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Abstract. - Kauffman’s model is a random complex automata where nodes are randomly 
assembled. Each node o, receives K inputs from K randomly chosen nodes and the values of Q? a t  
time t + 1 is a random Boolean function of the K inputs a t  time t. Numerical simulations have 
shown that the behaviour of this model is very different for K > 2 and K S 2. It is the purpose of 
this work to give a simple annealed approximation which predicts K = 2 as the critical value of K. 
This approximation gives also quantitative predictions for distances between iterated 
configurations. These predictions agree rather well with the numerical simulations. A possible 
way of improving this annealed approximation is proposed. 

The study of automata has become recently more and more popular among physicists [ l l .  
Problems of cellular automata [2] are very related to classical models of statistical mechanics 
(percolation, k ing  models) [3]. Also the ideas developed in the pattern recognition like the 
Hopfield model [4, 51. 

Networks of Boolean automata to study the behaviour of generic regulatory systems 
were introduced by KAUFFMAN [6] in 1969. The subsequent studies have revealed 
surprisingly ordered structures in randomly constructed networks. In particular the most 
highly organized behaviour (small attractors, smaller number of attractors, stable 
attractors, etc.) appeared to occur in networks where each node receives inputs from two 
other nodes. 

Two approaches have been taken to attempt to understand this emergence of ordered 
behaviour. One focused on the percolation of a particular kind of subgraphs (forcing 
structures [7-101). A second approach is based on arguments concerning one-step con- 
vergence in phase space [8, 11, 121. While these approaches have been, to some extent, 
successful, they have not yet explained some of the most important numerical observations. 
In this note, we shall suggest a novel and independent approach to these questions. 

Let us first briefly describe Kauffman’s model. The model depends on a parameter K. The 
system consists of N spins 5, which can take two possible values (g2 = 0 or 1). The time 
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evolution of this system is given by N Boolean functions of K variables each 

O$t+l) =fi(atf’, q, . .. , 0:;)) . (1) 
For each i, the spins q,, qz, ..., qK are randomly chosen among the N spins. They need not 
be different (i.e. il can be equal to i2 for example). So the system is defined once a functionfi 
and a set il, i2, ..., iK have been chosen for each site i. In fig. 1, we can see an example for 
N = 4 ,  K = 2 .  

Fig. 1. - An example for N = 4 and K = 2. 

There exist 2@ possible Boolean functions of K variables. In Kauffman’s model, each 
function fi is randomly chosen among these 22K possible functions. 

The system is random because, for each i, the set il, ..., iK is randomly chosen and 
because the functionfi is random. This randomness is quenched because the functionsf, and 
the sets il, ..., i~ are quenched (they do not change with time). 

The most interesting questions one can ask about this system concern its time evolution. 
For finite N ,  the long-time behaviour nust be periodic because the system has 2N possible 
configurations F? of the spins c,. So after a long time the system comes back to a 
configuration that it had already visited and then the evolution becomes periodic. 

There are many questions one can ask about this model: 
What is the length of the limit cycles? 
What is the number of different limit cycles? 
If one considers 2 different spin configurations at time t = 0, what is the probability that 

they become the same at  time t? 
If one starts with two randomly chosen configurations of the system at  time 

t = 0, what will be the distance between these configurations after time t and in the limit 
t+ w? 

There have been several numerical studies of this model [8, 101. Let us summarize briefly 
what has been observed, For K G 2 ,  the length of cycles seems to be small and of order 
/?(K)N4, whereas for K 3 3, it increases like exp [a(K)Nj. Therefore, there must be a critical 
K, with 2 G K, 6 3, where a(@ and P ( K )  should have a singular behaviour. The number of 
different cycles has been measured. Also the distance between a configuration and its 
successor has been measured for several cases (K  = 2, 3, 5, 7). 

The purpose of this letter is to present a simple approximation to this model which 
explains why there is a critical value K, of K and which allows one to calculate many 
properties of this model. This approximation neglects the fact that the functionsfi and the 
sets il, ..., i~ are quenched (i.e. constant over time) and instead randomly reassigns inputs 
and functions to all spins at each time step. 

Thus this is a kind of annealed approximution. It turns out that its qualitative and 
quantitative agreement with what has been observed in numerical simulations is 
surprisingly good. 

and 



B. DERRIDA et al.: RANDOM NETWORKS OF AUTOMATA 47 

Let us consider 2 spin configurations 6 and g which are at  distance n. By definition 
the distance d(g, g) between two spin configurations is n, if the number of spins which 
are different in the two configurations is n. If one considers two randomly chosen 
configuration g and such that d ( 6 ,  E$) = n at time t = 0, one can calculate the 
probability Pl(m, n) that the distance cl(%’, g’) between their images g‘ and g‘ at 
time t = 1 is d(g’, E’) = m. 

and 
B the set of spins which are different. Set A contains N - n spins, whereas B contains n 
spins. Let us call &(No) the probability that No spins have all their K arrows coming from set 
A.  One has 

To calculate Pl(m, n), let us call A the set of spins which are identical in 6 and 

These No spins will be of course identical in g’ and g’. For the remaining N - No spins, 
since at least one of their inputs is different in g and g, there is a probability 3 
that they are the same in 6’ and g’ and 3 that they differ. Therefore, the 
probability Pl(m, n) that d(g’, g) = m is 

One can easily compute the sum over NO and one finds 

 PI^, n) = 

This formula is the exact probability Pl(m, n) for Kauffman’s quenched model if % and 
6 have been randomly chosen at  time t = 0. 

obtained at  time t are at  distance m, given that d ( @ ,  g) = n at t = 0, for Kauffman’s 
model one must take into account that the configurations @) for t a 1 are correlated to the 
€unctions fi and the sets il, ..., i ~ .  So 

If one wants to calculate the probability Pt(m, n) that the configurations %(t) and 

However, if one neglects these correlations, i.e. one studies the model where at  each time 
the functions fi and the sets il, ..., i~ are changed (so that the functions fi and the sets 
il, ... , i~ are no longer quenched), then Pt(m, n) in this annealed approximation is given by 

(m, n) = c e - .  c P l h ,  qt-l)Pl(qt-l, q t - 2 )  a . .  Pl(q1, n) * (6) 
N N 

pannealed 
t 

q,=o qt - l=O 

For large N ,  one can introduce continuous variables 
n m 

N N (7) 

and one can see easily from (4) and (6) that all the PTannealed (m, n) become very peaked 
around a well-defined value of y. 

-- -Y -_  - x ,  

From formula (41, one sees that Pl(m, n) is very peaked around a value y 1  given by 

1 - (1 - X)K 

2 Y1= 
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For similar reasons F'?nnealed (m, n) is peaked around a value of m = Ny,, where yt is given by 

Y1  being given by (8). 
is given, then with probability 

1 in the limit N+ 03, the distance between their images at  time t is Nyt. Therefore, the 
problem reduces to the study of the map (9). 

For K S2,  the fixed point IL! = 0 is the only fixed point of the map and it is attractive. For 
any sarting value x, yt+ 0 as t+ 03. So 

So we see that once the distance Nx between-% and 

&"-+cc N 
For K > 2, the fured point x = 0 is unstable and there appears a new fixed point y* of (9) 

which is attractive. Therefore, in the limit t+ CO, 

So we see that this simple annealed approximation gives a critical value K, = 2. 

Kaufman's model (see table I). One sees that the agreement is surprisingly good. 
One can compare the value y* with what has been measured in numerical simulations of 

TABLE I. - Comparison of the value of y* with measured distances in simulations of Kauflman's 
model [lo]. 

K y* fixed point 
of (9) 

Masured distance between 24-th 
and 25-th iterates for N = 108 

2 
3 
5 

0 
0.38197 
0.48121 

0.113 k 0.097 
0.37 kO.078 
0.485 k 0.047 

It is also possible to calculate within this annealed approximation the mean fluctuations of 
y around y* in the limit t + W .  This can be done easily by relating the moments of m to those 
of n using formula (4), assuming that one has a probability distribution of the distances n 

This gives in the limits N+ CC and t+ CC 

So we see that this annealed approximation predicts a critical value K, = 2 and allows 
calculation of the K-dependence of several quantities. 

This annealed approximation can be extended to generalizations of Kauffman's model. 
For example if instead of having all spins with K inputs, one considers a model where the 
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number of inputs is not the same for all the spins. Then, if there are N p K  spins having K 
inputs, one can show easily that formula (9) becomes 

Another generalization of Kauffman's model consists in giving different weights to the 
functionsfi. A functionfi takes 2K possible values 0 or 1. Formula (9) was obtained by giving 
the same weight to all possible Boolean functions. If instead of that, one gives a weight which 
depends on the number of times that the funztionfi takes the value 1 (namely the probability 
that a functionfi is proportional to p"(1- p)' -", where a is the number of times that function 
fi takes the value (l), then formula (9) becomes 

Y t + l =  I1 - (1 - ydK12p(1 - p >  (15) 
One big difference between the annealed model studied here and Kauffman's model is that 

in the annealed model there is no limit cycle because the rule is changed at each time step. So 
a priori the annealed approximation cannot give any prediction for the length of the cycles. 
However, if one takes a slightly different point of view, one can relate the lengths of the 
cycles in Kauffman's model to an analogous quantity in the annealed model. Suppose that we 
start at time t = 0 with all the 2N spins configurations. The system has, at t = 0, 2N different 
configurations. If one iterates, one can pose the question: how many different configurations 
will remain after time t? In the limit of very long time, in Kauffman's model, one obtains the 
number of points which belong to limit cycles. In the annealed model, one can ask the same 
question for K > 2. At the moment we have not found a way of calculating this quantity and, 
therefore, we do not know if it would give a good estimate for the total number of periodic 
points in Kauffman's model. But we think that this quantity would be worth studying. 

Lastly, it seems that one can try to improve the annealed approximation described in the 
present work. In the annealed approximation, one calculates exactly Pl(m, n) for 
Kauffman's model and then one uses formula (6) to approximate Pt(m, n). One could try to 
calculate exactly Pe(m, n) for Kauffman's model because this would take into account partly 
the fact that the fi and the sets (il, ..., iK) are quenched and then make an annealed 
approximation similar to formula (6) based on Pe(m, n). 

* * *  
This work has benifited a lot from discussions with S. KAUFFMAN. We would like to thank 

him for his encouragement. 
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