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Abstract. The statistical properties of the multivalley structure of disordered systems and
of randomly broken objects have many features in common. For all these problems, if W,
denotes the weight of the sth piece, we show that the probability distributions Py( W,) of
the largest piece W, P,( W,) of the second largest piece, and [I(Y) of Y =X, W2 always
have singularities at W, =1/n, Wo=1/nand Y=1/n,n=1,2,3,....

1. Introduction

Most of the interesting properties of disordered systems are due to the fact that phase
space is broken into many valleys. This many-valley structure is responsible for very
slow relaxations, dependence on initial conditions and remanent effects. In several
cases which have been studied recently (mean field theory of spin glasses (Mézard et
al 1984a,b, 1985, Derrida and Toulouse 1985), random networks of automata (Derrida
and Flyvbjerg 1986, 1987)) it has been shown that phase space is composed of several
valleys. These different valleys have different weights. There are usually an infinite
number of them but only a few have a large weight. Moreover, the weights of the
valleys are not self-averaging, i.e. they fluctuate from sample to sample even in the
thermodynamic limit.

In the present paper, we study the statistical properties of quantities which describe
the multivalley structure of disordered systems and compare them with those of
randomly broken objects.

We will consider here three different examples.

(i) The random map model (Derrida and Flyvbjerg 1986, 1987) which is a dis-
ordered system with deterministic dynamics. The model is just defined as a random
map of a system of N points into themselves. For this problem, phase space is broken
into several basins of attraction (or valleys). One can associate to the sth basin of
attraction a weight W, which is just its normalised size (i.e. W, is the probability that
a randomly chosen configuration belongs to the sth valley).

(ii) The mean field theory of spin glasses {(Mézard et al 1984a, b, 1985, Derrida
and Toulouse 1985) at thermal equilibrium. In the thermodynamic limit, the picture
which comes out of the replica approach is that phase space is again composed of
many valleys, the weight W, of the sth valley being given by its free energy f; as

W, =exp(=£/T). (1)
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(iii) The problem of a randomly broken interval. We break the unit interval into
an infinite number of pieces by a random process. We call the length of the sth piece
W,.

These three examples share the property that the breaking is sample dependent.
Several quantities have already been studied for these problems: for example, the
average number of pieces at weight W or the correlation functions of weights. In the
present work we try to go further in the study of the statistical properties of such
broken objects and show that many behaviours are very similar in these problems. In
particular, we will see that the probability distributions of several quantities have
singularities which are always located at the same place.

The paper is organised as follows. In § 2 we define the basic quantities that we
are going to study or use: the functions g( W), g(W, W’), ..., the functions f(W),
S(W, W), ... the probability distributions P,( W) of the largest weight, P,(W) of the
second largest weight and [I(Y) of Y where Y is defined by

Y=Y Wi (2)

where in (2) the sum runs over all the weights W,. In § 3 we define a model of random
breaking of an interval and we compute for it the functions g defined in § 2.

In § 4 we describe how the probability distributions P,{ W), P,( W) and [I( Y) can
be obtained numerically for our three examples. In § 5 we show how the singularities
at W=3,4,... in P,(W), P,(W) can be understood. Lastly in § 6 we compute the

singular behaviours of II(Y) at Y =11 .. ..

2. Definitions

Let us consider an object of normalised size (for example, phase space of a disordered
system or more generally any broken object). Once the system is broken into many
pieces, the sth piece having a weight W,, one has of course

Y W.=1 (3)

because of the normalisation.
For each sample, i.e. for each way of breaking the object, one can introduce a
function H(W) defined by

H(W)=Y W,s(W-W,). (4)

H(W) depends of course on the breaking, so there is a probability distribution of
H(W). One can then define g( W), g(W, W’) and g(W, W', W") as

g(W)=H(W) (5)
g(W, W)= H(W)H(W) (6)
g(W, W, W)= H(W)H(W)H(W") (7)

where in (5)-(7) the bar denotes the average over all the possible breakings of the object.

In, for example, the language of the random map g(W), g(W, W) and
g(W, W', W") have very simple interpretations: g( W) is the average number of times
that a randomly chosen configuration belongs to a basin of weight W and g(W, W’)
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is the average number of times that two randomly chosen configurations belong to
basins of weights W and W' respectively, and so on.

These functions g( W), g(W, W'), ..., are related to the average number f( W, W’)
of pairs of different pieces having weights W and W"

FW) =3 s(w-wy=E) (8)
s W

SW,W)=% ¥ 8(W-W)8(W'-W,)
_g(W. W) g(W)s(W-W) ©)

ww’ w

The functions f or g have already been obtained for the random map (rRM) model
(Derrida and Flyvbjerg 1986, 1987)

fam(W)=3W'(1-W)~'"? (10a)
Sam(W, W) =3{(WW)~(1-W-Ww)"'"? (10b)

and for the infinite-range spin glass (sG) (using the replica approach of Mézard et al
(1984a,b))

Ssa(W) = T(y)T(1-y) (11a)
(1= WW)H* (1 - W~ W'
- 11b
Jsa(W, W) TOTOINE—25) (1)
fsa(Wy, Wo ..., Wi)

_ (l—y)K—lF(K) K y=2 _ K K—Ky—1
_F"(y)F(K-Ky)(B. W’) (1 ,.; w,) (11c)

where y (0<y<1) is a parameter which contains all the physical parameters (tem-
perature, magnetic field, etc).

In the next section we will give explicit expressions of f for the problem of breaking
the interval (BI).

There are many quantitites which characterise the multivalley structure: for a given
sample, let W, denote the largest weight, W, the next largest weight, and so on. Of
course W, W,, ..., are sample dependent and we will let P,( W) denote the probability
distribution of W,, P,(W,) the probability distribution of W,, and so on.

One can also consider the quantity Y defined by (2) or generalisations Y, of it:

Yo=Y WS (12)

(Y =Y)). Again Y and Y} are sample dependent and are characterised by probability
distributions II(Y) of Y and I1,(Y,) for Yo.

In § 4 we show the shapes of P,(W), P,(W) and I1( Y) for our three examples. Let
us describe first an example of interval breaking and compute the functions g corre-
sponding to this example.
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3. An example of random breaking of an interval

There are several ways of defining a random process which can break an interval into
several pieces. In this section we choose one which has the advantage of showing
interesting properties with simple solutions.

We start by breaking an interval into two pieces, one of weight W, and the other
of weight W=1-W,. We keep the piece of weight W, as the first pieces of our
sample. At the second step we break the piece W into two pieces, one of weight W,
which we keep and another piece of weight W'= W — W, that we are going to break
at the third step and so on. After n steps, we have n pieces of our final sample:
W,, W,,..., W, and a piece W which will be broken at the next step. To make the
model simple, we consider only processes which are self-similar in the following sense:
the probability that W is broken into W, and W— W, depends only on the ratio
W,../ W. Therefore after an infinite number of steps the system consists of an infinite
number of pieces which can be described in the following way:

W, =x,
W,={1-x)x,

(13)
W3=(1 —x)(1=x)x;

Wn 2(1 _xl) s (1 —xn»l)xn

where all the numbers x,, x,, ..., x,, are randomly di~stributed according to the same
probability distribution p(x). It is then clear that if H(W) and H(W) are defined by

N = W, W,
H(W)= 221—;V5(W_1—_;V> (14a)

H(W)=3 Ws(W-W,)

=W5(W—W,)+F1(1_—“;V—I) (14b)

then H(W) and ﬁ( W) have the same probability distribution. Therefore
g(W)=H(W)=H(W) (15a)
g(W, W)= H(W)H(W')= H(W)H (W) (15b)

etc.
It is then easy to see that g(W), g( W, W’), ..., must satisfy the following integral
equations:

g(W)= Wp(W>+J p(x)g( d )dx (16)

g(W, W)= Wip(W)8(W - W)

+ wowg( )+ wewig(7 )

w W
J’ P(X)g<——x 1——) dx (16b)
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etc. When solving these equations, one should remember that g(W)=0 for W>1,
and g(W, W) =0 for W+ W'>1.
For a general distribution p( W), equations (16) are not simple to solve. However,

there are some choices of p(W) for which g(W), g(W, W’),..., have simple
expressions, e.g., when one chooses

p(W)=(a+1(1-W)* (17)
(a =0 corresponding to a uniform distribution), one finds for the broken interval (BI)
ga(W)=p(W)=(a+1)(1-W)* (18a)
ga(W, W)=(a+ 1)W1~ W)6(W-W)+(a+1)’(1-W-W)* (18b)

etc. Forthe choice (17), one finds gz ( W) = p( W). This simple relation between g and
p is particular to the example (17). There is no reason why it should hold for other
choices of p.

4. Shapes of distributions P,(W), P,(W) and II(Y)

In this section, we show how the probability distributions P,( W,) of the largest weight
W, P,(W,) of the second largest weight W,, and II(Y) can be obtained easily by
Monte Carlo methods.

Let us start with the random map. In our previous work (Derrida and Flyvbjerg
1986, 1987) we have already given a way of constructing numerically P,{ W) and II( Y),
as follows. Take a random map T of a set of M points into themselves. Any point
has a probability gam( W) of belonging to a basin of weight W. Remove this basin.
There remains a random map T of aset of M(1— W) points into themselves. In other
words, if T is a random map which has basins of weights W,, W,, ..., W,, ..., then
the map T has basins of weights W, W,(1- W), W,(1-W),..., W, (1—- W) R |
is of course easy to relate the properties of the map T to those of the map T. If Wi
and Wﬁ,m are the two largest weights of T and Wiax and W/ ., are those of T, then
one has

Wonax = max(W, (1= W) W)

Wi = max{min(W, (1= W) W,.,.), (1- W) W,,,.]. (19)
Similarly Y and Y are related by

Y =W+ (1- W)Y,
One can thus construct in this way a sequence of N samples very easily by an iterative
procedure. Suppose that we have built the nth sample and we know its properties

Whax(n), Wi.(n), Y(n), etc, then one chooses a weight W,, at random according to
the probability distribution grm(W)=3(1— W) "2 and then one has

Wmax(n + 1) =max[(1 - Wn) Wmax(n)a Wn]
Winax(n +1) = max[min((1 - W,) Wy, (n), W,), (1= W,) W(,..(n)] (20)
Y(n+1)=Wi+(1-W,)’Y(n).

By iterating this procedure sufficiently many times, one can get P,(W), P,(W) and
II(Y) as the histograms of W,,.(n), Wh..(n) and Y(n). The results obtained after
N =107 iterations are shown in figure 1.
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Figure 1. Probability distributions obtained after 10’

iterations: (a) P,(W) of the largest weight, (b)

0 * 05 10 P,(W) of the second largest weight and (¢) [I(Y)
Y of Y =3, W2 for the random map model.

The case of the breaking of the interval is described by similar equations. Again,
to go from one sample to the next, one needs only to iterate (20) (this is easily seen
by looking at (13)). The only difference from the random map is that in (20) W, is
chosen according to the probability p(W). In figure 2 we show P,(W), P,(W) and
II(Y) obtained after N =107 in the case of p(x)=1.

The case of the mean field theory of spin glasses is a little more difficult because
we did not find a way of constructing a new sample from an old one by just adding
one weight. However, there is an easy way of constructing samples, from the knowledge
(11c) of fsc(Wi, W,, ..., Wx) for all K, by the following procedure. Choose a

sequence of random numbers x,, x,,...,x, where x, is chosen according to the
probability distribution p,(x) given by
I'(n—ny+ 0
R A (S a 21)

IF(n—ny)L(» "



Randomly broken objects and multivalley structures 5279

L L
(a) (b)
2 s 2
o o
0 05 70 0 2 10
W
A
(e}
£ 2
=
Figure 2. The same as figure 1 in the case of interval
0 O'YS 10 breaking with p(x) = 1.

Then build the sample for the spin glass problem by calculating the weights
W, W,,..., W, by

W, =x,
W2= (1-Wy)x, (22)
W,=(1-W,— Wo—...— W,_)x,.

The way in which (21) and (22) can be related to the expression (1lc) of
fsa( W, W,, ..., W) is quite easy to understand, as follows. Once the first K —1
weights have been constructed, using fso(W,, W,,..., W), then one knows the
probability distribution of Wy (which depends on K and W,, W,,..., W, _,). More
precisely, from f( W) one knows that the probability R,( W,) that the physical system
is in a valley of weight W, is

R,(W)=W, f(W,).



5280 B Derrida and H Flyvbjerg

Now assume that we know that there are valleys of weights W, W,, ..., W, _, and
we want to know the probability Rx(Wy) that the system is in the Kth valley of
weight Wy. Then one has

WKfK(WI’ WZs"‘9 WK-—ls WK)

Re W) =T W whc (W, Wi, Wer, W)
- y—1 K-Ky-1
I Ky+y)(WK> (1_ w,<> ( | ) )
TOIT(K —K»)\1-§ -5 -5
where

S=1“"W|_W2_...—’WK_|. (24)

This means that to choose Wy one needs only to choose a number xx at random
distributed according to px(x) given by (21) and then Wg=(1-W,-W,-

coo— Wil xk.
A A
{a) (&)
g —
= 2r 2 g
o <
0 05 10 0 ' 05 To
W W
A
()
s
Z r
0 ‘ 0T ! 10 Figure 3. The same as figure 1 for the infinite-range

Y spin glass with y =0.7.
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In figures 3 and 4 we show P (W), P,(W) and [I(Y) obtained as the histograms
of the W, .., Wi, and Y of N=10" samples (y=0.7 for figure 3 and y=0.9 for
figure 4). For each sample, one needs in principle to build an infinite number of
weights W,. In practice, we construct only a finite number S of weights W, and we
stop our calculations when

S
Y W,>1-¢  withe=10""
s=1

Then the error on Y does not exceed & and the error on W,,,, and Wi, is usually
zero because all the weights W, for s > S would not exceed &.

From a practical point of view, there is a technical difficulty in generating the
random numbers x, distributed according to the distribution p,(x,) given by (21)
because jf) pn(x) dx is not a simple function of y. To do so, we have used a rejection
method which is described by Knuth (1981).

4 A
{al f2)]
— 2k Y
5 3 2F
=3 al
Q
0 05 10 0 05 10
W W
L
(c)
S ot
[
0 o‘,s == 10 Figure 4. The same as figure 1 for the infinite-range

Y spin glass with y =0.9.
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The shapes of [I(Y) for y =0.7 and 0.9 have already been given by Mézard et al
(1984a, b, 1985). The shapes they found are rather similar to those of our figures 3
and 4. However, they did not find the singularities at Y =3 and Y =3 which can be
seen on our figures 3 and 4. This is because they computed an approximate II(Y)
from the knowledge of the first moments of Y. Such approximate methods are not
well adapted to observe singularities in I[I(Y).

By comparing figures 1, 2 and 3 we see that our three examples give very similar
shapes for P (W), P,(W) and II(Y). All these distributions seem to have singular
behaviours at 3 and 3. The purpose of the next sections is to explain these singularities
and to discuss how general they are.

5. Singular behaviour in the distributions P,(W) and P,(W) of the largest and second
largest weights

In this section we see that the distributions P,( W), P,( W), P,(W), ..., can be computed
analytically from the knowledge of f(W), f(W, W') and f(W, W', W") and that these
distributions have in general singularities at W=1,1,3,...,1/n,....
If there is a piece with weight W >3, this weight must be the largest one. Therefore,
one always has
P(W)=f(W) for W>1i (25)

If there is a piece with weight W, for ; < W <3, this piece can either be the largest one
or the second largest one. Therefore

P W)+ Py(W)=f(W) for < W <3 (26)
etc, and
P(W)+P(W)+...+P,(W)=f(W) forl/(n+1)<W<1/n (27)

where P,(W) is the probability distribution that the nth largest weight is W,
For similar reasons, if one defines Q, ,.(W, W’} as the probability distribution that
the nth largest piece has weight W and the mth largest piece has weight W', one has

Qua W, W)= f(W, W) for W> W'>1 (28)
QA W, W)+ Q,5(W, W)+ Qu(W, W)= f(W, W) for W> W'>} (29)
and so on

Y QunlW, W)=7(W, W) for W>W'>1/(p+1). (30)

lsn<msp

More generally, if one denotes by R, ., ..(W,, W,, ..., W) the probability that the
n;th largest piece has weight W,, the n,th largest piece has weight W,, etc, then one
has

Rn,,ng ,,,,, nK(WI’WZa---sWK)
Isn<n,<.<ng=p
=f(W,, Wy, ..., W) for W, > W,> ... > We>1/(p+1). (31)
From these relations it is possible to obtain P,(W), P,(W), P,(W), ..., in the various

intervals. For example, using (28) one has

Py(W)= j dx f(x, W) for i< W (32)
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which expresses that there is a piece whose weight is larger than W and therefore
from (26) one obtains

P,(W)=f(W)—'[ dx f(x, W) for }< W. (33)

Using (31) for < W < W’ one obtains in the same way

1

PAW) =j dx J dyf(x,,y, W)

w

Qs W', W) = J dxf(x, W, W)
" (34)
Quy(W, W)=J’ dxf(W', x, W)

QA W', W) =f(W', W) = Q, (W', W) — Q,5(W', W)

and therefore for 1< W < W’ one obtains

Py(W)= J dx Ql,z(X, W)

=J dx f(x, W)—ZJ dx J’X dy f(x, y, W) (35)

and

P, (W)= f( W)—J dx f(x, W)+J’ dx JX dy f(x, y, W). (36)

These results can be generalised to any interval
1/(n+1)<W<1/n. (37)

After some calculations one finds that on this interval the probability P,( W) that the
Jjth largest piece has a weight W is given by

Z( 1)'}—(1—)'—1<W) (38)
- ng-=-nrr

where

I,-(W)=J‘ dx, f dx, . .. J Ay f(X0, X2 Xy, W), (39)

We will not give the derivation of (38) here: it is a direct generalisation of the derivation

which led to (33), (35) and (36). Let us just mention that (38) can be obtained as a

consequence of

2 (j=1)!

(W)=} ————— P(W).

W)= 2 G —m AW (40)
We see from formulae (25), (32), (36) and (38) that the expression for P,(W) is

different on each interval 1/(n+1)< W < 1/n. The same is true for P,, P; and all the
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P,. Since the analytic expressions of the P, are different in the different intervals
1/(n+1) < W<1/n, one expects to see singularities of P,( W) at all the values W=1/n.
These singularities are, however, weaker and weaker as n increases: they are due to
the factthat I, ,(W)=0for W>1/nand I, (W) # 0 for W< 1/n,so when n increases
the singularity due to I,{ W) is weaker and weaker because I,( W) is an integral over
more and more variables.

As an example let us give the expressions for P,(W) and P,(W) for our three
examples. For W>}

1 1

P; (W)=2—“—/m (41a)
W21 - W)
W)= —eeo——— a1b
P =T Gra =) (41e)
PR (W)=(a+1)(1-W)*/W (41c¢)
and for i< W<
P = e (1 2w) e (2% )
2 )_4W(1—W)‘/2 og - w 0g - w
(42a)
P§G(W)=J YW, W)y dw’ (42b)
1 1-W
P?'(W)=W10g<—“,—> (42¢)
P((W)=f(W)-P,(W) (42d)

where (42c) for the breaking of the interval is the expression in the case p(W)=1.
These expressions agree with the numerical results given in § 4.

One should notice that there could be other singularities in P,( W), P,(W),..., or
the singularities at W = 1/n could disappear if the functions f(W,, ..., Wx) had some
non-analyticities in the domain W,=0,..., W, =0, 1- W,—...— W, =0. For the

three examples we have described here the functions f are analytic and therefore one
does not expect other singularities.

6. Singularities in TI(Y)

In the previous section we have seen that, knowing the first K functions
SIWD, (W, Wo), ., fIW,, Wy, L., W), itis possible to calculate the distributions
P(W),..., P (W) for W>1/(K+1).

The knowledge of a finite number of functions f( W) does not allow us to calculate
parts of II(Y). There is, however, some information about II(Y) contained in these
functions, for example, some moments of I1{Y) and I1,(Y,)

)7=J-f(W)W2dW=J-g(W)WdW (43)

7=Jg(W, W) WW dW d W' (44)
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and more generally

(YP)"=J...Jg(W,,..., W)W WP AW, .. dW, (45)

but, of course, the singularities of II(Y) or [1,(Y,) cannot be extracted from the
knowledge of a finite number of moments.

We believe that the singularities in [1(Y) that we observed in § 4 are quite general
and occur in all kinds of problems of random breaking. We did not, however, find a
general proof of their existence, so we will discuss these singularities only in the
restricted case of our three examples.

Let us first discuss the case of the random map and of the random breaking of the
interval. We have seen in § 4 that the distribution II( Y') was nothing but the histogram
of the Y(n) where the sequence Y(n) is constructed by the random process (20)

Y(n+1)= Wi+(1-W,)’Y(n) (46)

where the W, are randomly chosen according to a given distribution p( W) which is
arbitrary for the problem of randomly breaking the interval and which is given by

prml W)=%(1_ W)_l/z (47)

for the random map problem.
So Y(n) and Y(n+1) have the same limiting distribution II(Y) for n-> o and
from (46) one sees that II( Y) obeys the integral equation

1 1

p(W)dWJ (Y)dY' 8[Y - W= (1- W)2Y']

C[p(W)dW_ [ Y- W?
‘L - wy “((1—W)2) (48)

H(Y)=J'

0

which can be rewritten as

YU H(W) AW - w2
II(Y)=L "((1_)W)2 n((’l/_ xl)z) for Y <} (49a)
w_ y1/2 _ 2
nm=(L +Jw )p((l‘—V)»s)ZVHG— x)) for Y>3 (49b)
where
W,=1xQY-1)"]. (49¢)

Equation (48) can be reduced to (49) because I1(Y) and p( W) have their support on
[o,1].
For Yclosetol, Y=1—¢,6~0, W, =1—1c -1+ O(¢e*). Therefore, and because
IT is normalised, it follows from (48) that when a <0
1-e-W?
(1-w)?
because the integral from O to W is negligible. For the breaking of the interval according

to the distribution p( W) given in (17) (or according to any other distribution p( W)
with exponent a in W =1) we see that

De(Y~1)xc(1-Y)*+0[{(1-Y)*"]. (51)

1—5/2-¢2%/8

n(l—e)=§p<1—%e)f dwn( )=%p<1—%e) (50)

1-e/2-¢%/4
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For the random map, for which a = -}, we have

Mem(Y~1) +0[(1-Y)"?]. (52)

1

S [B1-Y)1

Since (48) gives different relations for II(Y) according to whether Y is larger or
smaller than 3} it is not surprising that I1(Y) is singular at Y =3. This singularity may
be viewed as ‘inherited’ from the singularity at Y =1: for Y =3 the function (Y -
W?)/(1 ~ W)? has a maximum value of 1 occurring at W =4. Consequently the integral
in (48) picks up a contribution from I1(Y ~1). With I1*"® denoting the dominant
part of the singularity in II(Y) we have

H(Si"g)(%s)&J AW T8 (1+4¢)[1-8( W 5T+ O((W - b)]). (53)
So for [I*™¥(Y ~1)ac|1— Y|* we have
j AW [de —8(W =1 oc o172 (54)
b

where b =3 for ¢ <0 and b=3+(e/2)"? for ¢ >0. Equation (54) is obtained for any
p(W) with exponent @ in W=1. For the random map a =—3} and (54) signals a
logarithmic singularity.

Now let us consider more carefully the function

Y(W)=(Y—-W)/(1- W) (55)
It is maximal at W =Y with the value
Yll'nax = Y/(l - Y) (56)

We have already seen that, since Y/, =1 for Y =}, the singularity of II(Y) at Y =1
gives rise to a singularity at Y =3. In general Y, ,,=1/nfor Y=1/(n+1), giving rise
to singularities at Y=1/n,n=1,2,3,...

II(Sing)(l/n 8)
1 [1 : ]{1 : ( 1>2
n l n 1 (n—1)2 n

A=-4)

oC J‘ d w H(sing)

N

Thus for
(sing) 1 1 .
I1 Y~;1T1 o Y—n—l (58)
we have
. 1 2 298
n‘s'"g)(—w)ocj dw[(zn—1)s~ - (w—l>]
n 1/n n—1 n
&EBH/Z. (59)

Random breaking of an interval according to a distribution p( W) with exponent « in
W =1 thus gives

5" (Y —1/n)c (Y —1/n)" /2 (60)
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An integer exponent in (60) (as occurs, for example, for the random map for which
@ = —3) signals a logarithmic singularity.

The line of arguments just presented for II(Y) may be applied to any of the
probability distributions I » for the quantities Y, defined in (12). One finds singularities
at the points

Ye=(1/n)""! n=1,2,3,... (61)
and the same exponents as for II(Y)
ME™(Yp~[1/n]") e (Yp ~[1/n]"7h) " 70/20e (62)

where « is the exponent of p(W) at W=1.

Finally, for the spin glass case the integral equation (48) generalises to an infinite
set of integral equations coupling as many probability distributions Il (Yp;), j=
1,2,3,..., where Il =11, and

(5w

Our two other examples (B1 and RM) are special cases for which I1,; =11, for all
J. The line of arguments presented above generalises again, and after some calculations
one finds in the spin glass case that I1,(Y,) are again singular at Y, =(1/n)""",
n=1,273 ...

H(;ing)( YP~ (I/H)PAl)x(Y"‘ (l/n)P—I)(n~3}/2+n(l>,\'b' (63)

Here y is a parameter between 0 and 1 containing the physical parameters of the
system. We notice in (63) that the locations of the singular points do not depend on
¥, and are identical to those found for random breaking of the unit interval, cf (62).
The exponents on the other hand do not depend on P. This is again similar to the
breaking of the interval (62) though the n dependence of the exponents differs between
{62) and (63). Equation (63) shows that, for any value of y between 0 and 1, IT5( Y})
diverges at Yp =1 with exponent —y. These results agree with what was predicted by
Mézard et al (1984a,b). For y between ; and 1, [1,(Y,) diverges also at Y= (3)7"",
with exponent —2(y —3). For y =3 the divergence is logarithmic. For no value of y
between 0 and 1 does [1,(Y,) diverge at Yo =(1/n)""", n=3,4,5,....

7. Conclusion

In the present paper we have shown that our three examples (the random map, the
infinite-range spin glass and the problem of the randomly broken interval) have very
similar behaviours as far as the shapes of II(Y) and of the probability distributions
P,(W) and P,(W) of the largest and second largest pieces are concerned. We have
seen that the values Y =1/nand W=1/nforn=1,2,3,..., are always singular points
of these probability distributions and we have computed some of these singular
behaviours. The presence of these singularities is certainly more general than our
examples and they should be observed in a very large class of theoretical problems
(Y is, for example, the inverse participation ratio in localisation) or of experimental
situations (for example, breaking dishes, nuts, chalk, particles, etc). We were first
surprised to see them in the random map problem and to recover them in the
infinite-range spin glass and in the randomly broken interval. We think, however, that
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their presence could have been easily guessed: when one breaks an object into only
two pieces (Bray and Moore 1985) of weights W and 1~ W, one has, of course,
P(W)=0 for W<i P,(W)=0 for W>1 and [I(Y)=0 for Y <} because Y=
W2+ (1 - W?) cannot be less than 3. So already in this very simple case, one starts to
see the singularities at W=} and Y =3.

It would be interesting to know whether these singularities can be observed in any
measurable quantity. Also it would be interesting to know what information about
the random breaking process is contained in the knowledge of the distributions
P (W), P,(W),...,II(Y). In other words: by looking at the pieces of many randomly
broken objects, what can be said about their history? We think that an interesting
model to study would be one for which at time ¢, a piece of weight W’ which has been
created at time t', has a probability P(W, W', ¢, t’) of breaking into two pieces of weight
W and W’ — W. What could be said about the function P(W, W', ¢, t') by knowing
the statistical properties of the pieces at an observation time ¢,?
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