Hebb rule (7) 

the system is able to memorize the pat- 

terns as long as the number of stored 

patterns p = C~ does not exceed a cer- 

tain value ~c(T). For ~ > ~c(T), there 
is a complete deterioration and no pat- 
tern is memorized. It turns out 4"11 that 

the transition from the ferromagnetic 

phase to the spin glass phase is a first 

order transition and that m~ has a jump. 
At T = 0, one finds that 

~c ~ .14 

and m~ jumps from a value ~ .95 to 0. 
Since the fraction of wrong bits is gi- 

l-m~ 
ven by 2 ' we see that up to ~c the 

patterns are memorized with very few 

mistakes. 

The calculations done on the Hopfield 

model can be generalized to various si- 

tuations (see the reviews 4-5) by modi- 

fying or by replacing the Hebb rule (7) 
by other rules 12"13 (this can be used in 

particular to describe short or long 

term memory effects). 

There are however several difficul- 

ties in the Hopfield model 

(i) The calculations are done at equi- 

librium (using replica) but one does not 

know how to describe analytically 

dynamics. 

(2)The symmetry of the synapses 

(Jij = Jji ) is essential in this ap- 
proach although the synapses are known 

to be non symmetric in the brain. 

(3) All the neurons are connected 

(C = N -l)and that too is not realistic. 

(4) The forgetting catastrophe : if 

> ~c,i.e. the number of input patterns 
exceeds a maximal value, all the pat- 

terns are forgotten at once. 

(5) Various difficulties when one ex- 

tends the calculations to the case of 

correlated patterns. 

(6) With symmetric interactions, one 

can expect minima in the free energy 

landscape but there is no way to memori- 

ze temporal sequences of patterns. 

3. NON SYMMETRIC - DILUTED NETWORKS 

It turns out that one can construct a 

neural network model with non symmetric 

synapses for which the dynamics can be 
solved exactly 14 . The model consists of 

N neurons S i = ±i and the synapses Jij 
are given by 

P 

a ~ j  : cij • ~ ~ ( 1 1 )  
= 1 

where the < ~  is the . t h  pattern and 

Cij is a random number which represents 
the dilution 

Cij = 1 with probability C/N 
Cij = 0 with probability 1 - C/N (12)  

The Cij and Cji are independent random 
variables and therefore the matrix Jij 
is no longer symmetric. The spin still 

evolve according to the following rules 

Si(t+l) = +i with prob pi(t) 
Si(t+l) = -i with prob 1 - pi(t) (13) 

where 

1 Pi (t) = ~ + ~ tanh Jij Sj (t)/T (14) 

which gives in the low temperature limit 

.. 1 (15) 

The situation for which this model 

can be solved is the limit N ~ ~, C 

being finite or infinite with the cons- 

traint that 

C < log N (16) 

The reason why this condition makes the 

model soluble would be too long to ex- 
plain here in detail I°-14 . Let me just 

say that because the system is very di- 

luted (see eq. 12), the structure of the 
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network is locally a tree. At zero tem- 

perature, and for large C, one gets a 

simple expression for the time evolution 

of m~(t) 

1 r + ~  sign[m~(t)-y 2q~] m~(t+l) = ~@_~ dye -y2 

(17) 

where = = p/C (p is the number of stored 

patterns). The dynamics are fully des- 

cribed by the map (17). One sees from 

(17) that there is a critical value =c 
of = 

=c = 2/~ ( 1 8 )  

If = > ~c, the number of patterns me- 
morized is too large and the only at- 
tractive fixed point of (17) is m~ = 0. 
The system does not remember anything. 

If = < me, there appears an attracti- 

ve fixed point m~ ~ 0 of (17) correspon- 
ding to the attractor near the pattern 

~. One should notice that the retrieval 
is not perfect since m~ ~ 1 (the frac- 
tion of wrong bits is given by 
(i - m~)/2). 

In the above calculation, the typical 

projection of one pattern ~ on another 
pattern u was N -~ : 

I Z $!~) $!v) N-~ (19) 
l l 

N i 

for all pairs ~ and v. On can generalize 

it to describe other situations. If one 

considers that p patterns are random but 

that two of them (patterns 1 and 2) are 

correlated 

! Z = g (2o) 
N i 

one can write [14] equations similar to 

(17) to describe the time evolution of 

mz(t)and m2(t). Because of (20), the ti- 
me evolution of ml(t) and m2(t) are cou- 
pled and one finds that there are two 

critical values of = : 

2 
= - - - -~ i_o~2 O~ 1 

"IT 

2 
=2 = - (l+q) 2 

(21) 

For = > =2, the only fixed point is 

m i = m 2 = 0. Too many patterns have been 
stored. The system does not remember 

anything. 

For =i < = < =2, there is an attrac- 

tive fixed point m[ = m~ ~ 0. The system 
remembers patterns 1 and 2 but cannot 

distinguish them. 

For = < =z, there is an attractive 

fixed point m~ > m~. The system can dis- 
tinguish the two patterns. 

There are some limiting cases which 

can be easily understood. 

If q ~ 0, the patterns become uncor- 

related and =z and =2 ~ =c" 

If q ~ i, =i ~ 0. If the 2 patterns 
become identical, it is impossible to 

distinguish them. 

For diluted networks, one can extend 

the above calculation to describe more 
complex situations 15,17 For example, 

one can produce short and long term me- 

mory effects by considering that the 

synapses Jij are bounded (IJij l < L) and 
that adding a new pattern changes the 

synapsis only if the constraint 

IJij l < L is satisfied. One can also 
choose the Jij in order to produce 

temporal sequences of patterns z7 . 

4. CONCLUSION 

The two models described in sections 

2 and 3 have the following two 

simplifying features : 

(i) - there is no architecture : all the 

neurons play similar roles 

(2) - the synapses are given explicitly 

in terms of patterns 

Recently it has been shown that none 

of these two symplifying assumptions is 

essential for the model to be soluble. 

One can construct layered networks 

for which the dynamics can still be sol- 
ved exactly 4,18 The solution and the 

properties are similar to those of the 

diluted model. 

One can also use Jij which are no 
longer given explicitly in terms of the 

patterns (like in the Hebb rule (7)) but 

which are arbitrary with the condition 

that there are attractors near the sto- 
red patterns 19-2°. This might be a first 
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step in understanding the various lear- 

ning rules which have been proposed and 

consist in using iterative procedures to 

modify the Ji in order to create or to 
enlarge the Basins of attraction near 
stored patterns 21-23 
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