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Search for universality in disordered 2D ferromagnets
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Résumé. - Des calculs de matrice de transfert pour les modèles d’Ising et de Potts à 3 états sur le réseau carré, avec
des interactions aléatoires prenant deux valeurs, donnent des résultats compatibles avec une valeur universelle du
rapport M4&#x3E; / M2&#x3E;2 indépendante de l’amplitude du désordre. Nos résultats suggèrent que la valeur de ce rapport
diffère de celle du système pur pour le modèle de Potts à 3 états. Pour le modèle d’Ising, nos résultats sont
compatibles avec une valeur universelle unique pour le système pur et pour le système désordonné.

Abstract. 2014 Transfer matrix simulations of the Ising and the 3-state Potts models on the square lattice, with strong
and weak interactions distributed randomly, are compatible with a universal ratio of M4&#x3E; / M2&#x3E;2 independent of
the amount of disorder. Our results suggest that this ratio differs from that of the pure system in the 3-state Potts
model, but in the Ising case the data are consistent with the same universal value for both the disordered and the pure
system.
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1. Introduction.

Disordered ferromagnets near their Curie points have
been studied for many years [1]. One of the most
interesting questions to ask is whether disorder is able
to change the nature of the phase transition. In the
weak-disorder limit, the Harris criterion [2] gives a

widely accepted answer to this question. According to
Harris, if the specific heat exponent a p of the pure
system is positive, disorder is relevant, that is for any
amount of disorder the critical behaviour should be

changed. On the contrary, if a p is negative, a small
enough amount of disorder should not change the
critical exponents. In all cases (a p :&#x3E; or : 0), the

situation of strong disorder [3, 4] is less clear, but one
expects that even if a p  0, the critical behaviour could
be changed above a certain amount of disorder. In
particular, for strong disorder it has not yet been
established if the critical exponents should change
continuously with the amount of disorder, if they adopt
new universal values corresponding to the existence of
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a random fixed point or if they remain the same as in
the pure case.

Standard Monte Carlo simulations on the disordered

Ising model first failed to see any difference [3] from
the pure exponents ; more recent simulations indicated
a continuous variation of the effective exponents with
disorder, towards the values of the percolation ex-
ponents [4]. Reference [5] gives some numerical tests
of the log log (T - Tc) behaviour in the specific heat, as
predicted theoretically [6] in two dimensions, and of
the spontaneous magnetization. For dynamic relax-

ation, a temperature dependent exponent has been
suggested (see Ref. [7] for recent literature).
In the present work, we investigate the case of the

Ising model and of the 3-state Potts model in two
dimensions for different strengths of disorder. Since
disorder is marginally ( a p = 0 ) irrelevant for the Ising
case [6] and is relevant ( a p = 1/3) for the Potts case [8]
one expects that a small amount of disorder should not
change the critical behaviour in the Ising case but
should change it in the Potts case. The quantity that we
measure is related to the ration [9, 10]

of the fourth and second moments of the total magneti-
zation M. This ratio is expected to be universal [9, 10]
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at the critical point and has already been determined
for both the pure Ising [10] and the percolation [11]
model. The number R is universal but depends on the
shape of the system. For example, if one measures R on
rectangles of size N x L, in the limit N --+ oo and

L - oo , the ratio R depends only on the anisotropy
ratio N/L. In the present work, we consider the strip
geometry [10], i.e. the case N -o, oo , L - oo and

NIL -+ 0. We measure the following quantity :

for several different strip widths N and for several
strengths of disorder. Since at the critical point the limit
of AN as N --+ oo is expected to be universal, the

existence of a random fixed point would mean that the
limit is independent of the strength of disorder. On the
other hand, if the system has continuously varying
exponents, then we would expect that the limit of

AN varies continuously with the amount of disorder.

2. Method.

We consider here the Ising model and the 3-state Potts
model on the square lattice with nearest neighbour
interaction :

Ising

Potts

The total magnetization M is defined by :

Ising

Potts

The interactions Jij are randomly distributed according
to a probability distribution p which consists of two
delta functions :

Here we set the temperature T =1/ kB. For any choice
of K1 we take for K2 the dual value of Kl, i.e.

Kl and K2 satisfy the following relationships :

Ising
Potts

The model then is selfdual and we assume that, as in
the pure case, the selfdual point is the critical point.
Here we set the temperature T = llkb. For any choice
at criticality, and by changing K1 we vary the amount of
disorder. The limit K1 = K2 corresponds to the pure
system whereas the limit Ki - oo and K2 -+ 0 gives the
percolation limit. For K1 = K2 one should recover the

results of reference [10] : Any 2.46 in the Ising case as
N -+ oo .

In the limit K1 --+ oo a little work is needed to relate
our results to those of reference [11]. In this limit, the
strip is composed of clusters ; the sites within each
cluster are connected by bonds of strength Kl. In the
Ising case, the magnetization is given by

where Mk is the number of sites in cluster k and

Ek = ± 1 since the clusters are free to orient themselves.
- - JI .

If one calls ns the number of clusters of

size s per unit length on a strip of given width N and
length L, then one has

Therefore the ratio AN becomes in the percolation limit
Ki - oo , from equation (2) :

This ratio has been measured (see definitions (4) and
(5) and result (33) of Ref. [11]) at the percolation
threshold Any (2/3) x 9.9 = 6.6 as N -+ oo .
For the 3-state Potts model, the ratio (M4) / (M2) 2

has not yet been measured to our knowledge in the
pure case. However in a way similar to the Ising case
one can show that the limit K1 -+ oo .

Let us now describe how we computed AN for
random strips. The interactions Jij are randomly deter-
mined by Monte Carlo sampling..As is usual with

transfer matrix methods, at each step in the calculation
the system is represented by a vector V of 2N compo-
nents in the Ising case (3N for the 3-state Potts model).
We multiply this vector by the transfer matrix Ti, which
is random since it contains the random interactions

jij.
Then the free energy f of the system is given by

where the product H runs from i =1 to L.

 M2) and  M4) can be obtained by introducing a
magnetic field h and by computing the field derivatives
of f at h = 0. To avoid the difficulty of computing
derivatives numerically, we have followed the expan-
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sion described in reference [11]. We represent the
vector V, which depends on h, by 5 vectors W :

the transfer matrix Ti by 5 matrices U :

and we perform the multiplication Ti V order by order
in h. In this way we get the four derivatives of f with
respect to h with the same accuracy. Then we get
AN by the following formula :

3. Results.

In figure 1 we show the variation of AN for fixed
N = 7 with disorder in the two-dimensional Ising
model. We see that from this type of plot a continuous
variation of AN with disorder would be concluded.
However, a better analysis based on accurate data
should take into account the systematic N dependence,
and this is what the next figures try to show.

Fig. 1. - Variation of AN for fixed N = 7 with 1/ K¡, i.e. with
the amount of disorder, for the Ising case in (1, 0) direction.
The pure (2.46) and the percolation (6.6) limit are denoted by
arrows. Similar trends of the effective ratio are observed for
the Potts case.

We shall first describe our results for the Isingmodel.
We have computed AN with K1 = ln ( 1 + 2 )/2 =
0.44 (pure case), K1 = 0.8, K1 = 1.0 and K1 = 1.5 for
strips of widths N up to 10 in the (1, 0) direction, and up
to 6 in the (1, 1) direction. The strip lengths L varied
from 25 000 to 500 000. The pure results are those of
table I in reference [10]. We see in figure 2 that as N
increases, the curves corresponding to the pure case
and the case K1 = 0.8 appear roughly parallel. This
would mean that the N - oo limit of AN for K1 =
0.8 is different from the pure case. However, for

Fig. 2. - Variation of AN with 1/N for the Ising case. The
encircled symbols correspond to the (1, 1) direction, the
others to the (1, 0) direction.

K1 =1.5 we see a downward slope and a downward
curvature of AN as a function of 1/N. Therefore the
linear extrapolation of the results for small sizes

(N = 2, 3, 4) would give a limit value much too high.
The question that we now must ask is whether the

results we have for K1 = 0.8 will extrapolate, as

figure 2 suggests, to AN near 2.85, or if the curvature
observed for larger disorder (Kl = 1.5) will appear
also in the case K1 = 0.8. Looking at figure 2 does not
give a clear answer to this question except that the
results obtained in the (1, 0) and (1, 1) directions for
the same amount of disorder, K1 = 0.8, do not seem to
extrapolate linearly to the same value. Therefore at
least one of these two sets of data should exhibit
curvature.

In order to see if our results would be compatible
with a marginaly irrelevant disorder [6] in the Ising
case, we present 1 /(AN (Kl) - Ar’) versus log N in
figure 3. Since disorder is marginal here, a logarithmic
approach to the limit N --+ oo is possible [12], i.e.

AN(K1) - A W’c oc I/log (Const. N ) and thus :

We see in figure 3 for Kl = 0.8, K1 = 1.0 as well as
Kl = 1.5 (which is already a rather strong disorder
since K1/ K2 = 30 in this latter case) that our data are
consistent with equation (12) and thus with the idea
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Fig. 3. - Variation of 1 IAN with N (logarithmic scale) for the
Ising case ; AN = AN(K1) - Awre. (Tests of Eq. (12).

than AN (Kl ) approaches the same limit for all

Kl, including the pure case. As the extrapolated curve
for K1 = 0.8 in figure 2 shows, one might need extreme-
ly large widths N ± 105 to get AN closer to the pure
value 2.46 than our last (maximum) values near 2.8.
For the 3-state Potts model our data are shown in

figure 4 for K1 = In (1 + 3) == 1.005, K1 = 1.5 and
K1 = 3.0. Table I gives the results for the pure case.
One sees that now the difference in AN between the
pure case and the case K1 = 1.5 increases with increas-
ing N. This is consistent with the relevant disorder in
the 3-state Potts model. The question to be asked is

Table I. - Ratios AN for the pure 3-state Potts model
Assuming a parabolic variation with IIN for N &#x3E; 4

we extrapolate AN to about 0.83 + 0.03.

whether the limit value for AN is the same for different
amounts of disorder, or if it varies continuously with
the strength of disorder. Looking at figure 4 we see that
the small-width data (2 -- N -- 5) indicate that the
results for different values of K1 would extrapolate to
different limits for AN. This would mean that the

exponents vary with the amount of disorder. However
our data for larger N show a downward trend for

K, = 3, which would mean that the extrapolated values
for K1 =1.5 and K1 = 3.0 are closer. If we try to
extrapolate them to the same value we would get from
figure 4 :

for the disordered 3-state Potts model, compared with a
limit below 0.9 in the pure case (Table I).

In figure 4 we have plotted our results versus

11N. We also tried other extrapolations. By plotting
AN versus N - 1/5 we found that our two sets of data
could be extrapolated to the same value =1.4, consis-
tent with equation (13).

Fig. 4. - Variation of AN with 1 /N for the 3-state Potts
model.

4. Conclusion.

We have seen that for the Ising and 3-state Potts

models, the variation of the ratio AN with disorder
decreases as N increases. Thus what at first sight seems
to be a continuously varying ratio becomes more
constant if the quality of the data is improved. Our
results are still not sufficient to ensure that the limiting
value of AN is the same for all amounts of disorder.
However,. -they are consistent with the following pos-
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sibilities. For the Ising case the limit for AN is the same
for all amounts of disorder as well as the pure case. For
the 3-state Potts model the limiting value of AN is about
1.5 ± 0.3 for all amounts of disorder, which differs
from  0.9 for the pure case.

It would, of course, be interesting to improve the
statistics and to go to even larger widths N in order to
confirm the trend we have observed here. We think

that at least 50 hours of Cray computer time would be
needed in order to improve significantly the results

presented here from 5 hours of Cray. Finally let us just
mention that we tried to use other (continuous) dis-
tributions of bonds, as well as bond dilution (Kl finite,
K2 = 0). We did not find any qualitative change in the
results nor that continuous distributions were giving
faster converging results.
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