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Abstract. We study the oscillatory critical amplitudes of the q-states Potts 
model on a diamond hierarchical lattice. We consider an example of the generic 
case (finite critical index), as well as the degenerate case (essential singularity). 
In both cases, we compare the magnitude of the oscillations with geometrical 
characteristics of the Julia set of zeroes of the partition function. 

1. Introduction 

Much interest has been recently devoted to statistical mechanical models on 
hierarchical lattices [1-10]. On such lattices, the models can be solved by writing 
an exact renormalization group transformation. In particular one can compute 
exactly the free energy and all its derivatives. One can also know the whole set of 
singularities of this free energy in the complex temperature plane. It has been 
shown for many examples [7-10] that these singularities are located on the Julia 
set [10-16] associated with the renormalization transformation, i.e. the smallest 
closed set which contains all the unstable periods and their preimages. In the 
simplest cases [10], where one expects a single phase transition, the Julia set 
contains only a few points on the real axis. On the contrary, in some frustrated 
cases [5-9], one finds that the Julia set has an infinite number of points on the real 
axis, giving rise to an infinite number of critical temperatures [-7]. 

Recently a relationship [17] between the shape of the density of zeroes, the 
critical exponents and the critical amplitudes has been proposed. This was a 
motivation for the study of analogous relationships in the case of hierarchical 
models. In this case, the critical exponent (which characterizes the singular 
behavior of the free energy at a critical point) can be easily extracted by linearizing 
the renormalization transformation at the fixed point. The shape of the Julia set 
can also be found easily [t0]. As we shall see, the critical amplitudes are more 
difficult to obtain. It has been observed [7-10] in many cases that the critical 
behavior on hierarchical lattices is modulated: instead of observing as a leading 
singularity a pure power law, one finds a power law multiplied by a periodic 
function of the logarithm of the distance to the critical point. 

The purpose of the present paper is to relate these oscillatory amplitudes to the 
shape of the Julia set near the critical point. 

We shall consider successively two cases: the generic one, where the critical 
point is an isolated fixed point, and the degenerate one, where the critical point is a 
fixed point of multiplicity two. In both cases we shall determine numerically the 
shape of the Julia set and the oscillatory critical amplitudes. In the degenerate case, 
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we shall have to consider a simplified model which allows for a numerical analysis. 
We shall give simple arguments allowing us to relate the order of magnitude of the 
oscillations to the shape of the Julia set near the fixed point. 

2. The Model 

In the following, we consider the Potts model on the diamond hierarchical lattice 
defined in [10]. The Hamiltonian of this model reads 

H = - - J  Z 5 ~ ,  (t) 
(i j)  

where the a i can take q values (ai = 1, 2, ..., q) and the sum runs over all nearest- 
neighbor pairs. The recursion relations obeyed by the partition function lead to the 
following functional equation for the reduced free energy per bond: 

f[T(y)] = 4f(y) - 2 ln(2y + q - 2). (2) 

The renormalization mapping T is 

(y2 +q--l']2 
Y ~ T0') = \ 2 ~  q-- 2// ' (3) 

where y=exp(fiJ). The domains 0__<y=<l and y ~ l  corresponds to the 
antiferromagnetic and ferromagnetic Potts models respectively. 

For an arbitrary value ofq (q > 0), the transformation T has a fixed point Yc > 1, 
corresponding to the critical temperature of the ferromagnetic model. The 
derivative of the map at its fixed point p = T'(yc), is larger than one, since the 
temperature is a relevant parameter in the usual language of the renormalization 
group. In Sect. 3 we shall study the associated critical amplitudes for the value q = 2 
(Ising model), which is typical of the generic case. 

When q goes to zero, the fixed point Yc goes to unity, yc = 1 + ] / ~  + (9(q). In 
other words, the critical point and the high temperature fixed point (y = 1) coalesce 
for q~0 .  This degenerate case is studied in Sect. 3. In that case, the derivative of T is 

= 1: the fixed point is indifferent, or equivalently, temperature becomes marginal. 

3. The Generic Case (q = 2) 

The transformation T corresponding to the hierarchical Ising model (q = 2) has the 
simple form 

T(y)= -~ y+ y . (4) 

It maps y and -1 onto the same point. This property, which is particular to q = 2, 
Y 

leads to the following relation between the ferromagnetic and antiferromagnetic 
models: 

f ( y )= f ( l y )  + l n y .  (5) 
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Fig. 1. The Julia set associated to the map of the generic case (q =2). The arrows indicate the four 
extremal points of the set S [see Eq. (29)] 

We can therefore restrict our analysis to the vicinity of the ferromagnetic fixed 
point, 

y~ = 3.382975767 . . . .  (6) 

where the derivative of T reads 

# = 1.678573510 .. . .  (7) 

The free energy f admits the following convergent representation: 

f (Y)= ½ Z 4 - " ln [2T" (y ) ] ,  (8) 
n~0 

which is a consequence of Eq. (2). 
The rest of this section is devoted to the properties of f (y)  around Yc, and how 

they are related to the Julia set of the map T. 
The Julia set associated with this map, shown in [10], is reproduced on Fig. 1. 

3.1. The Linear Approximation 

Let us first apply to our  problem the method described in [18], which consists in 
linearizing the transformation T around Yc, i.e. in replacing T by the linear map 
T ( L ) ,  

T(L)(Y) = Yc + #(Y-- Yc), (9) 
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with 
Y - -  Yc - x .  (lO) 

Y~ 

The prediction of the linear approximation f(L) of f reads 

and f~/~) satisfies 

ftL)(y) = _~ ln(2y~) + ½ Z 4-"  ln(1 + #"x), 
n>O 

f{L)[T(f)(y)] -- 4f(L)(y) = -- 2 ln(2y). 

(11) 

(12) 

The solutions of the homogeneous equation (obtained from (12) by setting the 
right-hand ~ide equal to zero) read in the variable x 

F(x)=xap(lnx) (13) 
k i n # / '  

where the critical index a is 

a = - -  ln4 
=2.676531579... ,  (14) 

ln# 

and where P is a periodic function, with period unity. 
The same oscillatory behavior is expected for the singular part of f(y), beyond 

the linear approximation. These oscillations of critical amplitudes are closely 
related to the discreteness of the renormalization transformation [7, 10, 15, 18]. 

In the linear approximation, the Fourier coefficients of the singular part of f(L) 
can be obtained in closed form, using the Mellin transformation. 

Let M(s) be the Mellin transformation of the sum appearing in Eq. (11), 

M(s )=  ! ; d  ldxI~>=Zo4-nln(l+#nx)]. (15) 

The change of variable x~#"x in each term allows us to perform the sum over n 
explicitly, 

M ( s ) _  1 4# s ~xS-ldxln(l+x). 
2 4# ~ -  1 0 

This integral representation is convergent for - 1  < Res < 0, where we have 

1 4 #  ~ 
M(s) = 2 4/, ~ -  1 ssin(~s)" (16) 

The analytic continuation of M(s) has poles at s = - n  (n= 1,2, 3 . . . .  ) and at 
s= -(a+ipco) (p=0,  + 1, +2,  ...), where a is defined in Eq.(14), and where 

2zc 
= i--7" (17) 

The contributions of these two series of poles give rise to a regular (reg) part and a 
singular (sg) part of f(f~, respectively, for x ~ 0 .  
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where 

We have therefore 

f(L)(y) = f~) (y)  + f~r)(y), 

f~ ) (y )=  ln(2y~)+ 2,>=0 n 1 - - -  ]..~n 

4 

is analytic in the disk [xl < #; and where 

L~L)(y) = x" E Ap(L) e i,~, 1. x 
o o < p <  + oo 

is a periodic function _ lnx with the following Fourier coefficients: of In kt 

(18) 

(19) 

. ( 2 o )  
A(L) = 2 ln#(a + ipco), sin [rt(a + ipco)] 

In order to observe the oscillatory behavior of f (y ) ,  let us consider its third 
derivative 

d3 f (y) 
B(y)= dy 3 (21) 

B is expected to exhibit the following divergent behavior (since a -  3 is negative): 

B(y) ~ (y - yc) a- 3~p(y). (22) 

The linear approximation @L)(y) to the "critical amplitude" ~0(y) is an 
oscillatory function with very rapidly decreasing Fourier coefficients. All 
harmonics except the first one are therefore very hard to measure. 

Define the average value ~av and the relative osdllation amplitude ~/by: 

l])a v = 1 [ l ~ m a x  @ ~ ) m i n ]  , 
(23) 

l] )ma x - -  l / )mi  n t/-- 
I P a v  

The predictions of the linear approximation for these quantities can be easily 
derived from Eqs. (19) and (20). If we take only Ao, A+I into account, we get: 

p(L) _ (a -- 1) (a -- 2) rc 
av  - -  2y~ ln# sin(tea) ' 

(24 )  
4 sin(tea) ( a -  1 +ico) (a-2+ico)  

r/(L) = (a - 1) (a - 2) sin [rc(a +/co)] ' 

which gives numerically 

~p(~) = 0.15501477 .. . .  r/(L)= 2.507195...t0 -14 . (25) 
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Fig. 2. The critical amplitude ~ of the third derivative of the free energy near the critical point in the 
high-temperature phase (y < Yc) [see Eq. (22)] 
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Fig. 3. The same as in Fig. 2, for the low-temperature phase (y > y~) 

3.2. Numerical Results 

The  expression given in Eq. (8) for  f(y) leads easily to a series representa t ion  for its 
third derivat ive B(y). 

We have t reated numerical ly  this series representa t ion  of B(y), for y very close 
to Yc. In  order  to isolate the leading critical behavior ,  we had  to choose ( y -  yc) of  
the order  of  10-19, and  to use double  precision on a CRAY. The  results for the 
ampl i tude  ~p(y) defined in Eq. (22) are represented on Figs. 2 and 3, for y < Yc and 
Y > Yc, respectively. 
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These figures show clearly that ~(y) is asymptotically a periodic function of 
ln(ly-y~[) with period ln#, and that higher harmonics are very small. 

Both phases (y >Yc and y <Yc) lead to the same values for ~Pav and 1/(after 
extrapolation over a wider range than the one represented on Figs. 2 and 3), 
namely: 

%v =0.13879868... ,  r/= 3.1248...10 -5 . (26) 

As far as ~P,v is concerned, the prediction (25) of the linear theory gives a 
satisfactory estimate, with 11% relative accuracy. On the contrary, the relative 
amplitude of oscillations q is 9 orders of magnitude bigger than the estimate of the 
linear approximation. The next subsection is devoted to the explanation of such a 
large discrepancy. 

3.3. Oscillations and Angles 

The crucial property missed by the linear approximation is that f(y)  is analytic 
only in a sector: ]arg(y-Yc)[ < 01, as can be seen on Fig. 1. 

The function f(L)(y) defined by (11) is analytic in a cut plane (]arg(y-Yc)] < ~z), 
since the large order behavior of the A(v L) reads 

A(p r)~ e x p ( -  Tcco[p[). (27) 

On the other hand, if 01 is the limiting angle of analyticity of f, the Fourier 
coefficients Ap of f for y > yc decrease only as rapidly as 

Ap ~ e x p ( -  co011P])- (28) 

Let us now try to determine the angle 01 appearing in Eq. (28). Fig. 4 represents 
an enlargement of the Julia set around the fixed point yc. 

This picture suggests that the Julia set lies outside an extremal angle gl, and 
f(y) is certainly analytic in the sector 0 < gl, and therefore 01 > ~7~. In the following, 
we shall conjecture that 01 and gl are equal. 

From Fig. 4, one gets a rather poor estimate of the angle 01. One way to get a 
better accuracy is to generate by a biased Monte Carlo method [10] a large sample 
of points of the Julia set, and to find the smallest angle defined by this sample. The 
resulting measurement systematically gives a larger 01 than the one obtained using 
the following procedure. 

Consider the set S given by 

S = {Yl, ill, - Yl, - J ~ l } ,  (29) 

where Yl satisfies T(Y0=Yl ,  (30) 

and therefore Yx = - 2.006162159... + 3.744147122...i. (31) 

Clearly these points belong to the Julia set, because of Eq. (30). This set leads to the 
following estimate of 01: 

01 = lim Arg[(T 1)"(Y0-Y~], (32) 
n - + o o  

where T-1  stands for the one among the 4 branches of T-1  which ensures 
convergence towards y~. The numerical value obtained in this way reads 

01 = 1.159171214 .... (33) 
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Fig. 4. An enlargement of the Julia set of the case q = 2 around the ferromagnetic fixed point Yc, 
showing the limiting angles 01, 02 

A heuristic justification for our choice (29) for the set S is as follows. Consider the 
extremal points Yc, defined as being those of the Julia set having the largest 
modulus. These points are clearly the most "exterior" ones, and those of their 
preimages which converge towards Yc are also locally the most "exterior" ones. As 
a consequence, an estimate (upper bound) on 01 can be extracted from these points. 

Moreover, the points of S can be characterized in another way. Let #, be the 
moments of the invariant balanced measure on the Julia set (see [15] for the 
properties of d#): 

#~ = I y " d # ( y )  , - oo <_ n <_ + o o .  (34) 
s 

For  large positive n, #, is asymptotically dominated by the points of largest 
modulus. On the other hand, since d# is invariant under T, the #, satisfy a recursion 
relation. If we a s s u m e  that this relation is also fulfilled by the asymptotic behavior 
of the #,,, one gets precisely the set S defined by Eqs. (28) and (29). 

By inspection of Fig. 1, these four points (indicated by arrows) are very likely to 
be the extremal points of the Julia set. However, our derivation of S need not work 
in other circumstances, as can be verified by studying the moments ( ( y - a ) " )  with 
a variable origin a. 
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This approach has another interesting feature. The equation T(y)=37 has 
actually four solutions: Yl, Y~ and Y2,352 with: 

Y2 =0.440964442... +0.4801893411...i. (35) 

The angle 02 associated to Y2 through Eq. (32) happens to be (numerically) 

02 = - 01 . (36) 

Figure 4 seems to indicate that this angle 02 coincides with the internal angle of the 
Julia set at Yc. 

We can now formulate an improved estimate for the relative oscillation 
amplitude t/. From Eqs. (27-28), we have the following asymptotic relation 
between the genuine Fourier coefficients Ap and their approximations A~ L) from 
the linear theory: 

Ap ~.. ( A(, L) ~ol/,~ 

\Ap-l) Ap_ 1 A~3- " (37) 

Since this number is very small, the Av are very rapidly decreasing, and we are 
tempted to extend the validity of Eq. (37) down to p = 1. 

This leads to 

r/,-~ 4 [ -~- )  = 2 29903...10- s. (38) 

This value is now only 26% below the exact value given in Eq. (26). 
Moreover, the fact that the amplitudes ~,, and t/are identical in both phases 

strongly suggests that all the Ap's are identical, up to p = 0% and therefore, by using 
Eq. (28) and an analogous equation for y < yc using 02, we deduce that the equality 
of the two angles limiting the Julia set around the point Yc is very likely to be true 
(see note added in proof). 

We have also generated a very large sample of points on the boundary of the 
Julia set (Fig. 5) close to the critical point. This picture as compared to Fig. 4 
illustrates the fact that, both from a geometrical point of view as well as from a 
measure theoretical one, the oscillations in the free energy presumably reflect 
similar oscillations present in the Julia set. This suggests that the estimate (37), 
which is obviously true but only depends on a limiting angle, does not exhaust the 
question of a true evaluation of the first few oscillatory amplitudes Av. Therefore 
the fact that our bold extrapolation gave such reasonable results is presumably 
merely to be considered as a lucky circumstance which might not occur in other 
cases. 

4. The Degenerate Case (q~0) 

As explained in Sect. 2, the case q-->0 is particular, because the map T has a 
derivative equal to unity at its fixed point. Therefore a new analysis is required. 

Let us define the variable 

u = ¼(y-  1). (39) 

In terms of u, the map T reads 

T(u)  = u + u 2 , (40) 
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Fig. 5. An enlargement of the Julia set of the case q = 2 around the ferromagnetic fixed point Yc, 
showing the oscillatory structure of the boundary of the set 

and the renormalization group equation for the free energy is 

f(u + u z) = 4 f ( u )  - 2 In 8u. (41) 

The free energy admits therefore the convergent representation: 

/ ( u ) =  1 ~  ° 4-"ln[8r"(u)] .  (42) 

The Julia set associated to the map T is represented on Fig. 6. It was proved by 
Julia [11] to be a continuous curve; it seems nevertheless to have some structure at 
every length scale, just as in the generic case. 

This section is devoted to the properties of the function f(u), and to their 
relationship to the Julia set of the associated map. We shall focus upon the 
analogies and differences between the generic case and the degenerate one. 

4.1. The Continuous Approximation 

Let us consider the homogeneous equation associated to Eq.(41): 

~o(u + u 2) = 4q~(u). (43) 
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Fig. 6. The Julia set associated to the map: T(u) = u + u z, corresponding to the degenerate case 
(q~0). The arrows indicate the four extremal points of the set S [see Eq. (74)] 

We will show tha t  the solut ions of  Eq. (43) exhibit  an essential singularity at  
/ 4  X 

u = 0 m  by= symptotica,, period,c Define 

?(u) = In ~p(u). (44) 

I t  follows f rom Eq. (43) tha t  7 satisfies 

y(u + u 2) = ?(u) + In4 .  (45) 

Assuming tha t  ? is differentiable for u > 0, we deduce f rom Eq. (45) that,  in the u ~ 0  
limit, we have  

ln4 
?'(u) ~-- u Z ,  (46) 

and we get the following very crude est imate:  

cp(u)--~ e - °"4)/" . (47) 

This  analysis can be pursued  by  keeping systematical ly  higher order  te rms in 
the differential equa t ion  (46), assuming  tha t  the funct ion g(u)  defined by  

ln4 
?'(u) = u~-  g(u) (48) 

is regular  a r o u n d  u = O. 
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Under this assumption, we obtain 

g(u)=l+u_½u2- -2  3 13 4 (49) -t-~u --ggu -t- . . . .  

By inserting this expansion into Eqs. (44)-(48), one gets the following "continuous 
approximation" ~p(c) to the function go, general solution of the homogeneous 
equation (43) 

e-On4)/"UJn 4 I1 _ ln4 2 ] go(C)(u) 7 -  u + A2u +...3. (50) 

Consider now the ratio Re(u ) between the function go and its continuous 
approximation 

Re(u)= go(u) (51) 
~0(C~(u)  ' 

This "amplitude" satisfies 

R,p(u)=Re(u+u2). (52) 

This equation allows R e to be a periodic function, with period unity, of a variable x 
satisfying 

x(u + u 2) = x(u) - 1. (53) 

Since Eq. (53) is, up to a multiplicative factor, identical to Eq. (45), we deduce 
from our previous study that x(u) has the following behavior: 

x(u) = _1 _ lnu + x0 + ... .  (54) 
u 

The continuous approximation predicts therefore that the general solution of 
Eq. (43) reads: 

go(u) = e-  024~lu ul~ 4 A(u) R~( u) , (55) 

where 

In4 
A(u) = 1 - ~ -  u -Jr A2 u2 +.. .  

is a universal function (A does not depend on the particular solution (p, and.the A, 
are systematically computable), and R~,(u) is a periodic function in the variable x, 
which is asymptotic to 1/u. 

The free energy f (u)  is also expected to have a singular part given by Eq. (55), 
by analogy with the generic case. 

4.2. A Toy-Model 

In the generic case, the oscillations modulate a power-taw singularity, and it is 
sufficient to consider a given derivative of the free energy (the third one in the case 
q = 2) to observe these oscillations numerically. 
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In the present case, in order to extract the oscillatory behavior (55) of f(u) from 
its smooth background, we should formally differentiate our function an infinite 
number of times. 

We have nevertheless a more direct way of checking that the function f(u) has 
indeed an essential singularity, as predicted by the continuous approximation. 
Unfortunately this method does not allow us to observe the oscillations. 

If we insert into Eq. (41) the following expansion of f :  

f(u)=f_llnU+ • f,u", (56) 
n>0 

we can compute the f .  systematically 

f 1=2;  f0 = 21n8; f 1 = 2 ;  

+ Z fl for n_>2, 
L = 3  n l n I  

where / runs from [ ( 2 ) ]  (integer part of 2)  up to n in the summation. 

In order to explore the singularities of f, let us define its Borel transform 

B(t)= Y. B,t", with B,= f" (58) 
,>__o n!" 

A singularity of the type given by (55) in f implies that B(t) has a power-law 
singularity at t*= ln4, 

B(t)~Kl(t*--O 1"4, (59) 

and that the B, have the asymptotic behavior 

B, ~ K2(ln4)-" n -(a +1.4) (60) 

We present in Fig. 7 the result of a numerical determination of the B, (up to 
n = 400). We plot the quantity 

Y, = 1 lnB, + ln(ln4) (61) 

vs. (in n)/n. The continuous line has a slope 

s = - (1 + ln4). (62) 

It is therefore very clear that the Borel transform of f(u) has a singularity at t*, 
with an exponent s which is correctly predicted by the continuous approximation. 

This method is not accurate enough to predict that our function f(u) has 
oscillations, i.e. that its Borel transform has also singularities at 

t*=ln4+2rcik, k#O. (63) 

In order to pursue the analysis of the present case and to study the relation 
between the oscillations of critical amplitudes and the shape of the Julia set, we 
choose to study in the remainder of this section a very similar function F(u), 
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Fig.  7. The quantities y,  [see Eq. (62)], related to the Taylor  coefficients o f  the Borel transform of  
the free energy, in the degenerate case. The crosses are the numerical  values; the cont inuous  line 
has a slope s =  - ( 1  + ln4)  

defined as being the logarithmic transform of the unique balanced measure d# on 
the Julia set of the map T (see [15] for a precise definition ofd/z and its properties). 

The function F(u) satisfies 

F(u + u 2) = 2F(u), (64) 

e(u) ,.~ 111 u (u-~ oo). (65) 

In other physical instances, it might occur that a similar essential singularity 
appears in the free energy, but that its amplitude can hardly be measured, due to 
the presence of a regular background. Nevertheless other quantities (such as 
correlation lengths) might exhibit a pure singular behavior in one of the phases. 
Our model for F(u) is designed to capture the structure of such quantities. Indeed, 
would one be tempted to define a correlation length on the diamond hierarchical 
lattice, its reciprocal ~-l(u) would satisfy relation (64), but not necessarily the 
boundary condition (65). 

Since Eq. (65) is homogeneous, our continuous approximation predicts the 
following behavior of F around u = 0  outside the Julia set, 

F(u)=e_t,nz)/uuln2Ii_ ln22u q-Fau2+"'] RF(u)" (66) 
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F has the advantage of exhibiting a pure essential singularity and no smooth 
background. The oscillatory behavior of RF is therefore numerically observable. 
The easiest way to measure these oscillations is to consider the quantity 

E(u) = u ~u " (67) 

It admits the following infinite product representation: 

1 ff + r"(u) 
E(u)= I-I (68) 

.>=o 1 + T"(u)  ' 

which converges for every u outside the Julia set, i.e. such that T"(u)-~ oo when n 
---+(30. 

The continuous approximation predicts for E the following behavior: 

E(u)=e-(~"z)/"ul"2-~[l+Elu+E2uZ+E3u3+...]Rr(u). (69) 

The few first E,'s read 

E 1 = 1-½1n2,  

E 2  = - k - + i n 2  + ( ln  2)  2 , 

E3 = _~ + z In 2 - ~ (ln 2) 2 - ~ (ln 2) 3 . (70) 

4.3. Numerical Results 

We have evaluated the function E(u) through its infinite product representation 
(68), and extracted the amplitude R E from these data according to Eqs. (69) and 
(70), keeping only the first three coefficients E,'s. 1 

Figure 8 shows a plot of the function Re(u ) versus- in  the interval [1000; 1002]. 
u 1 

R E is clearly very close to being a periodic function of . Indeed the difference 
U 

between _1 and the variable x(u) defined in Eqs. (53-54) is not observable on a few 

periods range. 
We can extract from these numerical data the average (RE)av and the relative 

oscillation amplitude ~/of RE, defined as in Sect. 3. These numbers read 

(RE),,, = 0.81624968..., t /= 8.1497... 10- 7 (71) 

The main difference between the present degenerate case and the generic one is 
that we do not know of any a priori estimate of these numbers, like in the generic 
case. In next section we present a relationship between the oscillations of R F and 
RE and a geometrical characteristic of the Julia set. 

4.4. Oscillations and Radius of Curvature 

In the generic case, the Fourier coefficients of the amplitude of f(y)  were 
asymptotically governed by the angle 0~ of the domain of analyticity of f. 
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R E (u) 

0.8162500 

0.8152495 

1/u 

1000 1001 1002 
1 

Fig. 8. The amplitude RE(u) of the toy-model function E(u), v s . -  [see Eq. (51)] 
U 

In the present case, the function F(u) is analytic in the exterior of the Julia set 
represented in Fig. 5. Let us assume that this set has a finite limiting radius of 
curvature ~ at the origin. Then the functions F, E, Rv, R E are asymptotically 

analytic functions of 1 in the band 
u 

Im < ~ ,  (72) 

and the Fourier coefficients/~F(n) and/~E(n) of the functions RF and R~ in the 

variable -1 decreases as 
U 

/~.(n) ~/~E(n) ~ e-  ~t,t/~. (73) 

Let us now give a determination of 0, based on the concept of extremal points 
introduced in Subsect. 3.2. The set of extremal points reads in the present case 

S =  {+i ,  - i ;  - 1 + i ;  - 1 - i } ,  (74) 

and therefore, if the radius 0 is determined by the preimages of S, we have 

i lim Imz,  (75) 
20 ,-~® (Rez,) 2' 

where z, = (T-  1)"(0 and T-  l(y) = ~ / ~ y  _½. 
These formulae lead to the following numerical results: 

1 
- -  =2.2156589..., e-~/° = 8.995279... 10 -7 (76) 
2~ 
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Since this last number is very small, the asymptotic estimate (73) should not be 
violently wrong for small n. Indeed, if we boldly extrapolate (73) down to n = 1 with 
the same precautions as in Sect. 3, we obtain 

t l=4e-~/Q= 3.5981... 10 .6  . (77) 

Compared to the measured value given by Eq. (71), this estimate is off by a 
factor of 4, while the corresponding relative error was only of 26% in the generic 
case. This illustrates the point, made at the end of Sect. 3, that the extrapolation of 
(73) down to n = 1 gives only a rough estimate of ~7- This approach has nevertheless 
the advantage to let us understand how the existence of a finite least upper bound 
for the radius of curvature ff can explain a crucial property of the function F, 

namely the existence of oscillations in the variable _t, and to predict correctly at 
U 

least the order of magnitude of these oscillations. 

5. Conclusion 

We have shown how the shape of the Julia set near a critical point is related to the 
oscillations of the critical amplitudes. There is no doubt  that these oscillations are 
produced by the discrete character of the renormalization transformation. Similar 
oscillations are of course present near the preimages of the fixed point, as well as 
near the preimages of critical periods [7]. 

The most important  question is to know if these oscillations are actually 
present for models on Bravais lattices. Of course, any approximate real space 
renormalization [I8, I9] on Bravais lattices will produce oscillatory amplitudes. It 
is reasonable to think that for simple phase transitions like the one of the 
ferromagnetic Ising model, these oscillations are not present, because the change of 
scale can become infinitesimal in the scaling limit. However, it has been shown 
recently that, in some one-dimensional models [20, 21], these oscillations do exist. 
Therefore they should not be considered always as parasitic effects of real space 
renormalizations. 

Our study does not exhaust other interesting problems related to Julia sets 
[16], like the average escape rate or the Hausdorf  dimension. 
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Note added in proof. The equality 01 : - 02  can be proven by a duatity argument which will be 
published in another work [22]. 


