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Abstract. The statistical properties of the multivalley structure of disordered systems and 
of randomly broken objects have many features in common. For all these problems, if W, 
denotes the weight of the sth piece, we show that the probability distributions PI( W , )  of 
the largest piece W, ,  P2( W,)  of the second largest piece, and n( Y )  of Y = 1, W i  always 
have singularities at W, = l / n ,  W2 = l / n  and Y = I j n ,  n = 1 , 2 , 3 , .  . . . 

1. Introduction 

Most of the interesting properties of disordered systems are due to the fact that phase 
space is broken into many valleys. This many-valley structure is responsible for very 
slow relaxations, dependence on initial conditions and remanent effects. In several 
cases which have been studied recently (mean field theory of spin glasses (MCzard et 
a1 1984a, b, 1985, Derrida and Toulouse 1985), random networks of automata (Derrida 
and Flyvbjerg 1986, 1987)) it has been shown that phase space is composed of several 
valleys. These different valleys have different weights. There are usually an infinite 
number of them but only a few have a large weight. Moreover, the weights of the 
valleys are not self-averaging, i.e. they fluctuate from sample to sample even in the 
thermodynamic limit. 

In the present paper, we study the statistical properties of quantities which describe 
the multivalley structure of disordered systems and compare them with those of 
randomly broken objects. 

We will consider here three different examples. 
( i )  The random map model (Derrida and Flyvbjerg 1986, 1987) which is a dis- 

ordered system with deterministic dynamics. The model is just defined as a random 
map of a system of N points into themselves. For this problem, phase space is broken 
into several basins of attraction (or valleys). One can associate to the sth basin of 
attraction a weight W, which is just its normalised size (i.e. W, is the probability that 
a randomly chosen configuration belongs to the sth valley). 

(i i)  The mean field theory of spin glasses (MCzard et al 1984a, b, 1985, Derrida 
and Toulouse 1985) at thermal equilibrium. In the thermodynamic limit, the picture 
which comes out of the replica approach is that phase space is again composed of 
many valleys, the weight W, of the sth valley being given by its free energy as 
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( i i i )  The problem of a randomly broken interval. We break the unit interval into 
an infinite number of pieces by a random process. We call the length of the sth piece 
w,. 

These three examples share the property that the breaking is sample dependent. 
Several quantities have already been studied for these problems: for example, the 
average number of pieces at weight W or the correlation functions of weights. In the 
present work we try to go further in the study of the statistical properties of such 
broken objects and show that many behaviours are very similar in these problems. In 
particular, we will see that the probability distributions of several quantities have 
singularities which are always located at the same place. 

The paper is organised as follows. In 5 2 we define the basic quantities that we 
are going to study or use: the functions g( W ) ,  g( W, W’),  . . . , the functions f( W ) ,  
f( W, W’) ,  . . . , the probability distributions PI( W )  of the largest weight, P2( W )  of the 
second largest weight and  n( Y )  of Y where Y is defined by 

Y’C w: 
5 

where in (2) the sum runs over all the weights W,. In  § 3 we define a model of random 
breaking of an interval and we compute for it the functions g defined in 0 2. 

In § 4 we describe how the probability distributions PI( W ) ,  Pz( W )  and n( Y )  can 
be obtained numerically for our three examples. In  § 5 we show how the singularities 
at W = 2 , 3 , .  . . in PI( W ) ,  P2( W )  can be understood. Lastly in § 6 we compute the 
singular behaviours of n(  Y )  at Y = i, 4, . . . . 

1 1  

2. Definitions 

Let us consider an object of normalised size (for example, phase space of a disordered 
system or more generally any broken object). Once the system is broken into many 
pieces, the sth piece having a weight W,, one has of course 

c ws=l (3) 
5 

because of the normalisation. 

function H (  W )  defined by 
For each sample, i.e. for each way of breaking the object, one can introduce a 

H ( W ) = C  W,6( W -  W,).  
S 

(4) 

H (  W )  depends of course on the breaking, so there is a probability distribution of 
H (  W ) .  One can then define g( W ) ,  g( W, W’)  and g( W, W’, W”)  as 

(5) g (  W )  = H (  W )  

g( w, W’) = H (  W ) H (  W’)  

g(  W, W‘, W”)  = H ( W ) H (  W’)  H ( W”) 

where in ( 5 ) - ( 7 )  the bar denotes the average over all the possible breakings of the object. 
In ,  for example, the language of the random map g ( W ) ,  g (  W, W’)  and 

g( W, W‘, W”)  have very simple interpretations: g( W )  is the average number of times 
that a randomly chosen configuration belongs to a basin of weight W and g(  W, W’)  
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is the average number of times that two randomly chosen configurations belong to 
basins of weights W and W' respectively, and so on. 

These functions g( W), g( W, W'), . . . , are related to the average numberf( W, W') 
of pairs of different pieces having weights W and W': 

g( W) 
f (  W) = 6( w-  W,) = - 

i W 

f (  w, W') = E  6( w - W,)S( W'-  W,,) 
c r ' f s  

The functions f or g have already been obtained for the random map ( R M )  model 
(Derrida and Flyvbjerg 1986, 1987) 

f R M (  w) = w-'( 1 - w)-"2 
f R M (  w, w') = a (  ww')-'( 1 - w-  w')"'2 

( l o a )  

( l o b )  

and for the infinite-range spin glass (sc) (using the replica approach of Mizard et a1 
(1984a, b))  

where y ( 0 <  y <  1 )  is a parameter which contains all the physical parameters (tem- 
perature, magnetic field, etc). 

In the next section we will give explicit expressions off for the problem of breaking 
the interval ( B I ) .  

There are many quantitites which characterise the multivalley structure: for a given 
sample, let W, denote the largest weight, W, the next largest weight, and so on. Of 
course W, , W,, . . . , are sample dependent and we will let P,(  W,) denote the probability 
distribution of W, , P2( W,) the probability distribution of W,, and so on. 

One can also consider the quantity Y defined by ( 2 )  or generalisations Y p  of it: 

Y P  = c w.: 
s 

( Y = Y,). Again Y and Y p  are sample dependent and are characterised by probability 
distributions II( Y )  of Y and I I p (  Y p )  for Yp.  

In 0 4 we show the shapes of PI( W), Pz( W) and If( Y )  for our three examples. Let 
us describe first an example of interval breaking and compute the functions g corre- 
sponding to this example. 
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3. An example of random breaking of an interval 

There are several ways of defining a random process which can break an interval into 
several pieces. In this section we choose one which has the advantage of showing 
interesting properties with simple solutions. 

We start by breaking an interval into two pieces, one of weight W ,  and the other 
of weight W = 1 - W ,  . We keep the piece of weight W ,  as the first pieces of our 
sample. At the second step we break the piece W into two pieces, one of weight W, 
which we keep and another piece of weight W' = W - W, that we are going to break 
at the third step and so on. After n steps, we have n pieces of our final sample: 
W, , W , ,  . . . , W, and a piece W which will be broken at the next step. To make the 
model simple, we consider only processes which are self-similar in the following sense: 
the probability that W is broken into W,,, and W -  W,, ,  depends only on the ratio 
W , + , /  W. Therefore after an infinite number of steps the system consists of an infinite 
number of pieces which can be described in the following way: 

w, = XI 

w, = (1 - XI)X2 

w, = ( 1  - X I ) (  1 - xJx3 

w, =(l-XI)  . . . (l-X,-,)X, 

where all the numbers x ,  , x2,  . . . , x, are randomly distributed according to the same 
probability distribution p(x).  I t  is then clear that if f i (  W )  and H( W )  are defined by 

fi( W ) =  -6( w, w - A )  
* = 2  1 - w, 1 - w, 
w 

H ( W ) =  c W , S ( W -  W , )  
, = I  

= W 6 ( W -  W , ) + f i  - (1 -:,> 
then H (  W )  and f i (  W )  have the same probability distribution. Therefore 

-- 
g (  W )  = H( W )  = f i (  W )  ( 1 5 a )  

(156) 

I t  is then easy to see that g (  W ) ,  g (  W, W ' ) ,  . . . , must satisfy the following integral 

g (  w, W ' )  = H (  W ) H (  W ' )  = f i (  W ) f i (  W ! )  

etc. 

equations: 

g (  w, W ' )  = W , p (  W ) 6 (  w - W ' )  
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etc. When solving these equations, one should remember that g( W )  = 0 for W >  1, 
and g (  W, W ' ) = O  for W +  W ' >  1. 

For a general distribution p (  W ) ,  equations (16) are not simple to solve. However, 
there are some choices of p (  W )  for which g( W ) , g (  W, W ' ) ,  , . , , have simple 
expressions, e.g., when one chooses 

(17) 

(a = 0 corresponding to a uniform distribution), one finds for the broken interval ( B I )  

(18a)  

(186) 

p (  W )  = (a+ 1)(1- W)" 

gBl( w,  ' p (  w,  = (a+ 1)(1 - w)o  
g B 1 (  w, w') = (a + 1 ) w( 1 - w)"6 ( w - w') + ( a  + 1 )2(  1 - w - w')" 
etc. For the choice (17), one finds g B [ (  W )  = p (  W ) .  This simple relation between g and 
p is particular to the example (17). There is no reason why it should hold for other 
choices of p. 

4. Shapes of distributions PI( W ) ,  P2( W )  and II( Y )  

In this section, we show how the probability distributions PI( W , )  of the largest weight 
W , ,  P2( W,)  of the second largest weight W 2 ,  and II( Y )  can be obtained easily by 
Monte Carlo methods. 

Let us start with the random map. In our previous work (Derrida and Flyvbjerg 
1986, 1987) we have already given a way of constructing numerically PI( W )  and 11( Y ) ,  
as follows. Take a random map T of a set of M points into themselves. Any point 
has a probability g R M (  W )  of belonging to a basin of weight W. Remove this basin. 
There remains a random map f of a set of M (  1 - W )  points into themselves. In other 
words, if f is a random map which has basins of weights W , ,  W, ,  . . . , W,,, . . . , then 
the map T has basins of weights W, W , (  1 - W ) ,  W2( 1 - W ) ,  . . . , W,,( 1 - W ) ,  . . . . It 
is of course easy to relate the properties of the map T to those of the map 'f I f  @,,, 
and @.tax are the two largest weights of f and W,,, and WLdx are those of T, then 
one has 

W,,, = max( W, (1  - W )  W,,,) 

w ; , ~  = max[min( W, (1  - W )  @,,,), (1 - W )  @;,,I. 

Y =  W2+(1- W ) T .  

(19) 
Similarly Y and P are related by 

One can thus construct in this way a sequence of N samples very easily by an  iterative 
procedure. Suppose that we have built the nth sample and we know its properties 
Wmax(n) ,  W; , , (n) ,  Y ( n ) ,  etc, then one chooses a weight W,, at random according to 
the probability distribution g R M (  W )  = f( 1 - W)-"2  and then one has 

wmax(n+1)=max[( l -  Wn)Wmax(n), Wnl 

W ~ , , ( n + l ) = m a x [ m i n ( ( l -  W,,)Wmax(n) ,  W,,),(l-- W,,)WA,,,(n)] (20) 
Y ( n  + 1) = w', + (1 - W,,)' Y ( n ) .  

By iterating this procedure sufficiently many times, one can get PI( W ) ,  P2( W )  and 
n ( Y )  as the histograms of Wmax(n) ,  Wba, (n)  and Y ( n ) .  The results obtained after 
N = 10' iterations are shown in figure 1. 
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W 
0 05 1 

W 

Figure 1. Probability distributions obtained after lo7 
iterations: ( a )  P,( W) of the largest weight, ( 6 )  

0 05  10 Pz( W )  of the second largest weight and ( c )  U(  Y )  
of Y = 2,  Wg for the random map model. Y 

The case of the breaking of the interval is described by similar equations. Again, 
to go from one sample to the next, one needs only to iterate (20) (this is easily seen 
by looking at (13)). The only difference from the random map is that in (20) W, is 
chosen according to the probability p (  W ) .  In figure 2 we show PI( W ) ,  Pz( W )  and 
II( Y )  obtained after N = l o 7  in the case of p(x) = 1. 

The case of the mean field theory of spin glasses is a little more difficult because 
we did not find a way of constructing a new sample from an old one by just adding 
one weight. However, there is an easy way of constructing samples, from the knowledge 
( l l c )  of f S G (  W , ,  W, ,  . . . , W , )  for all K ,  by the following procedure. Choose a 
sequence of random numbers xI,  x 2 , .  . . , x, where x, is chosen according to the 
probability distribution p, (x)  given by 
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W 

0 5  
Y 

0 0.5 
W 

J 

Figure 2. The same as  figure 1 in the case of interval 
breaking with p ( x )  = 1.  1 

Then build the sample for the spin glass problem by calculating the weights 
WI, w,, . . . , wn by 

w, = X I  

W , = ( l -  W , ) X *  (22) 

W , = ( l -  w,- w,- . . . -  Wn- , )Xn .  

The way in which (21) and ( 2 2 )  can be related to the expression ( I l c )  of 
f S G (  W , ,  W,,  . . . , W,  ) is quite easy to understand, as follows. Once the first K - 1 
weights have been constructed, using f&( W, , W,,  . . . , W, ), then one knows the 
probability distribution of W ,  (which depends on K and W, ,  W,, . . . , W , - , ) .  More 
precisely, from f (  W )  one knows that the probability R I (  W , )  that the physical system 
is in a valley of weight W, is 

RI( W , )  = W , f (  WI). 
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Now assume that we know that there are valleys of weights W,,  W,, . . . , W,-, and  
we want to know the probability RK( W,) that the system is in the K t h  valley of 
weight W,. Then one has 

where 

S = l -  w,- w,- . . . -  W&,. (24) 

This means that to choose W, one needs only to choose a number x, at random 
distributed according to p K ( x )  given by (21)  and then W, = ( l -  W , -  W 2 -  
. . . - w, - ] )X, 

I I 

h 
cl" 

0 0.5 .O Figure 3. The same as figure I for the infinite-range 
Y spin glass with y = 0.7. 
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In figures 3 and 4 we show P, (  W), Pz( W) and II( Y )  obtained as the histograms 
of the W,,,, WLdx and Y of N = lo7 samples ( y  = 0.7 for figure 3 and y = 0.9 for 
figure 4). For each sample, one needs in principle to build an infinite number of 
weights W , .  In practice, we construct only a finite number S of weights W, and we 
stop our calculations when 

W, > 1 - E  

S 

with E = 
r = l  

Then the error on Y does not exceed e *  and the error on W,,, and Wkdx is usually 
zero because all the weights W ,  for s > S would not exceed E.  

From a practical point of view, there is a technical difficulty in generating the 
random numbers x, distributed according to the distribution p , ( x , )  given by (21) 
because Ji p , ( x )  dx is not a simple function of y.  To do so, we have used a rejection 
method which is described by Knuth (1981). 

4 

- 1  

b 
c i  

la1 

0 0 5  
W 

0 0.5 
Y 

Ibl 

I 
I 

I 
\ 

W 

1 Figure 4. The same as figure 1 for the infinite-range 
spin glass with y = 0.9. 
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The shapes of n( Y )  for y = 0.7 and 0.9 have already been given by Mizard er a1 
(1984a, b, 1985). The shapes they found are rather similar to those of our figures 3 
and 4. However, they did not find the singularities at  Y = and Y = f which can be 
seen on our figures 3 and  4. This is because they computed an  approximate II( Y )  
from the knowledge of the first moments of Y. Such approximate methods are not 
well adapted to observe singularities in II( Y ) .  

By comparing figures 1, 2 and 3 we see that our three examples give very similar 
shapes for PI(  W), P2( W) and II( Y ) .  All these distributions seem to have singular 
behaviours at  4 and f .  The purpose of the next sections is to explain these singularities 
and to discuss how general they are. 

5. Singular behaviour in the distributions PI(  W )  and P2( W )  of the largest and second 
largest weights 

In this section we see that the distributions PI( W ) ,  P2( W), P3( W), . . . , can be computed 
analytically from the knowledge of f (  W), f( W, W‘) and f( W, W‘, W ” )  and that these 
distributions have in general singularities at W =  1, f, f ,  . . . , l / n , ,  . , . 

If there is a piece with weight W > 4, this weight must be the largest one. Therefore, 
one always has 

PI( W) =f( W) for W > + .  (25) 
If there is a piece with weight W, for f < W < 4, this piece can either be the largest one 
or the second largest one. Therefore 

(26) 

P , ( W ) + P , ( W ) +  . . . +  P , ( W ) = f ( W )  f o r l / ( n + l ) <  W < l / n  (27) 

PI( W) + P2( W) =f( W) for f <  w < $  
etc, and 

where Pn( W) is the probability distribution that the nth largest weight is W. 
For similar reasons, i f  one defines Qn,,,( W, W’) as the probability distribution that 

the nth largest piece has weight W and the mth largest piece has weight W‘, one has 

Ql ,2(  w, W‘) =f( w, W’) for W >  W ’ > f  (28)  
for W >  W’>$  (29) w, W’) + Q1.J w, W’)+ Q 2 . J  w, W‘) =f( w W’) 

and so on 

More generally, i f  one denotes by Rnlln2. ,,,( W,,  W,, . . . , W K )  the probability that the 
n,th largest piece has weight W, , the n2th largest piece has weight W , ,  etc, then one 
has 

c R n , , n 2 ,  , n k  ( Wi 7 3 . . . 3 Wk 1 
, s * , c n 2 c  < “ * S ; P  

= f ( W , ,  W I , . . . ,  WK) for Wl>Wz, . . .  > W K > l / ( p + l ) .  (31) 
From these relations i t  is possible to obtain PI( W), PI( W ) ,  P7( W ) ,  . . . , in the various 
intervals. For example, using (28) one has 
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which expresses that there is a piece whose weight is larger than W and therefore 
from (26) one obtains 

These results can be generalised to any interval 

l / ( n + l ) <  W < l / n .  (37) 

After some calculations one finds that on this interval the probability P,( W) that the 
j t h  largest piece has a weight W is given by 

n (1- l ) !  

I =J 

P,( W) = c (-1)I-J I , (  W) 
( i  - j ) !  ( j  - I ) !  

where 

We will not give the derivation of (38) here: it is a direct generalisation of the derivation 
which led to (33), (35) and (36). Let us just mention that (38) can be obtained as a 
consequence of 

( j - l ) !  
I , ( W )  = f: P,( W). ,=, ( i - l ) ! ( j - i ) !  

We see from formulae (25), (32), (36) and (38) that the expression for PI( W) is 
different on each interval l / ( n  + 1) < W < l / n .  The same is true for Pz, P3 and all the 
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P,. Since the analytic expressions of the 6 are different in the different intervals 
1/(  n + 1) < W < l / n ,  one expects to see singularities of P,( W) at all the values W = l / n .  
These singularities are, however, weaker and  weaker as n increases: they are due  to 
the fact that In+,( W) = 0 for W > l / n  and In+,( W) # 0 for W < l /n ,  so when n increases 
the singularity due to I,,( W) is weaker and  weaker because I,,( W) is an  integral over 
more and more variables. 

As an  example let us give the expressions for PI( W) and P2( W) for our three 
examples. For W > i  

1 1 
P y (  W) = - 

2 w (1 - W)l', 

PF'( W) = (a + 1)(1- w)a/ w 
and for f <  W < $  

P y (  W) = - 4 1 w (1 - W)"2 {log[ 1 + (1 -A) -log[ 1 - (1 -&) 
r i  

pSG( W) = J ?"( w', W) d W' 
W 

P,"'( W) = - log - 
W GW) 

PI( W) =f( W) - PZ( W) (42d) 

where (42c) for the breaking of the interval is the expression in the case p (  W) = 1. 
These expressions agree with the numerical results given in 0 4. 
One should notice that there could be other singularities in PI( W), Pz( W), . . . , or 

the singularities at W = 1/ n could disappear if  the functions f( Wi , . . . , W, ) had some 
non-analyticities in the domain W, 20, .  . . , W, 2 0, 1 - W, - .  . . - W, 2 0. For the 
three examples we have described here the functions f are analytic and  therefore one 
does not expect other singularities. 

6. Singularities in ll( Y )  

In  the previous section we have seen that, knowing the first K functions 
f( W,),f( W, , W,), . . . ,f( W, , W,, . . . , W, ), it is possible to calculate the distributions 
PI( W), . . . , P K (  W) for W >  l / ( K + l ) .  

The knowledge of a finite number of functions f( W) does not allow us to calculate 
parts of II( Y ) .  There is, however, some information about 11( Y )  contained in these 
functions, for example, some moments of II( Y )  and II,( Y p )  

p= I f ( W ) W 2 d W =  (43) 

- J  Y 2 =  g(W, Wl )WWldWdW'  (44) 
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and more generally 

but, of course, the singularities of II( Y )  or II,( Y p )  cannot be extracted from the 
knowledge of a finite number of moments. 

We believe that the singularities in II( Y )  that we observed in § 4 are quite general 
and occur in all kinds of problems of random breaking. We did not, however, find a 
general proof of their existence, so we will discuss these singularities only in the 
restricted case of our three examples. 

Let us first discuss the case of the random map and of the random breaking of the 
interval. We have seen in § 4 that the distribution II( Y )  was nothing but the histogram 
of the Y ( n )  where the sequence Y ( n )  is constructed by the random process (20) 

Y( n + 1 )  = w', + ( 1  - W,,) 'Y(n)  (46) 

where the W,, are randomly chosen according to a given distribution p (  W )  which is 
arbitrary for the problem of randomly breaking the interval and which is given by 

PRM( W )  = f (  1 - W)-'I2  (47) 

for the random map problem. 

from (46) one sees that II( Y )  obeys the integral equation 
So Y ( n )  and Y ( n  + 1) have the same limiting distribution II( Y) for n +CO and 

II( Y ' )  d Y ' S [  Y -  W 2 - ( 1  - W)'Y' ]  

which can be rewritten as 

where 

w* = $[ 1 * ( 2  Y - 1 ) ' / 2 ] .  

Equation ( 4 8 )  can be reduced to (49) because rI( Y )  and p (  W )  have their support on 

For Y close to 1 ,  Y = 1 - E ,  E - 0 ,  W+ = 1 - ; E  - ; E '  + O( E ~ ) .  Therefore, and because 
LO, 1 1 .  

II is normalised, it follows from ( 4 8 )  that when a s 0 
I - F / 2 - F 2 / 8  

I - F / 2 - c ' /4 

4 
E 

because the integral from 0 to W is negligible. For the breaking of the interval according 
to the distribution p(  W )  given in (17) (or according to any other distribution p (  W )  
with exponent a in W = 1) we see that 

r I , , ( Y - l ) E ( l -  Y ) " + O [ ( l -  . ) ,+ ' I .  (51) 
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For the random map, for which a = - f ,  we have 

1 
n R M (  Y - 1 )  = + O [ (  1 - Y ) ’ / ’ ] ,  

[8(1 - Y ) ] ’ l 2  

Since (48) gives different relations for n( Y )  according to whether Y is larger or 
smaller than 4 it is not surprising that n( Y )  is singular at Y = f. This singularity may 
be viewed as ‘inherited’ from the singularity at Y = 1 :  for Y = 5 the function ( Y - 
W2)/( 1 - W)’ has a maximum value of 1 occurring at W = 4. Consequently the integral 
in (48) picks up a contribution from n( Y - 1). With II(sing) denoting the dominant 
part of the singularity in U( Y )  we have 

n(Sing)(tE)O; d w  n ( s i n g )  { ( 1 + 4 ~ ) [ 1 - 8 ( W - f ) ’ + O ( ( W - f ) ~ ) ] } .  (53) 5 
So for II(sing)( Y - 1 )  a 11 - YI” we have 

d W 1 4 ~ - 8 (  W-f)’ laaEm+’/’  (54) 

where b = 4 for E < 0 and b = $+ ( e / 2 ) ” ’  for E > 0. Equation (54) is obtained for any 
p (  W) with exponent a in W =  1 .  For the random map a = -4 and (54) signals a 
logarithmic singularity. 

Now let us consider more carefully the function 

Y’(  W) = ( Y - W2)/( 1 - W)’. 

YLax = Y / (  1 - Y ) .  

( 5 5 )  

(56) 
We have already seen that, since YLax = 1 for Y = f, the singularity of n( Y )  at Y = 1 
gives rise to a singularity at Y = $. In general YkaX = l / n  for Y = I / (  n + I ) ,  giving rise 
to singularities at Y = l / n ,  n = 1 , 2 , 3 , .  . .: 
n c s i ” g 1 ( l / n  + E )  

It  is maximal at W = Y with the value 

2 a[ d W ~ ‘ s ’ n g ’ ( ~ [ l + ~ ~ ] { l - ~ (  n2  n 3  W - i )  

Thus for 

we have 

n(slng) (:+ E )  a d W [ (2n - 1 ) E  -- 
n - 1  

(59) 
Random breaking of an interval according to a distribution p (  W) with exponent (Y in 
W = 1 thus gives 

(60) 

a & P + I I 2  

n(s ing)  B1 ( Y - l / n ) a ( Y - l / n ) ( n - ’ ) / 2 + m .  
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An integer exponent in (60)  (as occurs, for example, for the random map for which 
Q = - 4 )  signals a logarithmic singularity. 

The line of arguments just presented for n( Y )  may be applied to any of the 
probability distributions n p  for the quantities Yp defined in ( 1 2 ) .  One finds singularities 
at the points 

where cy is the exponent of p (  W) at W = 1. 
Finally, for the spin glass case the integral equation (48) generalises to an infinite 

set of integral equations coupling as many probability distributions IIp,,( YP,J)r j = 
1 , 2 , 3 , .  . . , where = n P  and 

'P,J ( $, w'.) ( !J w') - " 
Our two other examples ( B I  and R M )  are special cases for which I Ip ,J  = I I p  for all 

j .  The line of arguments presented above generalises again, and after some calculations 
one finds in the spin glass case that n p ( Y p )  are again singular at Y p = ( l / n ) p - l ,  
n = 1 , 2 , 3 , .  . .: 

( 6 3 )  

Here y is a parameter between 0 and 1 containing the physical parameters of the 
system. We notice in ( 6 3 )  that the locations of the singular points d o  not depend on 
y, and are identical to those found for random breaking of the unit interval, cf ( 6 2 ) .  
The exponents on the other hand d o  not depend on P. This is again similar to the 
breaking of the interval ( 6 2 )  though the n dependence of the exponents differs between 
( 6 2 )  and ( 6 3 ) .  Equation ( 6 3 )  shows that, for any value of y between 0 and 1, nP(  Y p )  
diverges at Y p  = 1 with exponent -y. These results agree with what was predicted by 
MCzard et a1 (1984a, b).  For y between and 1, n,( Y p )  diverges also at Y p  = ( $ ) ' - I ,  

with exponent - 2 ( y  -+). For y = the divergence is logarithmic. For no value of y 
between 0 and 1 does I I p (  Y p )  diverge at Yp = ( l / n ) ' - ' ,  n = 3,4,5,. . . . 

n $ i n g l (  yp- ( l / n ) P - l ) o c ( ~ -  ( ~ / n ) P - i ) ( f l - ~ l / ~ + n ( i - ~ ~  

7. Conclusion 

In the present paper we have shown that our three examples (the random map, the 
infinite-range spin glass and the problem of the randomly broken interval) have very 
similar behaviours as far as the shapes of n( Y )  and of the probability distributions 
PI( W) and Pz( W) of the largest and second largest pieces are concerned. We have 
seen that the values Y = l / n  and W = l / n  for n = 1 , 2 , 3 , .  . . , are always singular points 
of these probability distributions and we have computed some of these singular 
behaviours. The presence of these singularities is certainly more general than our 
examples and they should be observed in a very large class of theoretical problems 
( Y  is, for example, the inverse participation ratio in localisation) or of experimental 
situations (for example, breaking dishes, nuts, chalk, particles, etc). We were first 
surprised to see them in the random map problem and to recover them in the 
infinite-range spin glass and in the randomly broken interval. We think, however, that 
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their presence could have been easily guessed: when one breaks an  object into only 
two pieces (Bray and Moore 1985) of weights W and 1 - W, one has, of course, 
P,(W)=O for W < &  P 2 ( W ) = 0  for W > i  and II(Y)=O for Y < i  because Y =  
W2+ ( 1  - W 2 )  cannot be less than 4. So already in this very simple case, one starts to 
see the singularities at W = f and Y = i. 

It would be interesting to know whether these singularities can be observed in any 
measurable quantity. Also it  would be interesting to know what information about 
the random breaking process is contained in the knowledge of the distributions 
P,( W ) ,  Pz( W ) ,  . . . , II( Y ) .  In  other words: by looking at the pieces of many randomly 
broken objects, what can be said about their history? We think that an  interesting 
model to study would be one for which at time t, a piece of weight W' which has been 
created at time t ' ,  has a probability P( W, W ' ,  t ,  1 ' )  of breaking into two pieces of weight 
W and W'-  W. What could be said about the function P( W, W' ,  t ,  t ' )  by knowing 
the statistical properties of the pieces at an observation time to? 
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