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Résumé. — Dans la phase verre de spin, la théorie de champ moyen dit que les poids des vallées
varient d’un échantillon a I'autre. On dérive des expressions exactes pour les lois de probabilité de
ces fluctuations a partir du modéle a énergies aléatoires, sans recours a la méthode des répliques.

Abstract. — In the spin glass phase, mean field theory says that the weights of the valleys vary from
sample to sample. Exact expressions for the probability laws of these fluctuations are derived, from the
random energy model, without recourse to the replica method.

The random energy model (RE) was introduced [1, 2] in 1980 as an extreme simplification of
spin glass problems. Many properties, which were obtained exactly, appear qualitatively similar
to those expected for the Sherrington-Kirkpatrick (SK) model [3].

A step further was made in 1984 by Gross and Mézard [4] showing that the replica method
could be applied to the RE model. This had two important consequences. For the first time, some
results of the replica trick could be checked against an alternate derivation, in the context of replica
symmetry breaking. Furthermore, it became clear that some subtle features derived for the SK
model, from the Parisi Ansatz, were essentially present in the RE model.

For those who never felt that the replica trick should be taken as a final word, the RE model
offered then the best hope for matching and even outpassing the procedures of the replica method,
as applied to spin glasses. This paper fulfils these hopes, in deriving an analytical formulation for
the lack of self averaging, the fluctuations from sample to sample of the spin glass order para-
meter, which are one of the most conspicuous predictions of the theory [5, 6] and one which is
accessible to numeral checks [7, 8].

Using the Parisi Ansatz [5, 6] for the SK model, one can study the following quantity

Y=Y W2 (M
where W _ is the weight of the sth free energy valley and the sum (1) runs over all the valleys.
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It was recently discovered [5, 6] that Y is not a self averaging quantity, i.e. that in the thermo-
dynamic limit, Y is sample dependent. Therefore the quantity which is meaningful to consider
is the probability distribution I1(Y) of Y. It was found that II(Y) is a function of only its average y.

1
JH(Y)YdY=y. @

0

The first moments of IT(Y) were calculated and they are polynomials in y. Therefore it is a univer-
sal object since it depends on all the parameters (temperature, magnetic field...) through y only.
The purpose of the present paper is to calculate II(Y) directly, without using the replica method.
We take advantage of the universality of II(Y) to capture it on the easiest ground, namely the RE
model.

The RE model [1, 2] can be defined in the following way : it is a system of 2" energy levels E,
which are independent random variables distributed according to a probability distribution p(E,) :

2

E) = (NnJ?) 2 Ze
p(E) = (NnJ?) CXP(— NJZ)‘ 3

In the thermodynamic limit, the random energy model undergoes a phase transition at a tempe-
rature T

T, = —— @
2, /log 2
and the free energy in the low temperature phase is
F . (logZ)y J
- == ~ 2 . 5
7 = lim —% 7+/log 2 )

Although in the thermodynamic limit, the free energy per spin reduces to the ground state energy
per spin, one can try to study the statistical weights of the energy levels which are close to the
ground state.
Since the energy levels are independent random variables, each energy level forms its own free
energy valley. Therefore, the weight W, of the level E, is just
e PEa
We =575 ©)

Y

and Y is given by

L 20

Y=YW?= = . ©)
; (Z e‘I’E,,)2 [Z(ﬂ)]z
Y
We shall now calculate all the moments of Y. Our final result will be that
(= T T (* ., d'logg
(Y) . ! . - du ®

TTewIm—v) |, ay
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where n is an integer defined by
n—l<v<n C)]
and the function g(u) is

T

g = r (1 — e myu = du, (10)
0

For positive integer moments the integral over p is dominated by u = 0 and formula (8) becomes

(— " T T d'logg

r@n dy" o (1

(Y") =

Let us now derive equation (8). The method we shall follow is similar to the one which was used in
the Appendix B of reference [2]. For any positive v, one can write

22 ) = 1"(;1_1—_\5 : L [ZQ BT - e HZCP « gn=v=1 . 4y, (12)

Z-Zv(ﬂ) = -[‘—(;_—v) . Lw e 1ZB) . y2v-1 ., 4y (13)

where n is defined by (9).
If we make the change of variable #, = ¢2 p, one can show that

Z@ ) > S G rg f v gy & omrwizan
< [(Z(ﬁ))z:l revw.ra—vy J, tJ, K H g (e >

The main advantage of representation (14) is that the average in the right hand side of (14) can be
done easily because the quantity to average is a product of 2" independent random variables.
If we define ¢(¢, u) by

149

exp(— ¢) = (exp(— tZ() — ut* Z2 B)) > (15)

then one has
+ o 2
exp<_ i) = _dE—— . exp(— "NE—E - te-ﬂE - [ltz e_Z’E> . (16)

If we define A by

A= /NpJ a7
one can show by a method similar to the one used in reference [2] that in the limit A —» oo
2logt _
%:_l_,l.e IOgt (l —uuu’) u l.du (18)
2 ﬁ
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provided that the ratio log t/A? remains finite and fulfils the following condition

1 logt
.._2< AZ

<0. (19)

To avoid a long discussion we shall not consider other ranges of values of log . For0 < T < T,
only the region defined by (19) gives a finite contribution to the integral (14).
Using the fact that A is large, one can calculate log ¢ from (18)

NJ T, [1 1 T
logt = — ya log2 + Tl:zlogN + log ¢ — log (g(w) + Elogn — log7] +01) (20

where g(u) is defined by

a0 , _1~1
g(p) =f (I —e ™ )u T ".du. (21)
(1]

The condition (19) becomes then simply
0<=—<1. (22)

One sees that (20) expresses that
¢ = A-tTTeg(y) (23)

where A is a constant which can be easily obtained from (20).
We can now come back to (14). Using (15) and (23), one sees that

Z(Zﬂ) = (_ 1)" . N g ” n—1-v , . d" _ . +T/Te .
<[(Z(ﬂ))2:|>_r(2 v)I'(n — v) J; IJ:) u du du"exp[ AT . g(w)].

29

The integral over ¢ can be done easily if one realizes that

‘[ %—t d exp[— A - 7T - g(w)] = r & & [exp(— 4 + t7/™ + g(u)) — exp(—A - t7/)]

0 du" 0 N dy
T, d"

- __c. . 25

T O log [g(w)] (25)

Therefore one gets the announced expression (8).

Since the support of I1(Y) is bounded, there is a unique measure I1(Y) whose moments are
given by (8). One can calculate several generating functions of II(Y).

A simple one is

1
[ ar-mmepem =123 =g2 9)
V]
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where

2 Lo
W) = = - J e ? - dt. @7
NCRE

The expansion of (26) around u = 0 gives the moments { Y" ) for n positive whereas the expan-
sion for p large gives the moments ( Y~"2 ), Since all the moments depend only on the ratio
T/T,, one sees that I1(Y) is only a function of y

T
y=(Y)=1-=. (28)

c

For the first moments, one recovers the results given in reference [6]. One can also calculate
easily the moments { Y ~"2 ). For example one findsfor { Y~/

y

_.% 1 r 2
Y 2y =—"- . (29)

Ve op(lty
2
All the results given above can easily be generalized. If we define
Z(©p)
Y = W o = o

2= Zop (30

for any 6, one can repeat the calculation which was done above in the special case § = 2.
The result is

ZEHT\ _ (T o
<[(Z(B))"] >_ TonTo—yw | * ar 8 (6] @31

0

where 7 is defined by (9) and G,(u) is given by
@ R
G5(w) = f 1 —e )y T "dy. (32)
0

The generalization of (26) is

1
T, dlogG,

0

where Q;(x) = j ds-e*~*%° Ford = 2, the previous results are recovered, with IT,(Y) = II(Y).
0

From the moments of IT,(Y), the correlated probability of finding two states of weights W, and

W, in the same sample is extracted as

(W, W) 11 — W, — W)~
r*(y))r2 -2y)
x 001 — W, —W,). (34

PW,,W))=W PW)W, —-W,)+(1 -y -
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w1 — W)™
where PW) = TGy 1@ = »)
to higher order correlations is straightforward. All this [6] follows from energy randomness.

With these exact results, a strategy for entering the post-replica age in spin glass physics becomes
clear. Firstly, derive a physically complete knowledge of the random energy model, analytical
along the preceding lines. Secondly, show how, via some renormalization procedure, this model
can be seen as a sort of fixed point for the mean field theory of spin glasses.

is the probability of finding a state of weight W. Generalization
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