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Abstract. We study the oscillatory critical amplitudes of the g-states Potts
model on a diamond hierarchical lattice. We consider an example of the generic
case (finite critical index), as well as the degenerate case {essential singularity).
In both cases, we compare the magnitude of the oscillations with geometrical
characteristics of the Julia set of zeroes of the partition function.

1. Introduction

Much interest has been recently devoted to statistical mechanical models on
hierarchical lattices [ 1-107. On such lattices, the models can be solved by writing
an exact renormalization group transformation. In particular one can compute
exactly the free energy and all its derivatives. One can also know the whole set of
singularities of this free energy in the complex temperature plane. It has been
shown for many examples [ 7-10] that these singularities are located on the Julia
set [10-16] associated with the renormalization transformation, i.e. the smallest
closed set which contains all the unstable periods and their preimages. In the
simplest cases [10], where one expects a single phase transition, the Julia set
contains only a few points on the real axis. On the contrary, in some frustrated
cases [5-9], one finds that the Julia set has an infinite number of points on the real
axis, giving rise to an infinite number of critical temperatures [7].

Recently a relationship [17] between the shape of the density of zeroes, the
critical exponents and the critical amplitudes has been proposed. This was a
motivation for the study of analogous relationships in the case of hierarchical
models. In this case, the critical exponent (which characterizes the singular
behavior of the free energy at a critical point) can be easily extracted by linearizing
the renormalization transformation at the fixed point. The shape of the Julia set
can also be found easily [10]. As we shall see, the critical amplitudes are more
difficult to obtain. It has been observed [7-107] in many cases that the critical
behavior on hierarchical lattices is modulated: instead of observing as a leading
singularity a pure power law, one finds a power law multiplied by a periodic
function of the logarithm of the distance to the critical point.

The purpose of the present paper is to relate these oscillatory amplitudes to the
shape of the Julia set near the critical point.

We shall consider successively two cases: the generic one, where the critical
point is an isolated fixed point, and the degenerate one, where the critical point is a
fixed point of multiplicity two. In both cases we shall determine numerically the
shape of the Julia set and the oscillatory critical amplitudes. In the degenerate case,
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we shall have to consider a simplified model which allows for a numerical analysis.
We shall give simple arguments allowing us to relate the order of magnitude of the
oscillations to the shape of the Julia set near the fixed point.

2. The Model

In the following, we consider the Potts model on the diamond hierarchical lattice
defined in [10]. The Hamiltonian of this model reads
H=~J % b,,,, 1)
(€74
where the o, can take g values (0;,=1,2, ..., g) and the sum runs over all nearest-
neighbor pairs. The recursion relations obeyed by the partition function lead to the
following functional equation for the reduced free energy per bond:

JITW]=4f3)—2In2y+q-2). @

The renormalization mapping T is

y2 +q~1>2

y= T = <2y+q_2

&)
where y=exp(fJ). The domains 0<y=<1 and y=1 corresponds to the
antiferromagnetic and ferromagnetic Potts models respectively.

For an arbitrary value of g (¢ >0), the transformation T has a fixed point y, > 1,
corresponding to the critical temperature of the ferromagnetic model. The
derivative of the map at its fixed point p=T"(y,), is larger than one, since the
temperature is a relevant parameter in the usual language of the renormalization
group. In Sect. 3 we shall study the associated critical amplitudes for the value g =2
(Ising model), which is typical of the generic case.

When g goes to zero, the fixed point y, goes to unity, y.=1 +]/Z+ 0(g). In
other words, the critical point and the high temperature fixed point (y = 1) coalesce
for g—0. This degenerate case is studied in Sect. 3. In that case, the derivative of T'is
u=1:the fixed point is indifferent, or equivalently, temperature becomes marginal.

3. The Generic Case (g=2)

The transformation T corresponding to the hierarchical Ising model (g == 2) has the
simple form

o= 3(s+1) @

1
It maps y and —)7 onto the same point. This property, which is particular to g=2,

leads to the following relation between the ferromagnetic and antiferromagnetic
models:

fo)=1 (;) +lny. ©)
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Fig. 1. The Julia set associated to the map of the generic case (g =2). The arrows indicate the four
extremal points of the set S [see Eq.(29)]

We can therefore restrict our analysis to the vicinity of the ferromagnetic fixed

point,
y.=3.382975767..., ©)

where the derivative of T reads
u=1.678573510.... @)

The free energy f admits the following convergent representation:

fo) =% 2 47270, @

which is a consequence of Eq. (2).

The rest of this section is devoted to the properties of f(y) around y,, and how
they are related to the Julia set of the map T

The Julia set associated with this map, shown in [10], is reproduced on Fig. 1.

3.1. The Linear Approximation

Let us first apply to our problem the method described in [ 18], which consists in
linearizing the transformation T around y,, i.e. in replacing T by the linear map
T(L),

T(L)(y):yc"i_ﬂ(y—“yc): (9)



118 B. Derrida, C. Itzykson, and J. M. Luck

with
Y=Y

’ =X. (10

The prediction of the linear approximation ™ of f reads

FP)=%mnQ2y)+3 ;04_"111(1-*-#")6), 11
and % satisfies
SELTO(y)]—4f D)= —21n(2y). (12)

The solutions of the homogeneous equation (obtained from (12} by setting the
right-hand side equal to zero) read in the variable x

op 10X
F(x)=x°P (@) (13)
where the critical index a 1s
In4
a= " =2.676531579..., (14)
Iny

and where P is a periodic function, with period unity.

The same oscillatory behavior is expected for the singular part of f(y), beyond
the linear approximation. These oscillations of critical amplitudes are closely
related to the discreteness of the renormalization transformation [7, 10, 15, 18].

In the linear approximation, the Fourier coefficients of the singular part of f®
can be obtained in closed form, using the Mellin transformation.

Let M(s) be the Mellin transformation of the sum appearing in Eq.(11),

M@s)= | x* ldx [1 5 4*"1n(1+y"x)]. (15)
0 2420

The change of variable x—y"x in each term allows us to perform the sum over n
explicitly,

M= L T

s5—1 1
241y x*"HdxIn(l +x).

This integral representation is convergent for — 1 <Res <0, where we have

I 4y s

M= 2445 —1 ssin(ns)’

(16)
The analytic continuation of M(s) has poles at s=—n (n=1,2,3,...) and at
s=—{a+ipw) (p=0, +£1, +2,...), where a is defined in Eq.(14), and where

2n

The contributions of these two series of poles give rise to a regular (reg) part and a
singular (sg) part of f®, respectively, for x—0.
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We have therefore

fEM =0+ P0),

where

0= 2meyy+ L x X 18)

2420 n U

is analytic in the disk |x]<yu; and where
f;g—')(y) =x* 2 X A;L}eipm Inx (19)
—w<p<+ow

. o . Inx . . . .
is a periodic function of Ing with the following Fourier coefficients:

w_ T

P 7 2Inp(a+ipw)-sin[n{a+ipw)]”

(20)

In order to observe the oscillatory behavior of f(y), let us consider its third
derivative

d3
B(y)= j;?). @1)

B is expected to exhibit the following divergent behavior (since ¢ — 3 is negative):
BO)~(y—1)" " w(y)- (22)

The linear approximation yp®(y) to the “critical amplitude” w(y) is an
oscillatory function with very rapidly decreasing Fourier coefficients. All
harmonics except the first one are therefore very hard to measure.

Define the average value y,, and the relative oscillation amplitude 5 by:

1
Yay= _[wmax + L% in] H

2 m ( 2 3)
_ Ymax ™ Pmin

Wav
The predictions of the linear approximation for these quantities can be easily
derived from Egs. (19) and {20). If we take only 4,, 4, into account, we get:

(L}Z(a—l)(a—-iZ) s
2ylnu  sin(ra)’

]

av

@9
w_  4sin(ra) l(a——l+ia))(a—2+i(u)|

" (a—D(@a—-2)| sin[ala+io)] |
which gives numerically

Y& =0.15501477..., 7™ =2.507195...107 14, 25
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Fig. 2. The critical amplitude y ofthe third derivative of the free energy near the critical point in the
high-temperature phase (y <y, [see Eq.(22)]

Ply)

0.1388000

T

01387975

-in{y-yJ
{ I

42 425 L3
Fig. 3. The same as in Fig. 2, for the low-temperature phase (y> y,)

3.2. Numerical Results

The expression given in Eq. (8) for f(y)leads easily to a series representation for its
third derivative B(y).

We have treated numerically this series representation of B(y), for y very close
to y.. In order to isolate the leading critical behavior, we had to choose (y —y,) of
the order of 10™*%, and to use double precision on a CRAY. The results for the
amplitude y(y) defined in Eq.(22) are represented on Figs. 2 and 3, for y<y, and
y>y,, respectively.
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These figures show clearly that y(y) is asymptotically a periodic function of
In(]y —y,|} with period Inyu, and that higher harmonics are very small.

Both phases (y>y, and y<y,) lead to the same values for y,, and 7 (after
extrapolation over a wider range than the one represented on Figs.2 and 3),

namely: _
y,,=0.13879868..., n=23.1248...1075. (26)

As far as y,, is concerned, the prediction (25) of the linear theory gives a
satisfactory estimate, with 11% relative accuracy. On the contrary, the relative
amplitude of oscillations 5 is 9 orders of magnitude bigger than the estimate of the
linear approximation. The next subsection is devoted to the explanation of such a
large discrepancy.

3.3. Oscillations and Angles

The crucial property missed by the linear approximation is that f(y) is analytic
only in a sector: larg(y —y,)| < ,, as can be seen on Fig. 1.

The function f(y) defined by (11) is analytic in a cut plane (Jarg(y — y,)| <),
since the large order behavior of the A% reads

AP ~ exp(—nwlp)) . @n

On the other hand, if 6, is the limiting angle of analyticity of f, the Fourier
coefficients 4, of f for y>y, decrease only as rapidly as

A,~exp(—wb|p]). 28)

Let us now try to determine the angle 6, appearing in Eq.(28). Fig. 4 represents
an enlargement of the Julia set around the fixed point y,.

This picture suggests that the Julia set lies outside an extremal angle §,, and
f(v)is certainly analytic in the sector 6 < #,, and therefore 6, = ;. In the following,
we shall conjecture that 6, and 8, are equal.

From Fig. 4, one gets a rather poor estimate of the angle #,. One way to geta
better accuracy is to generate by a biased Monte Carlo method [107 a large sample
of points of the Julia set, and to find the smallest angle defined by this sample. The
resulting measurement systematically gives a larger 6, than the one obtained using
the following procedure.

Consider the set S given by

S={y1, V1 = Y1 = V1}» (29)
where y, satisfies T(y,)=7j,, 30
and therefore y, = —2.006162159... +3.744147122...i. 31

Clearly these points belong to the Julia set, because of Eq. (30). This set leads to the
following estimate of 04:

0,= lim Arg[(T~Y'(y,) -yl (32
where T~ ! stands for the one among the 4 branches of T™! which ensures
convergence towards y.. The numerical value obtained in this way reads

0,=1.159171214.... (33)
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-0.2

~0.4 -0.2 8.0 6.2

Fig. 4. An enlargement of the Julia set of the case g =2 around the ferromagnetic fixed point y,,
showing the limiting angles 8, 8,

A heuristic justification for our choice (29) for the set S is as follows. Consider the
extremal points y,, defined as being those of the Julia sct having the largest
modulus. These points are clearly the most “exterior” ones, and those of their
preimages which converge towards y, are also locally the most “exterior” ones. As
a consequence, an estimate (upper bound) on 0, can be extracted from these points.

Moreover, the points of § can be characterized in another way. Let u, be the
moments of the invariant balanced measure on the Julia set (see [15] for the
properties of du):

po=y"du(y), —o0=n<+w. (34)
J

For large positive n, u, is asymptotically dominated by the points of largest
modulus. On the other hand, since dpis invariant under 7, the p, satisfy a recursion
relation. If we assume that this relation is also fulfilled by the asymptotic behavior
of the u,, one gets precisely the set S defined by Eqgs.(28) and (29).

By inspection of Fig. 1, these four points (indicated by arrows) are very likely to
be the extremal points of the Julia set. However, our derivation of S need not work
in other circumstances, as can be verified by studying the moments {(y —a)") with
a variable origin a.
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This approach has another interesting feature. The equation T(y)=j has
actually four solutions: y,, 7, and y,, y, with:

y,=0.440964442... +0.4801893411...i. (35)
The angle §, associated to y, through Eq.(32) happens to be (numerically)
92 - — 91 . (36)

Figure 4 seems to indicate that this angle 8, coincides with the internal angle of the
Julia set at y,.

We can now formulate an improved estimate for the relative oscillation
amplitude 5. From Eqgs.(27-28), we have the following asymptotic relation
between the genuine Fourier coefficients 4, and their approximations A from

the linear theory:

4 AW \ou/m

ks JEN i 2 ) (37)
Aoy AL

Since this number is very small, the A, are very rapidly decreasing, and we are
tempted to extend the validity of Eq.(37) down to p=1.

This leads to

<n(L>>61/x s
n~4 T =229903...107". (38)
This value is now only 26% below the exact value given in Eq.(26).

Moreover, the fact that the amplitudes y,, and # are identical in both phases
strongly suggests that all the 4,’s are identical, up to p= o0, and therefore, by using
Eq.(28) and an analogous equation for y <y, using §,, we deduce that the equality
of the two angles limiting the Julia set around the point y, is very likely to be true
(see note added in proof).

We have also generated a very large sample of points on the boundary of the
Julia set (Fig. 5) close to the critical point. This picture as compared to Fig. 4
illustrates the fact that, both from a geometrical point of view as well as from a
measure theoretical one, the oscillations in the free energy presumably reflect
similar oscillations present in the Julia set. This suggests that the estimate (37),
which is obviously true but only depends on a limiting angle, does not exhaust the
question of a true evaluation of the first few oscillatory amplitudes 4,. Therefore
the fact that our bold extrapolation gave such reasonable results is presumably
merely to be considered as a lucky circumstance which might not occur in other
cases.

4, The Degenerate Case (g—0)

As explained in Sect. 2, the case g—0 is particular, because the map T has a
derivative equal to unity at its fixed point. Therefore a new analysis is required.
Let us define the variable

u=4(y—1. (39
In terms of u, the map T reads

T(w) =u+u?, 40)
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Fig. 5. An enlargement of the Julia set of the case g=2 around the ferromagnetic fixed point y,,
showing the oscillatory structure of the boundary of the set

and the renormalization group equation for the free energy is
fu+u>)=4f(w)—2In8u. €3))

The free energy admits therefore the convergent representation:

fw)= %n;) 47" In[8T™(w)]. (42)

The Julia set associated to the map T is represented on Fig. 6. It was proved by
Julia [11] to be a continuous curve; it seems nevertheless to have some structure at
every length scale, just as in the generic case.

This section is devoted to the properties of the function f(u), and to their
relationship to the Julia set of the associated map. We shall focus upon the
analogies and differences between the generic case and the degenerate one.

4.1. The Continuous Approximation

Let us consider the homogeneous equation associated to Eq.(41):

@(u+u”)=4ou). (43)
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Fig. 6. The Julia set associated to the map: T(u) =u+u?, corresponding to the degenerate case
(g—0). The arrows indicate the four extremal points of the set S [see Eq. (74)]

We will show that the solutions of Eq.(43) exhibit an essential singularity at
. . . 1
=0, modulated by an asymptotically periodic function of (5 — lnu). Define
(44

y(w)=1neu).
(45)

It follows from Eq. (43) that y satisfies
y(u+u?)=y(u)+In4.

Assuming that yis differentiable for u >0, we deduce from Eq. (45) that, in the u—0
(46)

limit, we have
W In4
Uu)~ ——
Y 2
(47)

and we get the following very crude estimate:
QD(M)N.‘Z_(I“ 4)/u .

This analysis can be pursued by keeping systematically higher order terms in
the differential equation (46), assuming that the function g(u) defined by
(48)

1
@)= gt

is regular around u=0.
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Under this assumption, we obtain
guwy=1+u—3u*+3u> —Bu*+.... (49)

By inserting this expansion into Eqs. (44)-{48)}, one gets the following “continuous
approximation” ¢ to the function ¢, general solution of the homogeneous
equation (43)
In4
(p(")(u)ze"“““)/"u’““[l— Tu-I—AZuZ—{—...]. (50)
Consider now the ratio R,(u) between the function ¢ and its continuous
approximation

_ o
R, (u)= poTg (51)
This “amplitude” satisfies
R, () =R, (u+u?). (52)

This equation allows R, to be a periodic function, with period unity, of a variable x
satisfying

x(w+u?)=xu)—1. (53)

Since Eq. (53) is, up to a multiplicative factor, identical to Eq.(45), we deduce
from our previous study that x(u) has the following behavior:

1
x(u)z;—lnu+x0+.... (54)
The continuous approximation predicts therefore that the general solution of
Eq. (43) reads:
pu)y=e” P AWR,(u), (55)

where
In4
A(u)zl—nTu+A2u2+...

is a universal function (A4 does not depend on the particular solution ¢, and the 4,
are systematically computable), and R (1) is a periodic function in the variable x,
which is asymptotic to 1/u.

The free energy f(u) is also expected to have a singular part given by Eq. (55),
by analogy with the generic case.

42. A Toy-Model

In the generic case, the oscillations modulate a power-law singularity, and it is
sufficient to consider a given derivative of the free energy (the third one in the case
g=2) to observe these oscillations numerically.
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In the present case, in order to extract the oscillatory behavior (55) of f(u) from
its smooth background, we should formally differentiate our function an infinite
number of times.

We have nevertheless a more direct way of checking that the function f(u) has
indeed an essential singularity, as predicted by the continuous approximation.
Unfortunately this method does not allow us to observe the oscillations.

If we insert into Eq. (41) the following expansion of f:

fW=f_ylnu+ ZO Ja", (56)
we can compute the f, systematically

f-i=%; f0=%1385 fi=%;

1[2(=1)* !
J"":g[g—‘n—‘*’?(n_z)ﬁ] for n22,

n . n . .
where I runs from [<§>] (mteger part of 5) up to » in the summation.

(67

In order to explore the singularities of f, let us define its Borel transform

B(t)= ¥ B,t*, with B,= % (58)
nz0 -
A singularity of the type given by (55) in f implies that B(f) has a power-law
singularity at t* = In4,

B~ K (t*~1)"*, (59)
and that the B, have the asymptotic behavior
B,~K,(In4)""p~ 0 Fnd) (60)

We present in Fig. 7 the result of a numerical determination of the B, (up to
n=400), We plot the quantity

Vo= i—lan%— In(in4) o)

vs. {(Inn)/n. The continuous line has a slope
s=—(1+1n4). (62)

It is therefore very clear that the Borel transform of f(u) has a singularity at ¢*,
with an exponent s which is correctly predicted by the continuous approximation.

This method is not accurate enough to predict that our function f(u) has
oscillations, i.e. that its Borel transform has also singularities at

t*=Ind+2mik, k+0. (63)

In order to pursue the analysis of the present case and to study the relation
between the oscillations of critical amplitudes and the shape of the Julia set, we
choose to study in the remainder of this section a very similar function F(u),
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Fig.7. The quantities y, [see Eq. (62)], related to the Taylor coefficients of the Borel transform of
the free energy, in the degenerate case. The crosses are the numerical values; the continuous line
has a slope s=—(1+1n4)

defined as being the logarithmic transform of the unique balanced measure du on
the Julia set of the map T (see [15] for a precise definition of du and its properties).
The function F(u) satisfies

Fu+u?*)=2Fu), (64)
Fu)~lou (u—w). {65)

In other physical instances, it might occur that a similar essential singularity
appears in the free energy, but that its amplitude can hardly be measured, due to
the presence of a regular background. Nevertheless other quantities (such as
correlation lengths) might exhibit a pure singular behavior in one of the phases.
Our model for F(u) is designed to capture the structure of such quantities. Indeed,
would one be tempted to define a correlation length on the diamond hierarchical
lattice, its reciprocal ¢~ {u) would satisfy relation (64), but not necessarily the
boundary condition (65).

Since Eq. (65) is homogeneous, our continuous approximation predicts the
following behavior of F around u=0 outside the Julia set,

F(uy=¢ (n2fuyln2 [1 - % +Fu? + ] R(u). (66)
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F has the advantage of exhibiting a pure essential singularity and no smooth
background. The oscillatory behavior of Ry is therefore numerically observable.
The easiest way to measure these oscillations is to consider the quantity

E(uy=u % . {67)
It admits the following infinite product representation:
1
E + T"(u)
Ew=11 (68)

nz0 1+ T"(u) ’

which converges for every u outside the Julia set, i.c. such that T"(u)— co when n
—00.
The continuous approximation predicts for E the following behavior:

E@)=e~ W20y 2=111 L E u+ Eu? + Eju 4 .. R(u) . (69)
The few first E,’s read
E,=1-%In2,
E,=—3—%In2+4(In2)?,

Ey;=2+2In2— 7 (In2— 2 (In2)°. (70)

4.3. Numerical Results

We have evaluated the function E(u) through its infinite product representation
(68), and extracted the amplitude R from these data according to Egs. (69) and
(70), keeping only the first three coefficients E,’s.

Figure 8 shows a plot of the function Rg(u) versus " in the interval [ 1000; 1002].

. . . . 1 .
R; is clearly very close to being a periodic function of - Indeed the difference

betvveen1 and the variable x(u) defined in Egs. (53-54) is not observable on a few
iU

periods range.
We can extract from these numerical data the average (Ry),, and the relative
oscillation amplitude # of Ry, defined as in Sect. 3. These numbers read

(Rp),, =0.81624968..., #=8.1497...10" 7. (71)

The main difference between the present degenerate case and the generic one is
that we do not know of any a priori estimate of these numbers, like in the generic
case. In next section we present a relationship between the oscillations of Ry and
R; and a geometrical characteristic of the Julia set.

4.4. Oscillations and Radius of Curvature

In the generic case, the Fourier coefficients of the amplitude of f(y) were
asymptotically governed by the angle 8, of the domain of analyticity of f.
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1
Fig. 8. The amplitude Ry(u) of the toy-mode! fonction E(u), vs. — [see Eq. (51)]
u

In the present case, the function F(u) is analytic in the exterior of the Julia set
represented in Fig. 5. Let us assume that this set has a finite limiting radius of
curvature ¢ at the origin. Then the functions F, E, Ry, Ry are asymptotically

1
analytic functions of " in the band

1

iIm- !

<=, (72)

u| 20

and the Fourier coefficients Ry(n) and Ry(n) of the functions R, and R in the

. 1
variable — decreases as
U

Rp(n)~Ry(n)~e ™l (73)

Let us now give a determination of g, based on the concept of extremal points
introduced in Subsect. 3.2. The set of extremal points reads in the present case

S={+i, —i; —1+i; —1—1i}, 74
and therefore, if the radius ¢ is determined by the preimages of S, we have
i _ lim Imz,
20 n-o(Rez)?’
where z,=(T~')"() and T~ '(y)=)/3+y—1%
These formulae lead to the following numerical results:

2—1Q—=2.2156589..., e”™e=8.995279...107 7. (76)

(75
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Since this last number is very small, the asymptotic estimate (73) should not be
violently wrong for small n. Indeed, if we boldly extrapolate (73) down ton=1 with
the same precautions as in Sect. 3, we obtain

n=4e ™=3.5981...107°. a7

Compared to the measured value given by Eq. (71), this estimate is off by a
factor of 4, while the corresponding relative error was only of 26% in the generic
case. This illustrates the point, made at the end of Sect. 3, that the extrapolation of
(73) down to n=1 gives only a rough estimate of 5. This approach has nevertheless
the advantage to let us understand how the existence of a finite least upper bound
for the radius of curvature ¢ can explain a crucial property of the function F,

. e ) 1 .
namely the existence of oscillations in the variable —, and to predict correctly at
u
least the order of magnitude of these oscillations.

5. Conclusion

We have shown how the shape of the Julia set near a critical point is related to the
oscillations of the critical amplitudes. There is no doubt that these oscillations are
produced by the discrete character of the renormalization transformation. Similar
oscillations are of course present near the preimages of the fixed point, as well as
near the preimages of critical periods [7].

The most important question is to know if these oscillations are actually
present for models on Bravais lattices. Of course, any approximate real space
renormalization [18, 197 on Bravais lattices will produce oscillatory amplitudes. It
is reasonable to think that for simple phase transitions like the one of the
ferromagnetic Ising model, these oscillations are not present, because the change of
scale can become infinitesimal in the scaling limit. However, it has been shown
recently that, in some one-dimensional models [ 20, 21], these oscillations do exist.
Therefore they should not be considered always as parasitic effects of real space
renormalizations.

Our study does not exhaust other interesting problems related to Julia sets
[16], like the average escape rate or the Hausdorf dimension.
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Note added in proof. The equality 8, = —8, can be proven by a duality argument which will be
published in another work [22].



