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Résumé. 2014 Le modèle d’énergies aléatoires est généralisé pour prendre en compte des corrélations
arbitraires entre paires de niveaux d’énergies. Ce modèle reste un modèle de verre de spin soluble.
Le gel brutal du modèle à énergies aléatoires peut être remplacé en gel progressif quand on baisse la
température.

Abstract 2014 The Random Energy Model is generalized to treat arbitrary correlations between pairs
of energy levels. This Generalized Random Energy Model remains soluble. The sudden freezing
which occurs in the RE model can, in the generalized version, become a progressive freezing when
temperature decreases.
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The mean field theory of spin glasses has been, in the last ten years, a subject of great activity [1].
Among the numerous approaches toward the solution of the Sherrington-Kirkpatrick (SK)
model [2], a simple one led to the introduction of a new model [3, 4] which could be solved exactly :
the Random Energy Model (REM) [5-8]. This model can be considered as an extreme simpli-
fication of spin glass models. The main simplification in the REM was that the energies El and E2
of two different configurations are not correlated. For more realistic models, like the SK model,
thep spin models introduced in references [3] and [4] or spin glass models in finite dimension, one
knows that the energies Ei and E2 of 2 different configurations are in general correlated. In some
cases one can calculate these correlations. Thus a very important question is to ask whether the
RE model can be considered as the zeroth order approximation of a scheme which would be able
to treat these correlations.
The purpose of the present work is to generalize the RE model in such a way that any correlation

between pairs of energies can be taken into account
The Generalized Random Energy Model (GREM) is defined in the following way. One con-

siders a system of 2N configurations : configuration v has an energy Ey (1  v  2N). These
configurations are grouped according to a very simple hierarchy of n levels. Let us first group
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the 2N configurations into groups of (an)N configurations each : there are of course (2/an)N such
groups. We shall say that at the nth level of the hierarchy, we have (2/an)N groups of (an)N confi-
gurations. At the next level (level n - 1 of the hierarchy), we group again these groups : each
group at the (n - l)th level contains (an-1)N groups at level n. Therefore at level n - 1 of the
hierarchy, one has [2/(an an-1)]N groups of (an an-1)N configurations each. One can repeat this
grouping procedure. At the ith level, there are [2/(ai ... an)]N groups of (ai ai+ 1 ... an)N confi-
gurations each. Clearly since there are altogether 2N levels, one must have 

’ 

The hierarchy constructed in this way is very reminiscent of the ultrametric structure [9] (see Fig. 1).
We have now to say how the values of the 2N energies E are chosen. By definition of the model,

Ev is given by a sum of n random numbers

where e~ is a random number distributed according to a given distribution pi that we choose
for simplicity to be a Gaussian.

We shall say that sll) is the contribution to Ev coming from the ith level of the hierarchy. Note
that the width of the distribution depends on i. By definition of the model, two energies Ev and
Eu which belong to the same group at the ith level of the hierarchy have the same E~ for j  i - 1
but have different for j &#x3E; i if they belong to different groups at the (i + l)th level.

When the 6~ and et) are different, they are independent. Also fez and ej~ are always independent
for j :A k.
Thus we see that the model is defined once the two sequences rxi and ai are given for 1  i  n.

To normalize the distribution, we shall impose the following condition
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Let us now describe the correlations between the energies of the configurations. First we can
calculate the probability P(E) that a given configuration v has an energy E. Clearly since Ey is
a sum of independent Gaussian random variables (see Eqs. (2), (3) and (5)) one has

We can also calculate P¡(E1’ E2), the probability that configurations v and p have respectively
energies El and E2. This probability distribution will obviously depend on the distance between
the 2 configurations in the hierarchy. If we call i the highest level for which v and p belong to the
same group, one can write

where

4&#x3E;, 4&#x3E;1 and 4&#x3E;2 are random independent Gaussian variables whose widths are known. Therefore
Pi(El, E2) is given by

where

Given a configuration (v), the number eNu of configurations (Jl) to which formula (10) applies
is just the number of configurations which belong to the same group at level i and to different
groups at level i + 1

Clearly for N -~ oo, one has

One sees that by choosing the ai and ai, one can produce any probability distribution Pi(El, E2).
In the limit ~ -~ oo, this Generalized Random Energy Model (GREM) is just defined by the
relationship between u and v : v is a decreasing function of u which passes through (u = 0, v = 1)
and (u = log 2, v = 0).
One can build a GREM which has exactly the same P(El, E2) as a given spin glass model.

For example, for the p spin models defined in references [3-5] and for the SK model (which is
the case p = 2) it has been shown that for 2 different configurations which have Nx identical
spins, the probability distribution Px(El, E2) depends on x and has exactly the form (10) (see
Eq. (6) of Ref. [4]) provided one takes
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In these spin models, one knows that given a configuration v, the number eNu of configurations ,u
which have Nx spins identical with configuration v is

Therefore for large N, one has

Thus a GREM whose u and v are related by (14) and (15) (x varying between 1 and 1/2) has
exactly the same correlations between pairs of energies as the corresponding p spin glass model.
A consequence is that the GREM and the p spin glass model have exactly the same Z( T) and the
same Z(T1) Z(T2) for any temperature T 1 and T 2.
Here Z(T~ denotes the partition function at temperature T and the bar means the average

over disorder. It is also clear that there is no reason a priori that Z(T1) Z(T2) Z(T3) would be
identical in the two models.

In the last part of this work, I would like to explain the mechanism which allows the GREM
to be solved exactly for any finite n and for any choice of the x~ and ai. As n increases the solution
becomes more and more complicated (at least for arbitrary L-ti and ai) but can always be done
explicitly. I shall only describe here the solution for n = 2 and indicate how one can continue
for larger n.

For n = 1, equations (1) and (5) impose that ot, = 2 and al = 1 and the GREM reduces to the
RE model whose solution is known [3-7].
For n = 2, we shall see that the GREM has already more structure than the RE model. The

solution is a simple generalization of the entropy argument which was used to solve the RE model.
For n = 2, the system consists of (ai)N groups of (a2)N configurations each. One has of course

For each group, one has to choose a random number e according to a distribution p 1 (E)

Then, once e has been chosen for a given group, each energy E of that group must be chosen
according to the distribution p(E, s) given by

The constraint (5) becomes here

Let us estimate the number Xl (8) of groups having an energy &#x26; Like in the RE model, one has
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The typical value of X 1 (a) is equal to its average when the average is large and is zero when the
average is small [3, 4] i.e. I a I &#x3E; N J .J al log al. Now that we know JY’1(E), we can calculate the
typical value of the number J~(~) of configurations having energy E. Let us define Q2(E) by

Since JY’1(E) = 0 if I e I &#x3E; N J .J a1 log ocl, the integral in (21). has to be carried out on the
interval s ! I  NJ ai log ai. Again one can repeat the argument to calculate the typical value
ofX2(E).

Now that X2(E) is known, we know the entropy S(E) for any energy E and therefore the model
is solved [3] :

The result is

where

Note that S(E) = - oo means only that there is no configuration at energy E.
We see clearly that there are 2 possible important energies : the energy E’ where 4f(E) vanishes

and the energy E" where the value of E ~ which gives the maximum in (25) crosses NJ.~ai log al.
Depending whether I E’ I &#x3E; I E" or 1 E’ I  I E" ~, the model has different behaviours. Let me
just give here the result of this rather simple discussion. One has two cases.

In the first case defined by

One finds that the model exhibits two phase transitions at two temperatures

and the free energy is given by
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The physical interpretation of these 2 transitions is rather obvious. Above T1, there is no group
which has a finite Boltzmann weight [8-10]. At T1, the system chooses the few groups which have
the lowest energies E. For T 1  T  T 2 the system is frozen in a few groups but inside each
group it looks as if it was in its high temperature phase. At T = T~, the system becomes com-
pletely frozen at its ground state energy. For T  T 2, there are only a few configurations in each
of the few groups which have a finite weight
The second case is defined by

In this case, one finds that this model has exactly the same free energy as the RE model

This case is also interesting because it shows that, if the distances in energy between groups
(which play in the GREM the role of valleys) are too small, then the first phase transition disap-
pears.

It is clear that the generalization to any finite n is straightforward. The discussion will become
more complicated because at each level there are more cases to consider but there is no difficulty
at all to do it for any finite n. I believe that for some families of ai and ai, the solution can be done
easily for any n (for example when the ratio a¡/log ai is a monotonic decreasing function of i).
The physical result will always be that there are a finite number of transitions. In the limit n -~ oo,
the spin glass phase will be the region where these transition temperatures become dense.
At the end of this Letter, I would like to mention a few questions which would be worth studying

by means of this Generalized Random Energy Model :

1) the first thing to do of course is to solve the GREM for n &#x3E; 2 ;

2) one can try to write renormalization equations which relate what happens at level i to the
properties of level i - 1 (in the hierarchy) ;

3) one can try to solve the GREM for which u and v are given by (14) and (15) and see whether
it gives correctly the beginning of the expansion for p ~ oo of the p spin glass models;

4) one should try to calculate the 3 configuration correlations P(El, E2, E3) of the GREM
and compare them with those of other spin glass models;

5) one can try to define spin models which give the GREM in some limit. This would allow
the calculation Parisi’s q(x) [5] ;

6) one can try to introduce a magnetic field as was done in the RE model [4] ;
7) one can try to calculate P(E1, E2) for finite dimensional lattices and see how the RE approxi-

mation [4] can be improved by taking into account these correlations;
8) one can study non self averaging effects [8-10];
9) one can try to generalize the GREM again in order to treat the correlations between energies

of 3 configurations.
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