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Abstract. We use a finite-size scaling calculation to study the phase diagram of the 
two-dimensional, three-state, chiral clock model. Bulk properties, the ferromagnetic transi- 
tion temperature and associated exponents are calculated from the scaling of the suscepti- 
bility and interface behaviour, the position of the interface wetting line and its exponents, 
from considering the net adsorption. We also present preliminary results on interface 
properties which are sensitive to the transition between the paramagnetic and incommensur- 
ate phases. 

1. Introduction 

The phase diagram of the two-dimensional chiral clock model (Huse 1981, Ostlund 
1981) has proved complicated and controversial. The model exhibits many interesting 
features, a floating phase, chiral exponents, a Lifshitz point and an interfacial wetting 
transition even at zero temperature (see, e.g., Huse et a1 1983, Duxbury et al 1984 and 
references therein). 

In this paper we study the properties of strips to further elucidate the thermodynamic 
behaviour of the model. The work of Duxbury et a1 (1984) is extended by calculating 
the susceptibility, x, to obtain the phase boundary of the ferromagnetic phase and a 
combination of the bulk exponents. We then study the interface properties of the 
model to extract the position of the wetting transition and the associated exponents 
(Huse et a1 1983). The results are compared to those obtained for a solid-on-solid 
model (Selke and Pesch 1982). Lastly we investigate several quantities which are 
sensitive to the appearance of the floating phase. 

The two-dimensional chiral clock model (Ostlund 1981, Huse 1981) is described 
by the Hamiltonian 

where a variable ni = 0, 1 ,2  is associated with each site i of a square lattice and the 
sums are taken over nearest neighbours in the axial ( 1 1 )  and perpendicular (I) directions 
respectively. The phase diagram of the model is drawn schematically in figure 1 for 
0 < A < i. (The phase diagram for all other values of A may be obtained using symmetry 
arguments.) Three phases are stable: the ferromagnetic phase, F, the paramagnetic 
phase, P, and the floating or incommensurate phase, I, which is characterised by 
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Figure 1. Schematic phase diagram of the two-dimensional chiral clock model. The broken 
curve corresponds to the interface wetting transition. 

modulated order with a wavevector, q, which varies continuously with T and A. There 
is considerable controversy over the position of the Lifshitz point. Selke and Yeomans 
(1982) and Howes (1982) claim that the phase diagram is as drawn in figure 1 with a 
Lifshitz point at a finite value of A. However Haldane et a1 (1983), Schultz (1983) 
and von Gehlen and Rittenberg (1983) argue that the floating phase extends to a 
Lifshitz point at A = 0. 

Huse er a1 (1983) have recently pointed out that the chiral clock model has interesting 
interface properties. Consider an interface perpendicular to the axial direction. 
Because of the chiral nature of the interaction the free energy of an interface between 
spins taking values nL, nR will depend on ( nR - n L )  (modulo 3 ) .  Let us call a + ( - ) 
interface one for which ( nR - nL)  (modulo 3) is 1 (2). For A = 0 the free energies of 
+ and 7 interfaces, F+ and F- respectively, are equal. However as A is increased F+ 
decreases relative to F-. When 2F+ = F- it will be favourable for any - interface to 
split into two + interfaces and hence become wet. 

We call the line where this happens Tw(A); a consideration of ground-state energies 
shows that, for A =a, T, = 0. Huse er a1 (1983) have argued that Tw(A) should increase 
with decreasing A and join the ferromagnetic-paramagnetic phase boundary at A = 0. 
For values of T > Tw(A), they suggest that the decomposition of the - interfaces will 
lead to a change in the nature of the fluctuations and hence that the ferromagnetic- 
paramagnetic phase boundary could be in a new chiral universality class different from 
that of the three-state Potts model. Huse er a1 (1983) argued that the crossover exponent 
is positive and chirality is indeed relevant. Analytic but heuristic arguments given by 
den Nijs (1984) support this. However, no numerical evidence for any new exponent 
on this phase boundary has been obtained so far (Selke and Yeomans 1982, Duxbury 
er a1 1984). 

In this paper we calculate the exact thermodynamic properties of infinite strips of 
width N (non-boundary) sites and use finite size scaling (Barber 1983) to extract the 
properties of the two-dimensional system. In 0 2 we consider the susceptibility of strips 
with the infinite direction taken along the axial direction and with periodic boundary 
conditions perpendicular to the strip. This enables us to estimate the ferromagnetic 
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phase boundary and the exponent y / v L .  We then repeat the same calculation for a 
different orientation of the strip, the axial direction now being perpendicular to the 
infinite direction of the strip. 

In § 3 we present results for the excess number of the non-boundary state generated 
by the interface. Looking for the line where this quantity scales with the strip width, 
gives estimates for the wetting line, TJA), and the corresponding critical exponents. 
The extent to which the results can be reproduced by a solid-on-solid model of the 
interface is discussed in § 4. Finally, in § 5 we present some preliminary results which 
indicate a phase transition at finite temperature for A = $  which corresponds to the 
appearance of the incommensurate phase. 

2. Scaling of the susceptibility 

The free energy per spin of a strip of width N, F N ,  is obtained as usual (Camp and 
Fisher 1972) from the largest eigenvalue, A N ,  of the transfer matrix 

F N  = - ( T I N )  log(AN). (2) 

xN = a 2 F N / a H 2 .  (3) 

If H is the field which couples to state 0 we may define a susceptibility by 

We first choose the chiral direction to lie parallel to the infinite direction of the 
strip and take periodic boundary conditions across the strip. Hence no quantisation 
of the wavevector is imposed by the finite strip width. 

The susceptibility is expected to scale in the vicinity of the ferromagnetic phase 
boundary, TJA), as 

(4) X N  ( T )  - NY’”- f (NI’”-( T - T,)) 

where v, is the exponent of the correlation length perpendicular to the axial direction. 
In general this is expected to differ from the exponent in the axial direction, vll ,  because 
of the chiral nature of the transition. To extract the critical temperature and the critical 
exponent we compare three strips of sizes N + 1, N and N - 1 (Kinzel and Yeomans 
1981) and calculate the curve Tr(A) which solves the equality 

X N (  T,N) = xN-’(  T,N) ( 5 )  

where 

X N ( T )  =iog(XN+’/XN)/ log( (N+ l ) / N ) .  

We then expect 

and 

lim TF(A) = T,(A). 
N-Jo 

The estimates of the phase boundary of the ferromagnetic phase shown in figure 
2 were obtained from these calculations. The results converge well as can be checked 
for A = O  where the exact value of T, is known to be 1.4925. They are in agreement 
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Figure 2. Estimates of TJA) from scaling the susceptibilities of three strips of widths N - 1, 
N and N + 1. The chiral direction is parallel to the infinite direction of the strip. The exact 
value of Tc(A = 0) is indicated by an arrow. 

with previous strip calculations (Duxbury er al 1984) in which different thermodynamic 
quantities, the correlation length and the wavevector of the modulated order, were 
scaled and with Monte Carlo results (Selke and Yeomans 1982). 

The values of the ratio y /  vI obtained from (7) are shown in figure 3. For A = 0, 
where the exact value of y /  v, = 3 = 1.733 is known (Wu 1982) they seem to converge 
well. 

t 
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n 

Figure 3. Exponent estimates from scaling the susceptibility. The full curves show y /  U-, 
obtained with the chiral direction along the strip; the broken curves show y /  Y,,, obtained 
with the chiral direction perpendicular to the strip. The exact value for A = 0 is indicated 
by an arrow. 

The results suggest that the ratio y /  vi is independent of A except for A = 0.5 where 
it takes the value of 1. Perhaps it is not surprising that we see no crossover to chiral 
exponents for the ratio y / v I  as all previous numerical work suggests that even if the 
exponents are changed by the relevant operator it is only by a small amount (Selke 
and Yeomans 1982, Howes 1982, Duxbury er a1 1984). 

It is interesting to compare calculations identical except that the long direction of 
the strip is taken perpendicular to the chiral direction. Results for T,(A) are very 
similar for A 6 0.35 and cannot be distinguished on the scale of figure 2. However for 
A b  0.35 the iteration routine which found the largest eigenvalue of the transfer matrix 
converged much more slowly and the Newton's method that we used to find the value 
of T, which solves ( 5 )  failed to find a fixed point. 
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Along the transition line, the ratio y /  vll seems to increase continuously with A (see 
the broken curves on figure 3)  suggesting (as y /  vl is constant) a variation of the ratio 
v,/vlI .  For A a O . 3 ,  however, the estimates of the ratio y /v I I  increase with N and do 
not seem to converge in the limit N + m .  The reason for the poor convergence is 
probably that the axial direction is perpendicular to the strip. This forces the system 
to have quantised values of the wavevector, q, whereas in the infinite system q would 
vary continuously with T and A. However it is possible that the bad convergence of 
y /  vIl and the fact that we do not find any fixed point for A 3 0.35 are reflecting the 
presence of the Lifshitz point. 

3. The interface wetting transition 

In this section we describe the application of finite strip calculations to the interface 
properties of the chiral clock model. The interface is introduced by taking the strip 
to lie perpendicular to the axial direction and fixing its infinite boundaries in states 0 
and 2 as shown in figure 4 for N = 4. In general interface properties are extracted by 
comparing the results to those on a strip with both boundaries fixed in state 0 which 
should describe a system with no interface in the thermodynamic limit. Because the 
finite dimension of the strip must lie along the axial direction to introduce the interface 
correctly the results should be viewed with circumspection as A increases because the 
system will be unable to attain its preferred wavevector. However, it seems reasonable 
that the wetting line, which lies within the ferromagnetic phase, should not be affected. 

An interesting quantity is the net adsorption of the non-boundary state, 1, defined 
by 

W;"( T, A )  = dV\0x2'( T, A) - uV(lo*o)( T, A) (9) 

where is the average number of spins per row in state y with boundary conditions 
(a, P )  (Selke and Pesch 1982). We expect WF(  T, A) to have a finite limit when N + CO 

0 2 

0 2 

0 2 

0 2 

0 2 

c 2 

0 2 

0 2 

0 2 - Chiral d, rect ion 

Figure 4. A strip of width N = 4 showing the boundary conditions used to introduce an 
interface. 
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for T < T,(A), when the interface is not wet, to scale as N in the wet phase T,(A) < T < 
TJA), because the 0-1 and 1-2 interfaces are independent of each other in the 
thermodynamic limit, and tend to a finite limit in the paramagnetic phase. 

W,"( T, A)  is plotted as a function of temperature for N = 2 to 6 and various values 
of A in figure 5. For A = O  the curves show a maximum at a value of the temperature 
which appears to converge to T, = 1.4925, the exact result for the three-state Potts 
model. For T >  T,, W,"C T, A )  decreases with increasing N and will become zero in 
the thermodynamic limit; for T < T,, W,"( T, A )  converges to a finite value (with increas- 
ing N ) .  

For A = 0.15 similar behaviour is observed. The maximum occurs at a lower 
temperature reflecting the decrease in T, and T,. The wet phase is expected (Huse et 
al 1983) to extend over a small but finite range of temperature for this value of A but 
our results are not sensitive enough to confirm this. In general W,"( T, A )  increases 
with increasing A as it becomes more favourable to include non-boundary states at 
the interface. 

3 3 5  10 1 5  2 0  2 5  
T 

0.5 1.0 1.5 2.0 2.5 0 
T 

Figure 5. Net adsorption of the non-boundary state, 
W p (  T, A )  as a function of temperature for ( a )  A =  0 ,  
( b )  A=0.15, (c )  A = 0 . 2 5 ,  ( d )  A=0.4,  ( e )  A=0.48 .  
(Note that the vertical scale changes with A . )  
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Note that for temperatures T > T,, Wf”( T, A) is virtually independent of N showing 
that the quantity converges to a non-zero limit at all temperatures. To understand this 
effect we adopt the convention that the label in (1) increases from left to right (consistent 
with the boundary conditions in figure 4). Hence for A # O  the spin configuration 
. . .012012.. . is preferable to . . .210210.. . and, if the left-hand wall is in a state n,, 
a larger fraction of spins in its vicinity will be in a state (n, + 1) (modulo 3 )  than 
(n, - 1) (modulo 3). Let these fractions be p + (  T, A )  and p - (  T, A) respectively. For a 
right-hand wall in state n, the fractions of neighbouring spins in states ( n ,  + 1) (modulo 
3) and (n, - 1) (modulo 3) are p -  and p +  respectively. Hence the contribution to J Y ~ , ~ )  
due to this wall effect is p + + p -  and the contribution to NY9*)  is 2p+. This gives a 
contribution to W, of p +  - p -  which is zero only for infinite temperature or A = 0. 

The main difference in the curves for larger values of A (0.25, 0.4, 0.48) is that 
W r (  T, A )  tends to a finite limit at low temperatures showing, as expected, that the 
interface is wet throughout the ferromagnetic phase. It is expected that, for large 
N, W r (  T, A) will scale as N throughout the wet phase. Although one sees clearly in 
figures 5 ( c ) - ( e )  that W, increases linearly with N it seems that the data would be best 
fitted by taking W, - A( N + C). One origin of the shift, C, is the wall effect described 
above but other effects may contribute such as the ambiguity in the definition of N 
(see figure 4 where, for a strip of width N, an interface may lie in N + 1  positions) 
and the width of each of the two interfaces due to their fluctuations which prevents 
them lying too close to each other or to the boundaries. For A = 0.48, W, appears to 
undergo a first-order transition at a temperature - Tc- 0.6 but this may well be a 
consequence of the quantisation of the wavevector. Results for A = 0.5 are postponed 
to § 5. 

We now consider what information can be extracted from scaling properties of the 
wetting curves. Define the quantity 

In the limit of large N the curves of Y ” (  T )  as a function of temperature should be 
coincident throughout the wet region reflecting the scaling of the net adsorption with 
N. This cannot occur for strips of finite size and we find that for A b  0.05 the scaling 
condition 

(11) 

holds at two values of the temperature which appear to converge to the boundaries 
of the wet region Tc(A) and Tw(A) in the thermodynamic limit. 

Using this assumption we obtain the phase diagram shown in figure 6. The upper 
curve gives a reasonable approximation to T,(A) but lies rather higher than the values 
obtained from the susceptibility presumably due to finite-size effects and false quantisa- 
tion of the wavevector. The lower curve describes the wetting transition Tw(A). It 
rises sharply from A=O.25 and approaches T, rather more slowly than predicted by 
Monte Carlo calculations (Selke 1984). The two curves approach A = O  with a high 
degree of tangency as expected (Huse et al 1983) and for A = 0.05 the two fixed points 
merge and (1 1) has no solution. It is not surprising that calculations on such small 
strips fail to reproduce accurately the point at which the two phase boundaries meet. 

Consider now the critical exponents associated with the net adsorption. We expect 
that for large enough N 

Y ” (  T )  = Y”-’ (  T )  
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Figure 6. Estimates for the critical, T,(A), and wetting, T,(A), curves of the chiral clock 
model obtained from the scaling of the net adsorption, W:( T, A ) .  The exact value of 
TJA = 0) is indicated by an arrow. 

wy( T )  - N'$( "'"c( T - T,)) (13)  

in the vicinity of T,(A) and T,(A) respectively. Values of z ,  and z ,  are plotted in 
figure 7. For A = 0 one expects z, = z, = 0.87 (Selke and Huse 1983). For 0 < A S  0.2, 
z, and z, remain equal and rather constant at a value -0.96. However for increasing 
N their values increase and we cannot rule out a slow convergence to one in the 
thermodynamic limit. For A 3 0.2, z, crosses over to a new value and consideration 
of strips of different width suggests that the crossover occurs only for A=O.25 in the 
thermodynamic limit. z, also decreases quickly but converges badly allowing no 
interpretation of the results in this region. 

One difficulty in working with the quantity W;( T, A )  defined in (9) is that, as 
discussed earlier in this section, it includes a contribution from the surfaces of the 
strip as well as from the interface. As a result WF has a finite limit when N -+ a in 
the high-temperature phase. In order to suppress this wall effect one can consider the 

0.7 1 

0 01 0 2  03 0 4  05 
A 

Figure 7. Wetting exponents, z, and z,, of the chiral clock model obtained from the scaling 
of the net adsorption, W;" ( A ) .  The exact value for A = 0 is indicated by an arrow. 
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combination W, + W, where 

W,”( T, A )  = ,4”io’”( T, A )  - u.C’\o*o’( T, A )  (14) 

because, as one can convince oneself using an  argument like that presented above, the 
surface term does not contribute to this quantity and it vanishes as N+co in the 
paramagnetic phase. We found that the results obtained using the new scaling variable 
were almost identical to those which resulted from scaling W,. 

4. A solid-on-solid model 

It is interesting to compare the results of 0 3 to those obtained for a solid-on-solid 
model in which only fluctuations of the interface and not of the bulk are taken into 
account. Huse er a/ (1983) argue that they expect the wetting line of the chiral clock 
model to be in the same universality class as that of a solid-on-solid model. 

The solid-on-solid model we consider (Selke and Pesch 1982) is shown in figure 8 
for N = 4. An interface is introduced by fixing opposite boundaries of an infinite strip 
of width N sites in states 0 and 2. The interface is allowed to be wet and therefore 
two variables in each row are needed to describe it. h, and I ,  label the positions of 
the 0-1 and 1-2 interfaces respectively and obey the constraints 0 s  h, d I ,  c N. The 
Hamiltonian of the model is taken to be 

z = C - [ I h l  -hl+iI+14 - I , + i I - ( h , - L + ] ) e ( h  - L 7 1 j  
35  

I 2  

27rA 2 7  
3 

25  cos -( 1 - A )  

where 6 denotes the step function and the energy is measured relative to the ferromag- 
netic state. 

0 

0 

0 

;T I 2 2  

0 3  ?l 2 2  

0 

0 

Figure 8. A solid-on-solid version of the chiral clock model. N = 4 for the strip shown. 
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As in the previous section we consider the net adsorption of the non-boundary 

(16) 

where, for this model, it is unnecessary to subtract a bulk contribution. Our aim is to 
study the transition temperature TZos(A) and the exponent zZos defined in (12) and 
compare them to the results for the chiral clock model. For the solid-on-solid model 
the size of the transfer matrix varies much less rapidly with N and it is therefore easy 
to obtain results for larger values of N than in 0 3. 

The results are shown in figures 9 and 10. As expected they are identical to those 
obtained for the chiral clock model for low temperature ( T S  1.0) as overhangs of the 

state 1 defined by 

W;”( T, A )  = J+”?*’)( T,A) 

I 

0. 

0 

a 
n 
3 

I 

1 . 0 1  
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Figure 10. Critical exponent of the solid-on-solid model, z:OS, obtained from scaling the 
net adsorption (C, N = 5 ;  X ,  N = 7 ;  +, N = 9 ) .  
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interface boundaries and  bubbles of a different state within the interface, which are 
ignored within the solid-on-solid approximation, are unimportant excitations. For 
larger values of the temperature the wetting curve rises sharply with decreasing A. 
This reflects the lack of a divergent bulk correlation length in the solid-on-solid model. 

The critical exponent shows some variation with A but consideration of strips of 
different sizes is consistent with z tos  taking the value 1 along the wetting curve and 
crossing over to a different value at the special point ( A  = 0.25, T = 0). Our results 
show that the behaviour of the exponent z ,  is somewhat different in the chiral clock 
model and  in its solid-on-solid version but they are not inconsistent with z ,  = 1 in both 
cases. 

5. Preliminary results for A = O S  

For A = O . 5  the chiral clock model is expected to exhibit a transition between the 
paramagnetic phase and an  incommensurate phase with algebraic decay of correlations 
(Ostlund 1981). It has proved very difficult to obtain accurate numerical results for 
the position of this phase boundary. The peak in the specific heat is thought to lie 
above the true transition (Selke and Yeomans 1982) and finite-size scaling results, 
which considered the correlation length (Duxbury er a1 1984) converged very slowly. 
In this section we present preliminary results which show that interface properties are 
sensitive to the existence of the paramagnetic-incommensurate transition in the hope 
that this will lead to more quarititative work in the future. 

Figure 11 shows the net absorption, W,"( T, A )  defined in (9), as a function of 
temperature for different values of N. For T s  0.9 the convergence becomes very slow 
and  irregular. This at least indicates an increase in the correlation length along the 
axial direction. The irregularities occur because the system is sometimes prevented 
from locking into its preferred wavevector, which for this value of A, is q = 2 ~ / 6  
(Ostlund 1981). 

0 0 5  1 0  1 5  2 0  
T 

Figure 11. Net adsorption of the non-boundary state, Wf ( T, A )  as a function of tem- 
perature for h = 0.5. The chiral direction is perpendicular to the strip. 
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Figure 12 also shows the net absorption but now with the axial direction taken to 
lie along the strip so that the interface lies parallel to the chiral axis. The net absorption 
has a very pronounced maximum which varies in a regular way with N at a temperature 
T = 0.7. This is probably indicating the transition to the incommensurate phase. It is 
interesting to note that in the low-temperature phase, the N dependence looks very 
similar to that seen in the wet phase: it seems that for A = 0.5 even an  interface parallel 
to the axial direction is wet. 

0 0.s 1 0  1 5  
T 

Figure 12. As for figure 11 but with the chiral direction parallel to the strip 

Lastly we considered systems with the axial direction still parallel to the strip but 
with periodic boundary conditions. The system was forced to have an  interface along 
the strip by replacing the contribution to the Hamiltonian of one row of bonds 
perpendicular to the strip J E:,) c o s ( 2 ~ / 3 ) ( n ,  - n,) by J Eh,) cos(27/3) (  n, - n, + 1). 
The free energy of this interface, gJV, as a function of the strip width is shown in figure 
13. Clearly at  high temperatures, uN converges quickly to zero as N increases. 

At lower temperatures, T S  1.0, g N  still decreases with N but much more slowly. 
We tried to see whether the results were consistent with u N  going to zero exponentially 
with N as in the high-temperature phase or like a power law but the sizes we could 
obtain, N s 7 ,  proved too small to distinguish the two possibilities. All the curves 
indicate that at T-0.9 there is a phase transition confirming the results obtained by 
Houlrik et al (1983) from a Monte Carlo renormalisation group study. However, it is 
not obvious to us how to scale these curves in a way that will accurately determine 
the critical point or its associated exponents. 

To conclude, we have studied the phase diagram of the three-state chiral clock 
model in two dimensions using finite-size scaling techniques. Phase boundaries and 
critical exponents have been calculated for bulk and  interface transitions by scaling 
the bulk susceptibility and  the net absorption respectively. We have shown that certain 
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1.5 I -1 
L .  1 

Figure 13. Interface free energy as a function of temperature ( A  = 0.5) for strips of varying 
widths. The chiral direction is parallel to the strip. 

interface properties are sensitive to the paramagnetic-incommensurate transition. We 
hope in the future to. study these quantities further in an attempt to extract accurately 
the transition temperature and critical properties of this boundary. 
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