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Résumé. — Des calculs de matrice de transfert pour les modeles d’Ising et de Potts & 3 états sur le réseau carré, avec
des interactions aléatoires prenant deux valeurs, donnent des résultats compatibles avec une valeur universelle du
rapport (M“) / (MZ) 2 indépendante de 'amplitude du désordre. Nos résultats suggerent que la valeur de ce rapport
differe de celle du systtme pur pour le modele de Potts a 3 états. Pour le modele d’Ising, nos résultats sont
compatibles avec une valeur universelle unique pour le syst¢me pur et pour le syst¢tme désordonné.

Abstract. — Transfer matrix simulations of the Ising and the 3-state Potts models on the square lattice, with strong
and weak interactions distributed randomly, are compatible with a universal ratio of (M*) / (M 2>2 independent of
the amount of disorder. Our results suggest that this ratio differs from that of the pure system in the 3-state Potts
model, but in the Ising case the data are consistent with the same universal value for both the disordered and the pure

system.

1. Introduction.

Disordered ferromagnets near their Curie points have
been studied for many years [1]. One of the most
interesting questions to ask is whether disorder is able
to change the nature of the phase transition. In the
weak-disorder limit, the Harris criterion [2] gives a
widely accepted answer to this question. According to
Harris, if the specific heat exponent a, of the pure
system is positive, disorder is relevant, that is for any
amount of disorder the critical behaviour should be
changed. On the contrary, if a, is negative, a small
enough amount of disorder should not change the
critical exponents. In all cases (a,>or<0), the
situation of strong disorder [3, 4] is less clear, but one
expects that even if a, < 0, the critical behaviour could
be changed above a certain amount of disorder. In
particular, for strong disorder it has not yet been
established if the critical exponents should change
continuously with the amount of disorder, if they adopt
new universal values corresponding to the existence of
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a random fixed point or if they remain the same as in
the pure case.

Standard Monte Carlo simulations on the disordered
Ising model first failed to see any difference [3] from
the pure exponents ; more recent simulations indicated
a continuous variation of the effective exponents with
disorder, towards the values of the percolation ex-
ponents [4]. Reference [5] gives some numerical tests
of the log log (T — T,) behaviour in the specific heat, as
predicted theoretically [6] in two dimensions, and of
the spontaneous magnetization. For dynamic relax-
ation, a temperature dependent exponent has been
suggested (see Ref. [7] for recent literature).

In the present work, we investigate the case of the
Ising model and of the 3-state Potts model in two
dimensions for different strengths of disorder. Since
disorder is marginally (e, = 0) irrelevant for the Ising
case [6] and is relevant (a,, = 1/3) for the Potts case [8]
one expects that a small amount of disorder should not
change the critical behaviour in the Ising case but
should change it in the Potts case. The quantity that we
measure is related to the ration [9, 10]

R = (M% / (M?)? 1)

of the fourth and second moments of the total magneti-
zation M. This ratio is expected to be universal [9, 10]
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at the critical point and has already been determined
for both the pure Ising [10] and the percolation [11]
model. The number R is universal but depends on the
shape of the system. For example, if one measures R on
rectangles of size N x L, in the limit N » oo and
L - oo, the ratio R depends only on the anisotropy
ratio N/L. In the present work, we consider the strip
geometry [10], i.e. the case N -, L—» o and
N/L - 0. We measure the following quantity :

Ay = lim L(l - <M4>L.N/3 <M2>iN)/N (2)

L

for several different strip widths N and for several
strengths of disorder. Since at the critical point the limit
of Ay as N - oois expected to be universal, the
existence of a random fixed point would mean that the
limit is independent of the strength of disorder. On the
other hand, if the system has continuously varying
exponents, then we would expect that the limit of
Ay varies continuously with the amount of disorder.

2. Method.

We consider here the Ising model and the 3-state Potts
model on the square lattice with nearest neighbour
interaction :

Ising X=-3%/;8S S==x1 (3a)
. POttS J€=—ZJ” 8”:“71' g; =1, 2,3. (3b)
The total magnetization M is defined by :
Ising M=}, (3o)
1
M= 8, 1—% )-
Potts ) ( i3 ) (3d)

The interactions J;; are randomly distributed according
to a probability distribution p which consists of two
delta functions :

p(ij) = (8¢ ij — K))+8(;;—-Ky))/2. (4a)
Here we set the temperature T = 1/ k. For any choice
of K; we take for K, the dual value of K, i.e.
K, and K, satisfy the following relationships :

Ising tanh (K;) = exp(- 2 K;) (4b)
Potts  (exp(K;) — 1)(exp(K;) — 1) =4
(here:q =3). (4¢)

The model then is selfdual and we assume that, as in
the pure case, the selfdual point is the critical point.
Here we set the temperature T = 1/kg. For any choice
at criticality, and by changing K; we vary the amount of
disorder. The limit K; = K, corresponds to the pure
system whereas the limit K; - oo and K, — 0 gives the
percolation limit. For K; = K, one should recover the
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results of reference [10] : Ay — 2.46 in the Ising case as
N > 0.

In the limit K; — oo a little work is needed to relate
our results to those of reference [11]. In this limit, the
strip is composed of clusters ; the sites within each
cluster are connected by bonds of strength K;. In the
Ising case, the magnetization is given by

M=Y e M, (5)

where M, is the number of sites in cluster k and
g, = =+ 1 since the clusters are free to orient themselves.

This gives (M’) =Y M; and (M*) =Y Mj+
k k

6 Y M M. If one calls n, the number of clusters of
k<m

size s per unit length on a strip of given width N and
length L, then one has

(M?) =L Zs:szns

(M*y =3(M**-2LY s*n,.

(62)

(6b)

Therefore the ratio Ay becomes in the percolation limit
K; - o0, from equation (2) :

Ay = (2BN)Y s*n, s2n, 2, @)
zo/ (3

This ratio has been measured (see definitions (4) and
(5) and result (33) of Ref.[11]) at the percolation
threshold Ay - (2/3) x 9.9 =6.6 as N - oo .

For the 3-state Potts model, the ratio (M*) / (MZ)2

has not yet been measured to our knowledge in the
pure case. However in a way similar to the Ising case
one can show that the limit K; — oo .

Ay = (1/2N)Zs4ns/<2s2ns)2. (8)

Let us now describe how we computed Ay for
random strips. The interactions J;; are randomly deter-
mined by Monte Carlo sampling. As is usual with
transfer matrix methods, at each step in the calculation
the system is represented by a vector V of 2V compo-
nents in the Ising case (3" for the 3-state Potts model).
We multiply this vector by the transfer matrix T;, which
is random since it contains the random interactions
Jl]'

Then the free energy f of the system is given by

f=lim L [LTV|/IV] O
Lo

where the product II runs from i =1 to L.

(M?) and (M*) can be obtained by introducing a
magnetic field # and by computing the field derivatives
of fat h=0. To avoid the difficulty of computing
derivatives numerically, we have followed the expan-
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sion described in reference [11]. We represent the
vector V, which depends on h, by 5 vectors W :

V=W awh 4 p2Ww® 4
+hWO L RAW® L OR), (10a)

the transfer matrix 7; by 5 matrices U :

T, = Ui(0)+ hU,-(l)+ K2 Ui(2)+
+ P UP +r*U® + O(K%), (10b)

and we perform the multiplication T; V order by order
in h. In this way we get the four derivatives of f with
respect to h with the same accuracy. Then we get
Ay by the following formula :

Ay=-(13N)x
x d*f (h)/dh*|-of {&f (h)/dR?|, _o}* . (11)

3. Results.

In figure 1 we show the variation of Ay for fixed
N =7 with disorder in the two-dimensional Ising
model. We see that from this type of plot a continuous
variation of Ay with disorder would be concluded.
However, a better analysis based on accurate data
should take into account the systematic N dependence,
and this is what the next figures try to show.

7 N T T
~— Percolation

o
T

Ising

U —
K
05 10 15 20

0

Fig. 1. — Variation of Ay, for fixed N = 7 with 1 /K, i.e. with
the amount of disorder, for the Ising case in (1, 0) direction.
The pure (2.46) and the percolation (6.6) limit are denoted by
arrows. Similar trends of the effective ratio are observed for
the Potts case.

We shall first describe our results for the Ising model.
We have computed Ay with K; =In(1 ++/2)/2 =
0.44 (pure case), K; = 0.8, K; = 1.0 and K, = 1.5 for
strips of widths N up to 10 in the (1, 0) direction, and up
to 6 in the (1, 1) direction. The strip lengths L varied
from 25 000 to 500 000. The pure results are those of
table I in reference [10]. We see in figure 2 that as N
increases, the curves corresponding to the pure case
and the case K; = 0.8 appear roughly parallel. This
would mean that the N — oo limit of Ay for K, =
0.8 is different from the pure case. However, for
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Fig. 2. — Variation of Ay with 1/N for the Ising case. The
encircled symbols correspond to the (1, 1) direction, the
others to the (1, 0) direction.

K; = 1.5 we see a downward slope and a downward
curvature of Ay as a function of 1/N. Therefore the
linear extrapolation of the results for small sizes
(N =2,3,4) would give a limit value much too high.

The question that we now must ask is whether the
results we have for K; = 0.8 will extrapolate, as
figure 2 suggests, to Ay near 2.85, or if the curvature
observed for larger disorder (K; = 1.5) will appear
also in the case K; = 0.8. Looking at figure 2 does not
give a clear answer to this question except that the
results obtained in the (1, 0) and (1, 1) directions for
the same amount of disorder, K; = 0.8, do not seem to
extrapolate linearly to the same value. Therefore at
least one of these two sets of data should exhibit
curvature.

In order to see if our results would be compatible
with a marginaly irrelevant disorder [6] in the Ising
case, we present 1/(Ay(K;) — AR'™) versus log N in
figure 3. Since disorder is marginal here, a logarithmic
approach to the limit N — oois possible [12], i.e.
An(K;) — AR oc 1/log (Const. N) and thus :

1/(Ay(K;) — ARP™®) oc Const. +log N . (12)
We see in figure 3 for K; = 0.8, K; = 1.0 as well as
K; = 1.5 (which is already a rather strong disorder
since K; / K, =30 in this latter case) that our data are

consistent with equation (12) and thus with the idea
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Fig. 3. — Variation of 1/Ay with N (logarithmic scale) for the
Ising case ; Ay = Ay(K;) — AR™. (Tests of Eq. (12).

than Ay(K;) approaches the same limit for all
K;, including the pure case. As the extrapolated curve
for K; = 0.8 in figure 2 shows, one might need extreme-
ly large widths N = 10° to get Ay closer to the pure
value 2.46 than our last (maximum) values near 2.8.
For the 3-state Potts model our data are shown in
figure 4 for K; =1In (1 +v/3)=1.005, K; = 1.5 and
K, =3.0. TableI gives the results for the pure case.
One sees that now the difference in Ay between the
pure case and the case K; = 1.5 increases with increas-
ing N. This is consistent with the relevant disorder in
the 3-state Potts model. The question to be asked is

Table I. — Ratios Ay for the pure 3-state Potts model
Assuming a parabolic variation with 1/N for N > 4
we extrapolate Ay to about 0.83 + 0.03.

N Ay

0.951182630
0.946850397
0.942262384
0.933858915
0.924933240
0.916833401
0.909816194

0O JON LN bh W
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whether the limit value for Ay is the same for different
amounts of disorder, or if it varies continuously with
the strength of disorder. Looking at figure 4 we see that
the small-width data (2=<N =<35) indicate that the
results for different values of K; would extrapolate to
different limits for Ay. This would mean that the
exponents vary with the amount of disorder. However
our data for larger N show a downward trend for
K; = 3, which would mean that the extrapolated values
for K; =1.5 and K; = 3.0 are closer. If we try to
extrapolate them to the same value we would get from
figure 4 :

lim Ay(K;)=1.5+0.3

N -

(13)

for the disordered 3-state Potts model, compared with a
limit below 0.9 in the pure case (Table I).

In figure4 we have plotted our results versus
1/N. We also tried other extrapolations. By plotting
Ay versus N~'5 we found that our two sets of data
could be extrapolated to the same value = 1.4, consis-
tent with equation (13).
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Fig. 4. — Variation of Ay with 1/N for the 3-state Potts
model.

4. Conclusion.

We have seen that for the Ising and 3-state Potts
models, the variation of the ratio Ay with disorder
decreases as N increases. Thus what at first sight seems
to be a continuously varying ratio becomes more
constant if the quality of the data is improved. Our
results are still not sufficient to ensure that the limiting
value of Ay is the same for all amounts of disorder.
However, they are consistent with the following pos-
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sibilities. For the Ising case the limit for Ay is the same
for all amounts of disorder as well as the pure case. For
the 3-state Potts model the limiting value of Ay is about
1.5+ 0.3 for all amounts of disorder, which differs
from < 0.9 for the pure case.

It would, of course, be interesting to improve the
statistics and to go to even larger widths N in order to
confirm the trend we have observed here. We think
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that at least 50 hours of Cray computer time would be
needed in order to improve significantly the results
presented here from 5 hours of Cray. Finally let us just
mention that we tried to use other (continuous) dis-
tributions of bonds, as well as bond dilution (K finite,
K, = 0). We did not find any qualitative change in the
results nor that continuous distributions were giving
faster converging results.

References

[1] STINCHCOMBE, R. B., in Phase Transitions and Criti-
cal Phenomena, vol. 7, edited by C. Domb and
J. L. Lebowitz (Academic Press, London) 1983,
p. 152.

[2] HARRIS, A. B., J. Phys. C 7 (1974) 1671.

[3] LANDAU, D. P., Phys. Rev. B 22 (1980) 2450.

[4] MARRO, J., LAHARTA, A. and TEJADA, J., Phys.
Rev. B 34 (1986) 347.

CHOWDHURY, D. and STAUFFER, D., J. Stat. Phys.

44 (1986) 203.

[5] EsprIN, D., Gross, M., Rakow, P.E.L. and
WHEATER, J.F., Nucl. Phys. B 265 (FS 15)
(1986) 92.

[6] DOTSENKO, V. S. and DOTSENKO, V. S., Adv. Phys.
32 (1983) 129.
[7]1 JAIN, S., J. Phys. A 19 (1986) L-667.
[8] NieNHuUIS, B., J. Phys. A 15 (1982) 199.
[9] BINDER, K., Z. Physik B 43 (1982) 119.
BREzIN, E. and ZINN-JUSTIN, J., Nucl. Phys. B 257
(FS 14) (1985) 867.
[10] BURKHARDT, T. W. and DERRIDA, B., Phys. Rev. B
32 (1985) 7273.
[11] SALEUR, H. and DERRIDA, B., J. Physique 46 (1985)
1043.
[12] CARrDY, J. L., preprint (1986).




