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Résumé. — Nous présentons les résultats de calculs analytiques et numériques pour une dynamique parall¢le a
température nulle de modeles de verres de spin et de réseaux de neurones. Nous utilisons une approche
analytique pour calculer ’aimantation et les recouvrements aprés quelques pas de temps. Dans la limite des
temps longs, cette approche analytique devient trop compliquée et nous utilisons des méthodes numériques.
Pour le modéle de Sherrington-Kirkpatrick, nous mesurons ’aimantation rémanente et les recouvrements a
des temps différents et nous observons des décroissances en loi de puissance. Quand on itére deux
configurations différentes, leur distance d(oo0) au bout d’un temps imfini dépend de leur distance initiale
d(0). Nos résultats numériques suggérent que d(co) a une limite finie quand d(0) — 0. Ce résultat signifie qu’il
y a un effet collectif entre un nombre infini de spins. Pour le modéle de Little-Hopfield, nous calculons
I’évolution temporelle du recouvrement avec une pattern mémorisée. Nous observons un régime pour lequel le
systéme retient mieux apreés quelques pas de temps que dans la limite des temps longs.

Abstract. — We present the results of analytical and numerical calculations for the zero temperature parallel
dynamics of spin glass and neural network models. We use an analytical approach to calculate the
magnetization and the overlaps after a few time steps. For the long time behaviour, the analytical approach
becomes too complicated and we use numerical simulations. For the Sherrington-Kirkpatrick model, we
measure the remanent magnetization and the overlaps at different times and we observe power law decays
towards the infinite time limit. When one iterates two configurations in parallel, their distance d(o0) in the
limit of infinite time depends on their initial distance d(0). Our numerical results suggest that d(co) has a finite
limit when d(0) — 0. This result can be regarded as a collective effect between an infinite number of spins. For
the Little-Hopfield model, we compute the time evolution of the overlap with a stored pattern. We find
regimes for which the system learns better after a few time steps than in the infinite time limit.

They are also at the origin of all optimization
problems [8]. At the moment one knows, at least in
infinite ranged models, how to compute the number
of metastable states [6, 11]. However much less is
known about the sizes and the shapes of their basins
of attraction which play a crucial role in zero
temperature dynamics [3, 11, 12]. Even the charac-
terization of these sizes and shapes is not easy.

1. Introduction.

Zero temperature dynamics have become of more
and more interest in the study of spin glasses and of
neural networks [1-5, 9, 10, 19]. They exhibit
qualitatively the same features (many metastable
states, remanence effects) as spin glasses at low
temperature. However they are much simpler to
study from a theoretical point of view because the
effect of thermal noise is eliminated. They may also
have practical advantages if one wants to build
pattern recognition devices.

The reason that zero temperature dynamics are

In the present work, we will develop an approach
to zero temperature dynamics. This paper will treat
only parallel dynamics because it simplifies our
calculations but we think that some of our results

non-trivial and interesting is the existence of many
metastable states [6]. These metastable states are
responsible for remanence effects [7], very slow
relaxations and sensitivity to initial conditions.

could be generalized to serial dynamics. We will
mainly consider a system of N Ising spins.
(o; = £ 1) with interactions, J;;, between all pairs of
distinct spins. The interactions are defined such that
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Jij =Jji, and J;; = 0, but more general cases can be
dealt with using the same analytic approach.

Parallel dynamics means that the configurations at
time step ¢ is given by the rule

N
t 3 t—
o} = sign [Z Jijo
i=1

where all the spins are updated at the same time. We
consider, the J;; are random variables which remain
fixed in time. Therefore for a given sample, and a
given initial configuration {o}} at time ¢ =0, the
configuration at any later time ¢ is uniquely deter-
mined by iterating equation (1.1).

We will consider three models. Firstly, the Sher-
rington-Kirkpatrick [13] spin glass model for which
the J;; are independent random variables with a

distribution
N NJ;
pUi) = \/ 2l P ( 22 )

Secondly, the Little-Hopfield model [14, 15] which is
a pattern recognition model. The J;; are given in this
model by

IJ 1.1)

1.2)

1 Na
Jij= ¥ Z gi(u)gi(#), (1.3)
p=1

where Na is the number of patterns which are
stored and £{#) = + 1 is the value of spin o; in the
pattern pu.

The third model we consider is a generalization of
the Little-Hopfield model to the case of p-spin
interactions [16]. The updating rule, equation (1.1),
is generalized to

of = sign [ Y Jinh. "1...0']’-p‘1] 1.4)

j2p

where
2NP- 1o /pt

y £

p=1

p!
NP1

£W(15)

Jivin nrip =

and the number of patterns is 2 N” ~' a /p! .

In section 2 we present an analytic approach which
allows one to compute the time evolution of mag-
netization, overlaps, local fields, etc. averaged over
disorder, after an arbitrary number of time steps.
For the SK model we compute certain quantities
exactly up to the Sth time step. Although the method
can in principle be used to compute all properties
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m(T)=—< a,.T> | T
N xZ {Jij} o

t=1,2,...,T
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after an arbitrary number of time steps, in practice
the number of order parameters increases very
quickly with time and makes each time step more
difficult.

In section 3, we apply the same method to the two
neural network models. We give the analytic ex-
pression of the overlap with a stored pattern after
one and two time steps.

In section 4 we present various numerical calcula-
tions for the SK and the Little-Hopfield models with
parallel zero temperature dynamics.

For the SK model at short times the numerical
results agree with the results obtained by the analytic
method of section 2. At longer times, these results
indicate a power law decrease of magnetization and
of the overlap between successive times. The study

rof the overlap between two configurations show that

the basins of attraction of the different valleys have a
high degree of interpenetration.

For the Little-Hopfield model, we obtain the
projection on a stored pattern after one, two and an
infinite number of times steps as a function of the
projection at time ¢ = 0. Again the results at short
times agree with the results of section 3 whereas the
results at long time show a clear change between the
good recall and the bad recall phases.

2. The SK model.

The map, equatlon (1.1), is deterministic, so that
given an initial spin configuration {a 0)} at t =0,
the spin configuration, { o; } at any later time, ¢, is
uniquely determined. Consider

nT({O'?} , {a'iT} ) =

where

if x=0

1
0(x) = {0 if x<0°

This quantity is unity if {o-T} is the descendent of
{o}} after T iterations of the map and zero other-
wise. The disorder average of nT({a {a-,’}) is
the probability that for a randomly chosen sample,
{o]} is the descendent of {o}} after T time steps.
This allows, for example, the average magnetization
after T time steps from an initial configuration
{o?} to be written

Mz

=1i=1 j=1

(#i)

Jijoj~ 1) , 2.1)
{Jij}

where ( ) ) denotes an average over the random couplings.
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As we will show in this section the natural H = Z"ii o l‘ -1 2.2)

parameters of the problem are related to the disorder i

averaged correlation functions between the spins,

o!, and the local fields H' given by at different times. These can be computed from the

following generating functional,

Yot ), 0 ) = | Tr (T[T (ot S0 oi) %

g =1i=1 j

1=1,2,..,T
x exp (z [h(tl, L)Y olol+g(t, )Y o) H?] ) ] > (2.3)
iy i i {ij}
so that This is given by
dy < f ’2> 1 1 9
C A = o;'o; (2.4a) _ (L ! _1 y
ZIon) Rt R n0={35) ,, “vaon C9
and m(t), given by (2.5) is the magnetization after ¢ time
oy = <Z a:‘ Hi’2> . (2.4b) steps if one starts with m(0) = 1. For any other
ag(t1,13) lng=o0 ; {0} starting configuration m(¢) is the projection of the

configuration at time ¢ on the configuration at time

Note that y(0,0) =1, since for a given initial (. If one starts at ¢ = 0 with a configuration with
configuration, the configuration at each later time iS  magnetization u, then at time ¢, the magnetization
uniquely determined. From equation (2.3), y(g, k)  will be pum(r).
is invariant under the gauge transformation In order to perform the averages over the random
Jij = Jij & €, 0] —> ¢; o] (and therefore H; — &; H}) couplings J;;, we will use the following integral
for all time ¢ > 0. This transformation changes the representation of the 0 functions, in equation (2.3),
initial configuration from o) to ¢ o, so that ,
y(h, g) is independent of the initial configuration. 6 (R!) = J’oo i_x’_ J~oo dA ! e i~ RD) (2.6)
For convenience we shall take a normalized trace ! w27 )y )
(Tr 1 = 1) over the initial configuration. Of particu-
lar interest is the average magnetization after ¢t time where R} = o Z Jijoi~ !, Thus
steps, from an initial configuration with all spins up. i

© dx! ©
v =Te | T [ 5= | [T a1 e[ Sals+ S he 0 St o] Yiohate) @)
H 0 i it

og; V=0 it iy i

where

Y(o!,x{,9)= <exp[—i y <xi’1 ol +i Y g9(t, tl)gi‘2) Y Jij 0;1—1}> . - (2.8)
L) i {ij}

in

Performing the disorder average, over the distribution p (J;;) equation (1.2) gives
Y(o!,x{,g) =ex s ; x'o +i (ty, ) o) o™}
irXi»g) = P—z—ﬁig 'Z i T ,zz:g 2»11)0; it
t t t -1 2
+ (JCJ'1 oj'+i Yy g(n, 1) "jz) o' ] - 29
7}
Retaining terms of leading order in N, in the exponent, this can be written

2 T T
Y(a:,x:,g)=eXp{—2’—N D) |<z (x,-"a:'+izg(t3, zl)a.-") (x!20;2+izg(t4, r2>o,-“)) x
n=1gn=1 i ty

3

X (Z U;‘_la;2_1> + (Z (x,-"ff.-"+i Y g(t3, tl)a,-'3) o,—'z_l) (z <x;20';2+i Y gt 1y) a;“) 0';"1>”.
J i 3 ty

i

=1

(2.10)
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The first term in the exponent can be reduced to a single sum over sites by introducing the delta function
constraint

l_[ [Nd tltzdp exp{ (thltz hiy t,tzz f -1 12-1>}] _
2

—®© <1y i

=J 11 [qu’l’Za(Nq’l‘z_Za{l“o?‘l)] =1. (2.11)

n<ty i

[e]

Similarly the second term in the exponent of equation (2.10) can be decoupled using Gaussian integral
identities. The result is

Y (o}, x{,g) = Const. J I1 dqtl‘de'I’ZJ I ds'? %

<ty n+#n

xJ'l_[dr‘exp[ [ z qflfz hty 212 Z ’1’2 ‘2‘1 Z(rt)z]]
t <ty t

n#*n

N
it t -1 . -1
XHCX [—l Z plz h- ; Z s1'2( .O_i‘z +’Zg(t3rt1)‘7itsa'itz )
i=1 ty

1<ty n#o

t t . t t t . t,
Z q" (xil‘fil'ﬂ Y 91, 1) "i3) (xi20i2+l Y 9t 1) Ui‘)
t3 A

'1*'2

2 2
*%z (x;lo'i‘l"'i Y g, tl)o'itz) +i122rt1(xi'l ool i Zg(tz, 1) o 0"1_1)} (2.12)
15} t

n

where the Const. depends only on N and J and plays no role in the following because we use a saddle point
calculation.
i

Thus y(h,g), equation (2.7), can be written as an integral over the variables p'1 '2, q'?
t 11 L,

r, ; which can be computed by steepest descents in the limit N — oo.
y(h, g) = Const. n [dg"2dp" ") T] [ds‘l‘Z]n [dr'] exp NF(¢"'% p"'% 5" v, g, )  (2.13a)
— 00 <ty Hn#
where
F(q,p,s,r,g,h) =i ¥ p"7g" "~ — ¥ s"2s20_ z (") +In §(g,p,s,7, g, k) (2.13b)
n<ty 2J n#t t
and

2 2
{2- 5 (x“ e +i Y gltn ) 0‘2)
1

f

Te | aar [ & N
y = A — j A=
Y(q,P,S,’,g,h) TJ; J\_wzﬂexp +l;x

2 B
_JE ) qt1t2<xt10h+i Zg(ts,tl)"tg) (xtz"tz"'i Zg(t4, 1) 0'4>
1 A

1n#t
. t t t t -1 . t t tt ty—1 -1
+1122r1<x‘o-‘o-1 +ng(t2,t1)o-2(r1 ) iyp 1217 g2

i 7] <ty

—i ¥ 5" ’2<x" 10 10 Y g(ts, 1y) 0'30‘2‘1) + Y h(ty, 1) " a'z} (2.13¢)

t# t3 it
In all the sums the upper limit is 7 and the lower ip""?=1J? (x"x? 0" a-t2>~
limit is 1. The saddle point equations are for oty gt ty toty (2.14a)
g(thtj):O and h(ti7tj)=0 s =J <x oo >7

t_ iyt ot -1
nt, H-1 _t,-1 r=i(x'c'o >i
q'%= (o o >7
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where the expectation value () is with respect to the generalized trace defined in equation (2.13c),

with h(t;,t,) =0 and g(¢;,t,) = 0, i.e. with

y(q,p,s,p,r,0,0) =Tr deh' MOix:exp +1i Zx’/\’—"—ZZxZ—J—Z Y q"*x" a1 a"
LN S REN S EER L] o o _w2'ﬂ' - 2t1 t 2

. t, ot t t
+1122r‘x‘cr'a‘
n

<ty

A useful check on the saddle point equations, is that
in zero field the exponent in (2.13a) should vanish as
y(0,0) =1 from equation (2.3).

A direct evaluation of these expectation values in
zero field (h = y = 0), (see Appendix 1 for details)
show that a number of order parameters vanish :

p'?=0 forallz,,t,
r'=0 forallt (2.15)
sS1P=0 ifty,>1.

The physical meaning of the order parameters can
be obtained by taking derivatives of equation (2.13a)
with respect to h(t;, t,) and g(t;, t;) and comparing
with equations (2.4). The derivative with respect to
h gives

it 1 -1 -1
=(=VYo;' o (2.16)
1 <N zew e > U

where ¢ is evaluated in zero field. Thus ¢"” is
equal to the overlap between configurations at time
t; —1 and ¢, — 1. If one makes the global change
{%i;} = {-Jij}, the dynamics (1.1) of the spins
implies that o/ > — o/ for odd ¢ and o/ — o] for
even t. Therefore since the distribution of J;; is
symmetric, one has
q"?=0 for |t —t,| odd (2.17)

This is certainly true for all times ¢; and ¢, with
|t; — t;| odd, but we did not find how to derive it
easily from the saddle point equations.

Taking the derivative of equation (2.14b) with
respect to g, gives

1 -1 tz>
< N2 U

i

T T
it tyt 1t Ity it
:s21+ Z s23q13+ z q23s13 (2.18)
=1
(#11,12)

t3=1
(#11,12)

where t, < t; and equations (2.15) have been used.
Due to the symmetric distribution of the J;;’s, the left
hand side of equation (2.17) vanishes when |¢, — 1, |
is even, so that

s =0 forall |t1”— t,| even. (2.19)

_1—-1' Z pt'tz(r atz—l_i Z s

n#ty

H-1

iz M g 0'2‘1} . (2.14b)

f#t

We will now consider the time evolution of the
average magnetization starting from an initial con-
figuration with magnetization 1. Setting ¢; =1 in
equation (2.16) gives for the average magnetization
after ¢ time steps

m(t) =q

If one wants to know the properties of the system at
time ¢, it is clear that one does not need to know
what happens at later times ¢’ > ¢. Therefore the
order parameters defined at a particular pair of time
steps can depend only on parameters defined at
previous time steps. Thus at short times the proper-
ties of the model are determined by a few order
parameters. At successive time steps the number of
order parameters increases rapidly (approximately
as the square of the time).

The equations obtained from the saddle point for
the remanent magnetization after two times steps
are

1,t+1

(2.20)

2142
2 \/3 o 6P/2
aw

m(2) = q13 =2erf (s2’)

1 jx dy e V2,

V2o

The equations for the order parameters and magneti-
zation upto T = 4 are given in appendix 2.

Using equations (2.21), (2.16), (2.18) and the
results of appendix 2 we obtain for the first few
order parameters,

(H?» = (H?0% =0.748
(H*o? =1.141
(H*o'y =1.039
(H? 0% =1.197

(H* = (H*0% =0.681
(H o'y =1.012

m(2) =q"=0.575
q% =0.760

q% =0.835
m(4) = g = 0.468

(2.21)
where

erf (x)=

(2.22)
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since m (¢ ) vanishes for odd values of ¢ the magnetiza-
tion oscillates between zero and a finite value which
decreases with time. Clearly its value at successive
time steps provides one way of approximating the
final remanent magnetization.

Numerical results to be described in section 4
show that the final value is 0.23 +0.02 so the
approximate value m(4) = 0.468 is still rather far
from the correct one.

3. Neural network models.

In this section we show how the properties of the
Little model, equation (1.3), and its p-spin
generalization, equations (1.4), (1.5) can be obtained
analytically. The method is similar to that used for
the SK model in section 2.

In the Little-Hopfield model N« patterns are
chosen at random, thus the overlap between two
patterns is typically of order N2, In the N — o
limit this overlap is zero and the patterns are

M e

i=1t=1

Y(ht, tz) = (Tr’

a? o}
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N
(0’: Z J,] 0';_1) exp(
j=1

N° 5

orthogonal. We consider spin configurations which
have a finite overlap with one of the patterns, and a
microscopic overlap (of order N~'2) with the re-
maining patterns. The overlap between a given
pattern {£{*'} and the spin configuration {o]} at
time ¢ is defined by

¢ 1

my

N

i=1

(3.1)

The time evolution of m,, depends strongly on the
choice of the initial spin configuration at ¢ = (0. Here
we shall choose the initial spin configuration to have
a finite overlap with the u =1 pattern, and a
microscopic overlap with the remaining patterns.
We assume that this property holds for the sub-
sequent spin configuration in time. This assumption
is shown to be self consistent, at least for short times.

A generating functional for the average spin-spin
correlation function can be defined in the same way
as for the SK model :

Hon
Z htltz Z g; o; )

1ty i

} (3.2)
{¢}

where ~ indicates an average over all the Na patterns. The trace, Tr’' over the initial spin
{g,} g p 1%

configuration is restricted to

1
or= ‘fig.l

0
i

l1=<i=Ng

) 3.3
Ng<isN ( )

so that it has overlap 2 g — 1 with the u = 1 pattern. Introducing the integral representation, equation (2.6),

for the #-functions, y becomes

[

it

y(hy, ) = <Tr Trexp(Zh, ,220 o; )

o; 1ty i

-2

(3.4
xexp{:Ax——Zxaf, (25, ,'1)+laxa cr“l”>
i
In order to perform the average over the patterns we use the identity
® o d":t‘l . 1 1 1 ¢ 1
=11 J N dm}~ J' — . ©XP (an:[ my~t—in, 'Y of” giﬂ) , (3.5)
t - 0 — 00 i=1
so that y becomes,
© dnt~-17 NI imt © o [ dx! ] iXAN
h _ Ndm!-1_* pot ' T da! —° b
= o 7B e e [ [ 245
t-1 t-1 t—1 g1 t t g1
xexp(taZxaa +Zh,],220' o} —th, Za §—th Zx,.a,.g,.)
iy i
X Y(xi; ai) m#, np, )) 5'1 (3.6)
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where

Y(x/, o}, m}, s My ) 2 1) = EXP [ Y Y In (cos [Z (nt-l t—1+m:‘—1xita_it):|)]- (3.7)

w=2 i

Using the assumption that the spin configuration has a finite overlap only with pattern 1, only the first
term in the expansion of Incos [ ] contributes to leading order in N. Thus Y (x{, o/, n},, n},) becomes

-1 t,-1 n-1 _t,-1
(zm ) (zoiol) +

p>1 i

Y(xi, o/, m, n)—exp' ;Z[

ity

+2(Z n;f_l "_l) (Zx oo} ) (Z m‘—lm:f'l) (folx,fza;’afz)]}. (3.8)
p>1 p>1 i
The sums on sites and sums on patterns can be decoupled by using the identities

tl<t2

n>1

1= ” Na dktltzdstltzex iaNk" 25" _ Nis"" mt iyl
=11 © 27 P B Z s ’

et LY~ p>1

1= n J Na dltlzdzp exp(laNl 12 ity Nlpltz Z m::_lmif—l)}.

tys<ty n>1

The final form for y(h, , ) is then

o o]
_ _ tt tt tty + t NF(my,ny, ..., hy )
y(h,l,z)ocf dm{=ldn{-1dr"2dg" 2 dk" 2 ds" 2 a1 2 dp" e T nTV T R (3.92)
-0
where
. It It . t.
F(m{,n{,...,h):za Z r12q12+l Zkhz tllz Z ltltz tltz
1<ty t 1 h=<t
. - t 1t tt g It Lt 1t
+iyn” 'm{='+ aInW(g""% s""% p""?) + gIn Z, (nf, m{, r"% k"7, 1172 B2
t
nd It tt t Lt
+(1-g)InZ_(nl,m{,r' % k" %1"% h"?) (3.9b)
and

o T t-1
W(q‘l IZ’ Stl ‘2, p‘l t2) - l—[ [N dmt_ld;

— 00 ¢t=1

]exp {iN Zn“lm"l-—%z (n' =12 -
t t

'l t1-1 t,-1 . tt t1—-1 -1 . Lt -1 ty—1
—iN Y ¢'n" n?T —iNYsUm' n? —iN Y pUim'T m? } (3.9¢)
<ty i =<t
and
o T o) T t
S ot ot Nty gty ot gt 1 dx
Z,(n,mi, r' k1 Lk 2)=E Tr l"[[d)x'] I1 7 | X
71 0 (=1 - =1 ™
t=0,1,..,T
i t It -1 l— t -
xexpl Zx)\+la2xa'a' '+ Y r oo a ¥ M2 oh 2 a Yk x" o o?7!
t=1 iy <ty ity

T
__Zl'ltz “x2gh Z 'Fio th_lx (r'}. (3.9d)

it t=1
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The integral in equation (3.9a) can now be computed
in the limit N — oo by steepest descents. The saddle

point equations are

hi

ig'? = g(crtl_1 '2—1)2 +
<ty +
+(1-g) (e ey,
is'? = g(xtla't‘a'tz_1>z+ +
+ (@1 -—g)(x"o-"(r'rl>z_
ipt1t2t=t g(xt‘xtzat‘crtz)2+ +
1<1#2

+ (1 _ g)<x'1x’za_‘1 0_‘2>Z

+ (1 _g) <(xt)2>z
- (1 - g)o’0’y,

iplt=g <(xt)2>z
mi=g(c’c"),

n _g<0_0 t+1 t+l>~
—(1—g)<0’0xt+10't+1>2_ (310)

where the expectation value ( ), is with respect
to the weight in equation (3.9d), and

1t -1 t,-1
rlZ — N<nl n2 >w
<ty

PLE N( | :2_1>W

jh N( -1 m?" 1>w,

ns<t

(3.11)

where the expectation value { ), is with respect to
the weight in-equation (3.9c).

The parameters in equation (3.10) are related to
correlation functions involving local fields and spins
in similar way to the SK parameters in section 2. All
the correlation functions are of course always real
but due to our definition of the order parameters in
the present section some order parameters are
imaginary. Using a similar argument to that of
appendix 1 we find that certain order parameters are
Zero :

s"7=0 for =t
10 forall t,1, (3.12)
=0 forall .

The non-zero parameters have the following physical
interpretation ; g™ is the overlap between spin
configuration at time ¢, — 1 and #, — 1 ; s ?is related
to the overlap of local fields and spins (cf. Eq. (2.18))
and mj is the overlap between pattern 1 and the spin
configuration at time ¢.

The parameters in equation (3.11) are related to
the average of the products of the overlaps between
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the spin configurations and the patterns with
© > 1. Using the results, equation (3.12), and an
argument similar to that given in appendix 1, we find

r'"2-0 forall

K" =0 for

f b2 (3.13)

t1<t2.

We have computed the parameters for the first
two time step (T = 2). Note that the initial overlap
is m)=2¢g—1, as it must from the constraint
equation (3.3). The non-zero order parameters after
one time step are

kll =i
M=1 (3.14)

mi=zet (T1).

The new non-zero order parameters after two time
steps are

iq'? = m{ m|

R \/__2_ e mY/2 e
T

IZ=1+ (s®P +2iq"s"

2= _jq s

k2 =i

m! + aik?
+ (1 —m)erf ( ! . (3.15

The qualitative behaviour of the overlap m! with a
stored pattern after one time step (Eq. (3.14)) is
different depending on whether «, is greater than or
less than ay = 2/7 =~ 0.64 ; for a greater than this
value m{ is always less than m{ whereas for
a < a, there is a fixed point of equation (2.14) at
m = my(a); m decreases if m > my(a) and in-
creases if m < my(a ). The transition at « is second
order since my(a)—-0 as a — ay.  Similarly,
equation (3.15) implies that m? increases after the
second time step if its starting value m) is suff1c1ently
small and if a < 0.67.

Physically, this means that the system goes towards
a learned pattern after one (two) time steps provided
a < 0.64 (0.67). These values of a are much larger
than the value suggested by thermodynamic calcula-
tions [9, 20] which predict the existence of an energy
valley correlated with the input pattern only if
a < a,~ 0.14. The transition at « is first order ; m
jumps from zero for « > a, to a non-zero value.

However the a_ predicted by thermodynamic
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calculations may not be relevant to dynamics.
Moreover, we will see in section 4 that the critical
for parallel dynamics in the long time limit is clearly
smaller than 0.67.

-

, .
y=Tr"Tr ]'[ —i
0? 0: it

© dx: iAfxt
da’ —e 'exp
ol

The p spin calculations however turn out to be
simpler than the two-spin calculations because corre-
lations between different J,-l_..ip arise only from the

symmetry of the interactions [16]. The reason is as

ZERO TEMPERATURE DYNAMICS
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The calculations for multiconnected neural net-

work model can be done in a similar way to the
calculations for the Little-Hopfield model.

The
analogue of equation (3.4) is for h, , =0,

2NP~1q

t-—l

(3.16)

follows ; equation (3.16) includes a product over
microscopic patterns of exponential factors. If each
of these exponentials is expanded and the average
over patterns at each site is performed the linear
term vanishes and

. p! t t of-1 -1 _ 1 p! 2
<eXP(—le_lz‘:xi‘7i§“ Z 512 fp ip O, )>—1—§<Np_l X
ottt t—1r—11"1 ot
(5 (ister) (ot o) g 3 (et
ty, 1 i i 1,82 i
:2—1 r-2 1 3(2-p)
(Zx oot )(Ztr ) m}w(zv €-p)y. @
The second order term may be exponentiated and 8-functions introduced to give
y = exp [N Max Y(q,r,k, s,ml,nl)]
q,r,k,s,my,nq
where
Y = al: Z qtlfzrflfz_._ Z k'p'zsflfz_ Z p(p_1)(q‘1‘2)p—2s‘1'2s'2‘1_ (p_l)z (stt)Z] +
<ty 1,y fh#10 ! .
+1i Zn"lml +InY(q,r, k,my,n) (3.18)
where, _
Y(q,r, k,my,n)) = (Tr ng)t—tJ\w dx’exp[i Y x A i Zp(m{‘l)"‘lx‘a'gl—i Zn{‘lgla-"
o, VO 2w —© t t t
a kntzxtlo_tlo_tz—l_z ap Z xtlxtzo_tla_rz(thz)p—l —ap le2:|> (319)
2 <ty t 31

fty -1 ;-1
_azr120_1 o2t

1<ty

All terms of higher order than the second in the
exgansion over microscopic patterns are of order

N ? relative to the second order term and there-
fore do not contribute in the thermodynamic limit.
For p = 2 the whole series can be resumed to give
the determinant W(q, s, p) of equation (3.9¢c). The
equation for m] after the first time step is then,

(m?)"—l)
_2erf .
© (\/Za/p

In contrast to the corresponding equation for the
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(3.20)

Little model (3.14) the fixed point of the first stage
of parallel interaction of the multiconnected model
(3.19) are identical to the replica symmetric solution
for the metastable state close to the pattern in the
thermodynamic calculation [16]. There are two fixed
points for « < a (p) which approach one another as
a — a (p) and the transition at a is first order.

4. Numerical study of long time behaviour.

In this section, we will first present numerical results
obtained for the zero temperature parallel dynamics
of the SK model. The calculations were done on

49
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finite samples of N sites (25 <N =<400) and the
quantities were averaged over 1000 to 2 000 samp-
les. The interactions J;; were randomly chosen
according to a flat probability p(J;) (p(J;;) =
1/2J, for |J;;| <Jo and p (J;;) = O for |J;;| > Jp). In
the thermodynamic limit, all symmetric distributions
of J;; give the results which depend only on
(JZ) for the SK model.

In table I, we give numerical results obtained for
the magnetization m(2), m(4) and m(o0) at times
t=2,t=4and t = oo and for the overlap ¢** and
g>. All these quantities except m(), describe the
system after a few time steps and can be compared
with the analytical results of section 2. We see that
the agreement is excellent. One can also see in table
I that the long time properties (like m(o0)) depend
much more on the size N than the short time
properties.

In the approach developed in section 2, the calcu-
lations become more and more tedious as one
increases the number of time steps. This makes the
understanding of the long time behaviour quite

difficult by this analytic approach. So for the long

time behaviour, we could only use the numerical
simulations. We have computed the magnetization
my(¢) at the ¢-th time step (starting at ¢ = 0 with
my (0) = 1) and the correlation gy (¢, ¢t — 2) between
the configurations at time ¢ and at time ¢ — 2 for
samples of N spins. Due to gauge in-
variance, g4~ is independent of the starting con-

figuration when it is averaged over disorder.

We did not consider g (¢, ¢ — 1) as it vanishes at all
times equation (2.17). This is because for each i and
t, o;(t) o;(t — 1) is an odd function of the interac-
tions J;;. One should notice that g (¢, f — 2) defined

in (4.1) gives ¢’ *1'*~! defined by (2.16) in the limit
N - o0.
The remanent magnetization

my(o0) = lim my(¢)
t— 0
depends strongly on the size N (Fig. 1) whereas at
short times, the size dependence of my (¢) is much
weaker. This makes the analysis of the long time
behaviour of the magnetization rather difficult. The
following two attempts were made :

I [ | T T
N (o) [
0.40 _
|
0.35 — |
I
I
I
0.30 I _
I
I
0.25 T L | N
L00 200 100 50 25

Fig. 1. — The magnetization my(co) of the SK model
versus N~'2. Extrapolating to N — oo gives m (c0) =
0.23 +0.02.

Table 1. — Magnetization at times 2, 4 and oo and the overlaps q"'~? for t = 4 and 5 for the SK model. The results
at short time converge quickly to the predictions of section 2. The convergence of m(c0) is much slower.

Size N m(2) m(4)
2 0.5845 0.4748
+ 0.0030 + 0.0035
% 0.5813 0.4744
+ 0.0020 + 0.0025
100 0.5779 04719
+ 00015 + 0.0015
0.5767 04714
200 + 00010 + 00012
0.5754 0.4686
400 + 0.0007 + 0.0008
Results of
section 11 0.575 0.468

m(oo) q42 q53
0.4072 0.7571 0.8391
+ 0.0040 + 0.0025 + 0.0025
0.3738 0.7609 0.8353
+ 0.0030 + 0.0020 + 0.0015
0.3415 0.7581 0.8372
+ 0;0020 + 0.0012 + 0.0012
0.3177 0.7611 0.8364
+ 0.0015 + 0.0010 + 0.0008
0.2929 0.7603 0.8354
+ 0.0010 + 0.0006 + 0.0006
0.760 0.835
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First, if one considers my (t) — my (o0 ) for each
size N, the results seem to decay exponentially at
long times

my(t) —my(0)~exp— . (4.2
TN

Our numerical results suggest that 7 increases like
N* where a = 0.5. An accurate determination of a
is not easy because we can only increase N up to a
few hundreds and 75 has to be extracted from the
long time behaviour (¢ > 75) for which the error
bars are the biggest.
On the other hand, if we try to look at
my(t) —my(o0), one finds a power law
My (t) —my(0)~t7#. 4.3)
The estimation of B is not easy either, because one
needs to take the limit N — oo. For short times ¢,
this is not very hard because my (t) does not vary
much with N but for ¢ — oo, this is more difficult (see
Table I and Fig. 1). Also the range of times on which
the power law (3.3) can be observed is rather limited
1 <t =< 20 because our sizes N are small and (3.3)
only be valid for ¢t < 5. However a log-log plot
gives 0.5 < B =< 0.7 depending on what we choose
for my(c0) versus N~'2. The convergence to
N - oo is rather slow and our estimate for m (o0 ) is

my(0) =0.23+0.02. “4.4)

The N ~'? convergence is the same as the one found
by Kinzel for serial dynamics [7]. This value differs
from m(00) = 0.14 = 0.01 predicted by Kinzel for
sequential dynamics. This difference is not surprising
because the two dynamics have no reason to give the
same remanent magnetization. For example for 1d
spin glasses, sequential dynamics give m,, (c0) =
1/3 (see Ref. [12] and references therein) whereas
parallel dynamics would give m,, (o0 ) = 2/3. Also a
value of B = 0.5 (see Eq. (3.3)) is rather similar to
what had been previously found or predicted for
finite temperature dynamics near the spin glass
transition (Ref. [18] and references therein). It is not
clear however whether our value of B could be
compared with any result even at low temperature
because one expects that m (0)#0 for T =0
whereas m,,(c0) = 0 at low temperature.

The long time behaviour is much easier to study
when one considers the time evolution of
gn(t,t —2). In the limit t > 00, gy(t, 2 —2) > 1
independent of N. So the problem we had because of
the N-dependence of the remanent magnetization is
not present here. In figure2 we show
log (1 —gqun(t,t —2)) versus logt for N = 100 and
N =400. We see for each size two regimes. The
short time regime where

1—gy(t,t—2)~t"% (4.5)
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Fig. 2. — 1 — qi™"' ! versus t. The overlap qy* "'~ is the

overlap between a configuration at time ¢ and at time
t — 2. We see that 1 — gp" "'~ ! decreases like t~32 over a
range of times which increases with N.

and a long time regime which is size dependent. The
exponent 3/2 is rather accurately determined. In
figure 2 we see that, the range on which (4.5) holds
increases with N and therefore (4.5) is probably
valid at all times in the thermodynamic limit. The .
result (4.5) is compatible with the power law (4.3)
and the estimate 0.5 < B8 < 0.7 since one has always

dmN(t)
==

|[1—gn@t-2)]  (4.6)

(3.6) expresses that the change in the magnetization
is always less or equal to the number of spins which
have flipped.

Another quantity which can be computed at short
times analytically and at long times numerically is
the overlap between two configurations. If one
chooses 2 configurations {o;(0)} and {7;(0)} at
time ¢ = 0, and if both configurations evolve accord-
ing to the same set of interactions J;; one can try to

ij
compute the time evolution of the overlap Q(¢)

0 =5 T OO, @7

At short times, calculations very similar to those
presented in section 2 give
12
ﬂ) ) 1 (4.8

Q(l):%tan‘l( ( -

o) =3 f@)-52f(-a) 49
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where

fg) = Jj: Jj: ds ds’ sgn (ss’) x
s (553 ) 5

(%) =)

where

(4.10)

We see from these expressions that the calculation
becomes more and more difficult as one increases
the number of time steps and so here again, we could
only study the long time behaviour by means of
numerical simulations. In figure 3 we show d(c0)
versus d(0) for 0 <d(0)<0.05 where d(t) is the

d(t)

03— -

200 ld(o)

0 1 l 1 l

0 0.02 0.04 0.06

Fig. 3. — The distances d(1), d(2) and d(o0) at time
t=1, t=2 and t = 00 versus the initial distance d(0)
between two configurations for the SK model. The two
curves are the result of equations (4.8)-(4.11). We see that
d(o0) does not seem to vanish when d(0) — 0.

distance between the two configurations and is
defined by
Q(t) i t) (1))

dt) = (4.11)

We see that, even d(o0) still depends on the system
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size N, it is rather clear that d(oo) does not vanish
when d(0) vanishes

lim d(o)=0.2
d(0)-0

or lim Q(o0)=0.6x
2(0)-1

It is not very easy to determine the limiting value
accurately because one needs to take two limits,
Q(0)-»1 and N - co. However, the fact that
d(o0) does not vanish if d(0) —» 0 gives an idea of
the structure of the basins of attraction of the
attractors. Two starting configurations even if they
are very close will evolve to attractors which are far
apart.

This means that the frontiers, between basins of
attraction are dense in phase space. Also this means
that there is a cooperative effect between an infinite
number of spins : if the dynamics could be reduced
to finite clusters of spins, then when d(0) — 0, the
number of clusters for which the configurations
o;(0) and 7;(0) differ would be proportional to
d(0). Only these clusters could contribute to
d(o) and therefore one would have d(oo) pro-
portional to d(0). The fact that d(co) does not
vanish as d (c0 ) —» 0 means that there is a cooperative
effect involving an infinite number of spins. The
same results has already been found in the dynamics
of other random systems: random networks of
automata [17].

For the Little-Hopfield model, we have computed
the overlap m{ with a stored pattern as a function of
m! for several values of a. In figures 4, 5 and 6 we
show our results for a = 0.1, a = 0.4 and a« = 0.9.
For all these values of a, we observed that
m{ has a limit m{° as ¢t — co. This means that the
oscillations of m; between odd and even times
(which are present in the SK model) are either
absent or too small to be observed (i.e. smaller than
our error bar) for these values of . We see that for
a = 0.1 (Fig. 4), the system remembers (since for
m)=> 0.5, one finds m® very close to 1). It is
interesting to notice that mj is not always a mono-
tonic function of time. For a = 0.4, the system does
not remember in the limit t » co (M < m?). How-
ever for short times, we see that there is a range for
which m{ and m? are larger than m!. This means that
the configuration in the first time steps goes towards
the pattern but at later times goes away. Lastly for
a = 0.9, we have always m} < m? and the configur-
ation always evolves away from the pattern.

There is therefore a qualitative difference between
the results at long times and those for the first few
time steps. For a < 0.64 (0.67), the system remem-
bers after 1 (2) time steps whereas at large time, the
system remembers only if the initial overlap is
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Fig. 4. — The overlap m; for t = 1, 2 and oo with a stored
pattern versus m} for the Little model : « = 0.1 (Fig. 4a),
a = 0.4 (Fig. 4b), a = 0.9 (Fig. 4c). The points are the
results of numerical simulations and the curves were
obtained from equations (3.14) and (3.15). For a = 0.1
(Fig. 4a), the system learns. For a = 0.4, the system goes
towards the pattern for the first time steps if m? is small
enough but does not learn in the long time limit (the
dashed straight line is m{ = m}). For & = 0.9 (Fig. 4c) the
system does not learn even in the finite time steps.
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sufficiently large. This suggests a way of improving
the dynamics for a below 0.64 (0.67). Since non-
equilibrium states which do not appear in the
thermodynamic calculations exist for values of a
above as well as below a [11] it might be possible
after a few time steps of parallel iteration to define a
way of annealing into a metastable state closer to the
pattern.

We have not observed 2-cycles for values of
a < 1. However, in the limit @ — o0, iterations from
a pattern is equivalent to iteration from any initial
configuration ; for example equations (3.14), (3.15)
reduce to those of the SK model (2.17), (2.21) ; and
in this case the remanent magnetization is zero at
odd times and non-zero at even times. Therefore
either there exists a finite value of a > 0.9 above
which limit cycles appear or the oscillation of
mj are present at all values of a but are too small for
a < 0.9 to be observed with our error bars.
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Appendix 1.

In this appendix we show that any expectation value
with respect to y, equations (2.13c), of the form

(xporS(x,, a’,))y =0 (A1)

in zero field where S(x,,
earlier than 7.
This expectation value contains a term of the form

© @ de
I.=T da —
T TL TJ ZWUTXTX

or -©

o) depends only on times

2
X €Xp {ixT Ar— ‘%x% +xp07C(x, a,)} (A2)

where

T-1
Cl,o)=-12Y q"x,0,+ilrTaT"1-

t=1

Appendix 2.
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Note that C(x,, o,) does not depend on x; or
o 7. Taking the trace on o7 gives

® ®© de
IT:J d/\TJ' —xTX
o ol
2
X exp (ixT z\T—’-’z—x%) (exTC —e_xTC) .

In the second term make the change of variable :
Xr— —X73; Ar— — Ap, so that

© © de
IT:J' dATJ ——xTX
® ol

2
xexp(ix,z\,~{2-x%+xTC),

© 12 2
=J. deS(xT)xTeXp<—5xT+xTC) s
e

IT = 0 . (A.4)
Thus the expectation value, (A.1), is zero :
(xrorS(x, a,))y =0 (A.5)

In this appendix we give the results for the order parameters and magnetization up to 4 time steps, obtained
from the saddle point equation (2.14a) for the SK model. The results up to ¢ = 2 are given in equation

(2.21), the remaining ones are :

sB = /Ee— (’32)2/2<1 —2erf ( q°s” ))
T \/1 (q13)2
§32
541 2 2 erf
\/ \/1 13)2

—L - (1+a¥)( 2
2= 2erf (s%) + 2 J-\/l— (@) e——z—— da
™ Jo l1+a
1
-¢*) /1@ d (w2 21y
m(4) =q®=1+erf (s*+s") —erf (s43—s41)—%[J( ) —wztle OIEDETY2
0

sB_gH RN
NC e
. w1
21 T a2
e N g

w?+1

s43 + s4l

g% = erf (s +s™) + erf (s —s%) __717 [J( 2
0

_ L<

()
0

w2+1

s43 _s4
+

qz“) /\/ 1@ g

wi+1

o W+ 1)(541_343)2/2]

) NI-@F gy

le %
o WHDE2 J' ( o a1
0
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§2 —_—
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)

+ 3 o B =522 1 erf s43 _ ( 41 _
T 2 \/1 _

21) q
q24)2

") e (L)

where erf x = \/2 J dye™” /2 and using the formula,
a
o] o ¢]
I(a,b,x) = J du J da e~ AT+ aP+2300)/2 =J(a,b,x)+J(b,a,x)
b
where
© . (2 +1-x%/2
J(a,b,x) = .
( ) Jl—7+x 22 +1-— xz
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