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Abstract. - We study the time evolution of the distance between two configurations submitted
to the same thermal noise for the 8d +J Ising spin glass. We observe three temperature
regimes: a high-temperature regime where the distances vanishes in the long-time limit. An
intermediate-temperature regime where the distance has a nonzero limit independent of the
initial distance. A low-temperature regime where the distance in the long time limit seems to
depend upon the initial distance. For the sake of comparison, we have repeated our simulations
for the ferromagnetic case.

Most of the physical properties of spin glasses which can be observed in the real world are
dynamical effects due to slow relaxation processes (see ref. [1, 2] for a review). After a long
debate about the existence or the nonexistence of a spin glass phase for 3-dimensional spin
glasses, the most extensive numerical simulations [3] which have been done so far indicate
that there is a spin glass phase for temperatures 7'< 7% = 1.2 J for the +J model, but that
slow relaxation effects appear in a large range of temperatures T8 < T < TF =4.5J, where
the data (spin autocorrelation function) can be fitted by stretched exponentials. Theoretical
arguments [4] based on reasons similar to those which lead to Griffiths singularities [5]
predict that below the critical temperature T of the ferromagnet, nonexponential decays
should be observed.

In this letter, we present numerical data on the evolution of the distance (D(t)) between
two configurations which are submitted to the same thermal noise, for the 3d + J Ising spin
glass on a cubic lattice. When measuring (D(t)) after a certain time (generally 500 iteration
steps), we observe 3 regimes:

a high-temperature regime 7>7T, (with T;=4.1J) where, (D(f)) vanishes inde-
pendently of the initial value D(0);

an intermediate regime T, < T < T, (with T, =1.8J) where, (D(t)) is nonzero and does
not depend on the initial value D(0);

a low-temperature regime 7 <7T,, where {(D(f)) depends on D(0).
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The simulations having been made for relatively short times (f<500), small systems
(N =<864), and few samples (M <800), our determination of T; and T, although not very
accurate could be consistent with Ty =TT and T, = T*&.

The distance D(t), in the limit ¢ — c, then appears as a useful order parameter for spin
glasses, since it gives a clear signature of the intermediate phase T, <T < T;.

Methods. — Our numerical simulations are done for a system of L® Ising spins on a cubic

lattice of linear dimension L with periodic boundary conditions. The nearest-neighbour
interactions J;; are randomly chosen

P =35y = D+ 28U+ ). M

The interactions J;; are quenched and symmetric (J;=J).
A spin configuration {S;(t)} evolves according to the following rule: at each time step ¢, all
the local fields k() are computed according to

hi ®= 2 J i Sj ® 2

and the spins are then updated according to

S;(¢t+1)=+1 with probability 1 TACIk Ba)
1+exp [— —,}——]
Sit+1)=~-1 with probability _'"!T(tT , 3b)
1+exp [—}—]

where T is the temperature of the system. The dynamics are parallel dynamics. However, if
we choose the linear size L to be even, the system is decomposed into two independent
sublattices which ignore each other and, therefore, stand as two different samples. One can
easily check that dynamics (3) lead to the right thermal equilibrium for each sublattice in the
long-time limit (i.e. the correlation functions between the spins of each sublattice averaged
over time are the same as if they were computed at thermal equilibrium on the full lattice).

We consider two different initial configurations {S;(0)} and {S;(0)} at time ¢ =0, and we
let them evolve according to exactly the same rules: the J; used to compute the fields A.(¢)
and hi(t) are the same and the random numbers used in (8) to decide whether S; and S; are +
or —1 are the same (in particular if 2,(f) = ki(f), then St + 1) = S;(¢ + 1)). A similar method
was used recently to study the spreading of the damage caused by one spin flip [6]. We then
measure the distance D(t) between the two configurations as the number of spins which are
different (i.e. such that S/{f)= — Si?))

=L S (5.0 - S
D)=z 2 i) = SiO)P. @

The two sublattices are independent since at each time step they just exchange each other
and for each cube of linear dimension L, we consider that we have two samples of size
N = L32 spins.

In order to average D(f) over disorder and thermal fluctuations, we repeat the
simulations and generate M samples by constructing M/2 cubes. If two configurations
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become identical at time ¢, they remain identical at any later time. When we generate M
samples the first quantity we can measure is M,(t), the number of samples such that {Si(?)}
and {S)(t)} are still different at time t: one then defines a survival probability P(¢) by

poy=jm 0. ®)

(For any finite system at finite temperature P(?) goes to 0 as the time goes to infinity.
However, in the simulations described below, there is a large range of time when P(f)
remains almost constant. This behaviour is similar to the behaviour of the magnetization in
finite systems.)

We then measure the average distance (D(t)) over those M,(f) samples which have
survived and, therefore,

3 D, (®)

D(t) =}}_I}1 FWIG)—-, (6)

where D,(t) is the distance measured at time ¢ for the s-th sample.
In order to study how (D(t)) depends upon D(0), three different sets of initial conditions
were used:

A) Configuration {S,(0)} is random and configuration {S;(0)} = {— S0)} for all . D(0)
is then 1.

B) Configurations {S;(0)} and {S}(0)} are random and independent. D(0) is then 1/2.

C) Configuration {Si0)} is random and configuration {S}(0)} is identical to {S;(0)}
except for one spin on each sublattice. D(0) is then /N,

The simulations have been performed for cubes of linear dimension L = 8 (each sublattice
having 256 spins) and L = 12 (each sublattice having 864 spins). The results are averaged
over 800 samples for N =256 and 200 samples for N =864. The numerical effort is thus
roughly the same for the two sizes.

Spin glass results. — Figure 1 shows the survival probability P(¢) as a function of
temperature T for the three sets of initial conditions A), B) and C), after 500 time steps. Two
regimes can be observed. Above T;=4.5J, P(t) is 0, whatever D(0). Below T,, we see in
cases A) and B) a sharp increase of P(f) up to 1. Two different initial configurations never
become identical. Even more surprisingly in case C), we see that two initial configurations
which differ by a single spin have a probability of the order of 60 percent to remain different.
The results do not seem to depend upon the size of the system, at least when we compare
them for the cases L =8 and L = 12. The results (not represented here) after 100 steps are
very similar except for the transition region T =T;. Improving the quality of fig. 1 is not
easy since the error bar decreases like M2, but does not decrease with the system size N.

Distances {D(?)) are plotted in fig. 2. They exhibit three different regimes.

For T>T,, (D(t)) vanishes for all three cases A), B), and C).

In the range T, < T < T'; (with T, =1.8J), (D()) does not depend upon the set of initial
conditions A), B) or C) or upon the system size; by comparing fig. 2a) and b), we see that
(D()) has not evolved between times ¢ =100 and ¢ =500 and, therefore, seems to have
already reached its long-time limit.
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Fig. 1. — 3d £ J spin glass case. Survival probability, P(f), that two initially different configurations
remain different after ¢ times steps (here t = 500), as a function of temperature 7. The smoothness of
the curves gives an idea of error bars which are not figured (0.07 for L =12 and 0.035 for L = 8).
(White signs correspond to cubes of linear size L =8 and black signs to cubes of linear size L = 12.
Triangles are for initially opposed configurations, case A), squares for random configurations, case B),

and diamonds for configurations differing initially by only 1 spin, case C). The triangles are masked by
the squares when they coincide).

Lastly, in the range T<T,, (D(t)) does depend upon D(0). We see, however, that
(D(t)) does not change with the system size L and has very little change with time except in
case C) where the difference between the two configurations takes a longer time to spread
for the largest system L =12,

The existence of large range of temperatures where (D(f)) seems to have reached an
equilibrium value independent of system size and initial conditions is in fact the main result
of this paper. T, clearly depends upon iteration time and system size. One expects T to
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Fig. 2. — Spin glass case. Distance (D(t)) as a function of 7. (The signs on the plots have the same
meaning as in fig. 1.) £ = 100 for ) and 500 for b). In the temperature range between 2J and 4J, the
data for the three sets of initial conditions coincide.
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decrease with time, since when there is an equilibrium value of (D(#)), it takes longer to
reach it at lower temperatures. On the other hand, T’ should increase with L because it is
more difficult to eliminate the defects in larger systems. Further simulations would be
needed in order to study the dependence of T, upon size L and time ¢ in the limit when 'tl.ley
both go to infinity. A precise determination of the upper temperature T; and of the eritical
behaviour of {D()) in its neighbourhood would also be of interest.

Ferromagnet. — In order to compare the above results with a better understood prqblgm,
we have repeated the above tests for the ferromagnetic problem with the same statistics,
the same sizes, the same times and the same initial conditions. Figures 8 and 4 show our
results after 500 time steps.
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Fig. 3. —'Ferromagnetic case. Survival probability, P(?), that initially different configurations remain
different after ¢ iteration steps (here t = 500), as a function of temperature 7. (The signs on the plots
have the same meaning as in fig. 1). .

Fig. 4. — Ferromagnetic case. Distance (D(f)) of initially distant configurations as a function of
temperature T'. time = 500. (The signs on the plots have the same meaning as in fig. 1.)

We see that the survival probability depends now upon temperature for cases A) and B)
and is very small (almost 0) for case C). This is because the initial configuration is random. A
similar calculation with S;(0) =1 for all ©’s, would give P(t) =1 for case A) and P(t) = 0.5 for
case B). Numerical data (not shown in the figures) indicate that P (%) is still evolving at time
t = 500. P(?) vanishes at a temperature T close to the ferromagnetic-transition temperature
T =4.5J[3].

In fig. 4 we see the distance (D(t)) for cases A) and B) only. (The survival probability
being so small for case C), (D(t)) would exhibit huge fluctuations due to the small number of
samples.) The situation with respect to the relations between (D(f)) and D(0) is very similar
to the spin glass case.

For T>T,=TF, (D(t)) vanishes in all cases.
In the range To<T < Ty, (D(t)) has a limit independent of D(0).
For T<T,=3.5J, (D(t)) does depend upon D(0).

For To<T<T,, it is reasonable to say that {D(#)) is the distance between the + and the
— phases and, therefore, that (D(t)) vanishes at T = T, like the magnetization. One should
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notice that the temperature where (D(t)) vanishes agrees very well with the ferromagnetic
transition temperature TF.

For T< T3, (D(t)) depends upon D(0) because the system cannot eliminate the defects
during time t.

The general picture is thus the same for spin glasses and ferromagnets, except for the
survival probability and the shape of (D(f)) near T,. After a long but finite time ¢, both
systems exhibit three different dynamical regimes.

Conclusion. — A transition temperature in the long-time behaviour of {D(t)) has already
been found in random nets of automata [7-10] and in nonsymmetric spin glasses [11]. An
important result of this letter is to give evidence for an analogous transition for the 8d +J
Ising spin glass at 7; (the higher transition temperature).

Further simulations are still needed to analyse the critical behaviour near T and to see
how (D(t)) depends upon time, dimension, magnetic field, the distribution of bonds, the
symmetry of interactions, and the stochastic algorithm used to define the dynamics. It
would also be interesting to establish relations between the dynamics of (D(t)) and that of
physical quantities accessible to experiments.

It would also be interesting to do more simulations, in order to analyse the time and size
dependence of T5. In the ferromagnetic case, we expect T to decrease with time ¢ and to
increase with the system size L. Thus the limit of T, when {— o and L — « should depend on
the way these limits are taken. For finite L and ¢, the picture seems to be that for
T,<T<T,, the system is either in the + or the — phase, whereas for 7'<7T,, the
configurations still have defects. Displaying the configurations would be much useful to
decide what are the defects which exist below T.,.

In the spin glass case, T, depends on time. Our simulation with 500 Monte Carlo steps
gives T, =1.8J which is rather close to the spin glass transition temperature (7°¢ =1.9J)
estimated from short-time Monte Carlo simulations [12]. It would then be very interesting
to analyse the time dependence of Ty, in order to see whether it converges towards the
transition temperature 7'°% in the limit {— o,

% % %
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