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Résumé. — Nous présentons une méthode qui donne le développement de faible désordre (A — 0) de 'exposant de
Lyapounov y(E) d’une équation de Schrodinger 4 une dimension ¢, , + ¥,_, + AV, §, = Ey, avec un poten-
tiel aléatoire V,. Prés du bord de bande du systéme pur (E — 2), le développement de y(E) est non analytique et
nous montrons que y(E) ~ A*? pour 4 — 0. Au centre de bande (E — 0) nous retrouvons 'anomalie qui a déja
été expliquée par Kappus et Wegner. Nous trouvons une autre anomalie 4 I'énergie E = 2 cos (r/3) et nous pen-
sons que des anomalies du méme type se produisent pour toutes les énergies E = 2 cos (na) ol o est rationnel.

Abstract. — We describe a method which gives the weak disorder expansion (A — 0) of the Lyapounov exponent
y(E) of a discretized one-dimensional Schrédinger equationy, ., + ¥,_, + AV, ¥, = Ey, with a random poten-
tial V,. Near the band edge of the pure system (E — 2), the weak disorder expansion of y(E) is non analytic and
we show that y(E) ~ A%/3 when A — 0. At the band centre (E — 0), we recover the anomaly which has already
been explained by Kappus and Wegner. We find another anomaly at the energy £ = 2 cos (n/3) and we believe

that similar anomalies should occur at all energies E = 2 cos (ar) with a rational.

1. Introduction.

Products of random matrices appear very often in
the study of disordered systems, in particular in the
one-dimensional situations [1-5]. Usually, the first
quantity that one would like to calculate is the Lya-
pounov exponent associated with a given product
of random matrices. Several physical quantities can
be deduced from the knowledge of the Lyapounov
exponent : in a localization problem [6-7], the Thou-
less formula [8] relates directly the Lyapounov expo-
nent to the density of states ; for the Ising chain in a
random field [9-10], the Lyapounov exponent is
nothing but the free energy.

Unfortunately, there does not exist any general
method of calculating analytically the Lyapounov
exponent of a given product of random matrices.
In general, one can only calculate this Lyapounov
exponent numerically or one has to expand around
a well understood situation (product of random com-
muting matrices [9], weak disorder expansions [11],
large coupling expansions [12]). It is therefore interest-
ing to have available expansion methods which are as
simple as possible.

In the present paper, we shall give a way of deriving
the weak disorder expansion (4 — 0) of the Lya-
pounov exponent y(E) associated with the follow-

ing product of random matrices
N (E— AV, —1
" 1
AT o

where the ¥V, are randomly distributed according to
a given probability distribution p(V) and the energy
E is a fixed parameter. We shall limit ourselves to
the case where the average potential ( V,> =0
since one can always incorporate this average in the
energy E.

The product of random matrices (1) appears in
several situations : first, if one considers the dis-
cretized Schrodinger equation in one dimension with
a random potential AV, on the site n, the wave func-
tion y, obeys the following equation

¢n+l + l/’n-—l + }‘Vn ./,n = E'/In (2)

One can easily relate (2) to (1) by considering the two-
component vectors U, defined by

‘%}H)
U =
" (V/, @

and by noticing that the product (1) relates Uy
to U,,.
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The product (1) appears also in the calculation of
the Lyapounov exponent of some dynamical sys-
tems [13] like the stadion or the diamond which are
integrable systems for ¢ = 0 and have mixing pro-
perties for ¢ # 0.

In section 2, we shall first recall briefly a weak disor-
der expansion which was already presented in a
previous work done in collaboration with C. Itzyk-
son [11]. We shall explain why this expansion holds
for all complex values of E except the interval [— 2,
2] and show why it breaks down in the neighbourhood
of the band edge E — 2 of the pure system. To des-
cribe correctly the region near of E = 2, we shall
develop in section 3 an appropriate method and find
explicit formulae for the density of states and the
localization length. We shall recover several singu-
lar behaviours which had already been found in the
neighbourhood of the band edge for continuous
Schrodinger equations in a random potential [14, 5].

In section 4, we describe a method of finding the
weak disorder expansion of p(E) which should be
in principle valid in the neighbourhood of any energy
E = 2 cos(na) with o rational. In section 5, we
shall apply this method to the case of the band centre
(« = 1) where we shall recover the anomaly explain-
ed by Kappus and Wegner [15]. The A* term in the
Lyapounov exponent is different from that determin-
ed from the naive weak disorder expansion. In sec-
tion 6, we shall consider the case E = 1 (i.e. « = 7/3)
where we shall find a very similar anomaly at order 4.
This anomaly has also been discussed recently by
Lambert [18, 19].

2. Weak disorder expansion.

Let us start from the Schrédinger equation (2).
If we define R, by

VY
R = 4
" wn—l ( )
the Lyapounov exponent y(E) is given by
o1 ¥
WE) = lim = Y logR,. ®)
N—=o© n=1

Clearly, from (2) and (4), one finds that the R, obey
the following recursion relation

1
Rn+1=E—AVn—-R—”. 6)
Since the vector U, was a two component vector, R,
is a way of measuring the direction of the vector U,.

If we fix any complex value of the energy E, the
R, will be complex numbers. In equation (5) there
is no ambiguity in defining the real part of y since
all the definitions of the logarithm give the same ans-
wer. On the contrary, to define the imaginary part of y,
we have to choose a definition of the logarithm. This
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can be done very easily by noticing that if E and R,
have a positive imaginary part, then R,,, obtained
from (6) has also a positive imaginary part. Therefore,
if E and R, have positive imaginary parts, we are sure
that all the R, have also a positive imaginary part.
So we can choose the logarithm of R, to have an
imaginary part between 0 and n when the imaginary
part of E is positive and between — n and 0 if
Im(E) <0

ImE >0
ImE<O.

0<Im(ogR,) <m if
—n<Im(ogR) <0 if

As usual, for real values of the energy E, one can
always add an infinitesimal imaginary part ic to E
and the imaginary part of y in the limit ¢ - 0 depends
on the sign of e.

For real values of E, all the R, are real. If we choose ¢
to be positive, this means that we decide that the
imaginary part of log R, is = for all the negative R,.
We see that for real values of E(E + i¢ in the limit
& — 0%), the imaginary part of the y is just n times the
density of negative R, ie. the density of nodes of the
wave function (see Eq. (4)). So it is clear that this
imaginary part is equal to n times the integrated
density of states.

Let us now recall a simple method for deriving the
weak disorder expansion of y [11]. For convenience,
let us take a value of the energy E which does not
belong to the spectrum of the pure system

E # 2cosq with g real . @)

We can choose any complex value for E or any real E
with | E | > 2. Let us write R, in the following way :

Rn =A e}.B,.+).1€,,+).3D,.+... (8)

where 4, B,, C,, ... do not depend on 4. If we substitute
this expansion into equation (6) and if we equate the
two sides of the equation order by order in A, we find
recursion relations for 4, B,, C,, D, ...

A=E— A1 ©))
ABn+1 = - Vn + 471 Bn (10)
AC,,, +3BL ) =4"YC,—3B). (1)
etc... .

It is not necessary to consider the dependence of 4
on n because for 4 = 0, all the R, are equal to the
root A4 of equation (9) which has the largest modulus.
(The two roots have different modulus because of
condition (7).) The expansion of the Lyapounov
exponent is then given by :

y=logAd + A(BY + 22(CY + 23 (D) + .
(12)
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As explained in reference [11], it is easy to calculate
the averages ( B), ( C), (D ),... To do so, we
have to notice that B,, C,, ... are functions of all the
V, for i < n but do not depend on the V, for i > n
This means that averages like { B V1) can be
replaced by ( BP ) { V1 ). Using the fact that the
averages of ( B ), ( C), { D), etc... do not depend
on n, one gets the following result

2 42
y=logd = 5 s (V2
FERE 4
3 (4% - 1)3< - 4 (4% - )4<V4>
A (3 +242) 4% (V2H?
_7( A“—I (§2—>1)4+°('15)‘
(13)

The term linear in A is not present because we have
assumed that ( V' ) = 0. The expression (13) was
already presented in reference [11] with a slightly
different notation (one has to replace (4 — 1)? z, by
— AV ,in Egs. (17) and (20) of reference [11]).

As we mentioned above, the R, measure the direc-
tions of the vectors U,. For A = 0 and when condi-
tion (7) is fulfilled, the matrices (1) have 2 eigenvalues
with different modulus. In the limit n — oo, the
vectors U, become parallel to the eigenvector U
which has the largest eigenvalue (in modulus). The
meaning of the expansions (8) and (13)is that for small
4, the vectors U, have only small fluctuations around
the direction of U.

It is clear that, if for A = 0 the two eigenvalues have
the same modulus or if they are equal, then the vec-
tors U, have no reason to become parallel to a well
defined direction. Therefore, for small 4, we can no
longer consider that the U, have small fluctuations
around a direction U. In that case the expansion (13)
will not be valid. This can be seen in the expression (13)
where one sees that if £ — 2, ie. 4 — 1, then each
term in the expansion diverges.

It is interesting to notice that by looking at the
expansion (13) of y, one can guess its range of validity.
If we want to approach the point E = 2, one finds
that as long as E — 2 is large compared with A*3,
the first term (the term log 4) in the expansion (13)
is dominant. On the other hand for (E — 2)/A%?3
finite, the first term (log 4), the second term (which
contains { ¥2)) and the fifth term (which contains
{ V?>2) of the expansion (13) become of the same
order. If we define x by

E—2=)%x%

A1 2B /x, (15

And one finds that for large x, the expression (13)
gives us

. (19
Then
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5 <V2>2
i

(V>
8x

y ~ /12/3[\/; -

+ 0(2). (16)
So we see that for 4 — 1 (i.e. E — 2), the expansion
(13) becomes singular and the A% can already be
found. We should notice that 4 - + i, ie. at the
band centre E = 0, is also a point where the expan-
sion (13) breaks down because the fifth term diverges.
The correct study of this band centre was done by
Kappus and Wegner [15] and will be discussed in
section 5. One would expect that, if the expansion (13)
was pushed further, denominators like A® — 1,
A® — 1, A'® — 1, ... would appear at higher orders
and therefore that the expansion (13) would break
down in the neighbourhood of any energy E = 2 cos na
with o rational.

3. The neighbourhood of the band edge.

One can always formulate the problem of calculating
the Lyapounov exponent y as finding a stationary
probability distribution for the R,. This distribution,
that we shall denote P(R, E, 1) depends in principle
on R, on the energy E, on the parameter A and of
course on the whole distribution p(V) of the random
potential V,. P(R, E, 1) obeys the following integral
equation :

PR E 1) = Jp(V) dVI P(R',E, }) x

xé(R E+ AV + )dR’ 17

which can be rewritten as

1

(E—R— X

H&E»=jmmdv Ty

v E, ).). (18)

Of course, if we were able to find the complete
solution P(R, E, ) of this integral equation, the
Lyapounov exponent y would be easy to obtain by
writing

1
xP(———-——E_R_

= f dRP(R E, ) logR. (19)

In the following, we shall restrict ourselves to real
energies. For real energies E, all the R, are real. Since
for positive R, one has log R = log| R| and for
negative R we choose log R = log| R| + in, the
real part Re y and the imaginary part Im y of y are
given by

Re?=‘[ log| R| P(R, E, }) dR (20)
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[¢]
Imy = in f P(R E ) dR. @

From (21), one sees that the density of states p(E)

is just
d 0
dE[J i P(R E, }) dR] =

_ _ldlm
dE

p(E) =

T (22

since Im y counts the number of nodes of the wave
function.

One does not know how to solve (18) for an arbi-
trary distribution p(V). What makes the calculations
possible in the limit £ —» 2 and A — 0O is that P(R, E, 1)

takes a scaling form
R—-1 E-2

PR E, %) ~ A% Q( 23)

H{, x, 3) = fp(V)dV(l — A2 AV 4 243 x)2 H<
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i.e. the function P which is a function of 3 variables
becomes a function of 2 variables only.

One could have guessed this form because in sec-
tion 2 we saw that when (E — 2)/4*3 becomes finite,
several terms of the expansion (13) start to contri-
bute and one has log R ~ log 4 ~ A% for this
range of values of E.

However the best justification of (23) is that by
looking for a solution of the form (23), we can solve
equation (18) to leading order in A. To see that let
us make the following change of variables

E=2+ "% 29
R=1+ 1*P¢ 25)
and let us define H(x, t, 1) by
H(t,x, 2) = A>3 P11 + A*P,2 + 2*3 x, 1). (26)
The integral equation (18) becomes
t+ APV - 2B x
LX), 27
1— 2PtV + A*Px > @)

If we expand the right hand side of (27) in powers of £, we get :

2
H = fp(V)dV{H + AMBVH + ,12/3[2 tH + (t2 — x)H' + VTH] +

V3

_ X) H// 6

+ /‘.|:2 VH + 4VtH' + V(t?

2
+<3V21+(—-—-’ . )>H”

where H, H', H", H"”, H" mean respectively H(t, x, /), r H(t b /)

V H m

Hm:l_'_ /‘:4/3[(312 _ 2x)H+(3t3._4xt+ 3V2)H/

V4

+ 57 H"":I + 0(257?) } (28)

H(t X, /), etc...

If is easy to perform in (28) the average over V and one gets using the fact that f p(MY VAV =0

H=H+ ,12/3[2 tH + (12 — ) H' + S I;Z 2 H”] A [< A, H’”] + 0. (29)

One expects that the solution of (29) can be expanded in the following way :

H(t x, 1) =

HO(t3 x) + A3 Hl(t, x) + 213 H2(t’ x) 4+ e,

(30)

One sees that if we keep the leading order in A of equation (29) (i.e. the order 4%/3), the function H,, has to

obey the following differential equation

2tH, + (t* — x) H) +

2
Ay Y

5 @D

The general solution of the differential equation (31) is easy to obtain by noticing that (31) can be rewritten

as

— x) H,

d
a[(‘z

vy H'] ~0 (2)

T2
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and the general solution of (32) is

H) = Cexp{—<I122><§t 3_xt>}J_ exp{(tfz)(%tﬁ _xt’>}dt' +
1

+Clexp—<VL2><§t3—xt>. (33)

Since H(f) is a probability distribution, it should be integrable and therefore the constant C, has to vanish

C, =0. 34
We can now find the expression of Re y using (20), (25), (26) and (33) :

Rey:[J wlog|1+12/3t|Ho(t)dt]/[j wHo(t)dt]z

+oc t
, 2 (1, , 1
J—w tdtf_w dt exp[< 2>(§t3_xt —313 +xt>}
+ 0 t 1 1
J_w dr f_w de’ exp[< i <§t’3 - xt’ — §t3 + xt)]

<

~ 2‘2/3

(3%)

N

A

which becomes after simplification

0

t12 4t exp(— %t3 +2 Xt>
Rey = 23 (V2 >1/3l - (36)

2
f t‘l/zdtexp<—lt3 +2Xt>
0 6

where X is defined by

X =x vy = L2

=V o7

Similarly one finds for Im 7y :
—A-2/3 + o
Imy = in[j H(t) dt] / U Hy(®) dt] (38)
which becomes after simplification
12/3 < V2 >1/3 1

V2 I t‘”zdtexp<—%t3 +2Xt>
0

Formulae (36) and (39) give us the Lyapounov exponent y in the neighbourhood of the band edge E = 2. The
real part Re y is just the inverse localization length whereas the density of states 5(E) is given by (22) :

Q0 1
12 13
1-28 ¢ pay-un ﬁL t dtexp<—6t +2Xt)

© 2"
\/7—5 [J t~12 4¢ exp(— %t3 +2 Xt>:|
0

Imy ~ in (39)

P(E) = (40)
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If we choose E = 2,ie. X = 0, the integrals in (36) and (39) can be expressed in terms of I" functions :

1
For X = 0, Rey = (A2 V2 >)1/3£6)/3—1‘/; = 0289 3.. (A2 ( V2 H)1/3 (€Y
21(5)
6
3

J2 () r(%)

One should notice-that expressions (36) and (40) are very similar to those found in the continuous case [14, 5, 17].
For X — + oo, one can estimate (36) by the saddle point method and one recovers (16). Similarly, for
X - — oo, the combination of (36), (39) and of the steepest descent method gives (16).

Im y/in = (A2 ( V2 H)1B = 0.159 5. (A2 V2 Y3 (42)

4. Expansion near an energy E = 2 cos na with a rational.

Let us now describe a method of deriving the weak disorder expansion of y which should work at all the energies
E = 2 cos na

E = 2 cos na (43)

with « rational.
As in section 3, our starting point is the integral equation (18) and we shall use (20) and (21) to calculate y.
Like Kappus and Wegner [15], we make the following change of variables

R = sin (q? + 7o) (44)
sin ¢
and we define G(p) by
dR
G(p) = P(R E, 1) —. 45
(¢) = PR E, D) g 43)

When R goes from — oo to + o0, ¢ goes from 0 to #. The integral equation (18) becomes an integral equation for
G(o)

Glg) = f o(V) dVG((p')%‘g (46)

where ¢’ is a function of ¢, E and V given by

1 sin mo + AV e sin ¢
"= — —1 - . 47
v =9 na+2i°g|:sinna+,1Ve""sin(p] “7
Since (47) is equivalent to
R=@+7) _ 5 osna—ay——0¢ _p_gy_L 48)
sin ¢ sin (¢’ + na) R’
From formula (47), one can check that
dp'  Vsin? ¢ 0¢'
91~ “sinma O 9)
and using this identity, one can show that for any function G, one has
0 N v of., ~ 00’
a—AI:G((P)%:I = —ME;I:S"‘ ‘PG(<P)6¢ . (50)

For A = 0, one has ¢’ = ¢ — na, and therefore

For A =0, G(qo’)g—(g = G(p — na). 1)
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From (50) and (51), it follows that

N avoe .,

G((p)F(p— = exp(— Sin e %Sm (0) G((P —_ 11'(!) (52)
— S (_)p A.V P i ) 14

= p;o—;;—!—<sin na) (6(,, sin ¢ | G(o — 7a). (53)

The integral equation (46) can therefore be rewritten as

Glg) = <exp(— e 30 sin? <p) > Glo — ma). (54)

Our task is to find the solution G(¢) of (54) which is a periodic function of ¢ :

Glp + m) = G(p). (55

Since equation (54) is completely equivalent to the integral equation (18), we have no hope to solve it in general.
However, one can expand (54) in powers of A and look for a solution G(¢) that we expand also in A

G(p) = Go(p) + AG(9) + A2 G,(9) + A% G4(9). (56)

Our method consists in finding the solution G(¢) of (54) perturbatively in A.

When we expand equation (54) up to a given power of A, the main problem is that we get a differential equa-
tion which is non local since it relates the function G at the points ¢ and ¢ — na. The simplification which
occurs for o rational

(57

R
I
v~

is that one can iterate (54) s times and get

6(p) = [1 [< exp(— AV 0 a2 +pmx)> >] G(o). (58)

p=1 sin o O¢p

So for « rational, one can obtain a local equation.
One may be interested by a whole neighbourhood of an energy 2 cos na with « rational. If one consider
an energy E’ of the form

E=E+ }2x=2cosma + A%*x (59)

by definition of x, then the equation (54) is replaced by

Px— AV 8
Glo) = < exp(%;r % $in? <P> > Glo — ma). (60)

In the appendix we give a useful expression of the expansion of (60) up to the power A%
Once G is known up to a given power of 4, one can obtain the Lyapounov exponent formula by
o) do || o) do Q)

Rey = [J log
V] 0

Imy = inU G(o) d(P] / J G(p) do (62)
n(l—a) 0

as one can see from (20), (21) and (44).
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sin (¢ + mo)
sin ¢

and



1290 JOURNAL DE PHYSIQUE Ne 8

We shall see that (61) and (62) can be transformed to shorten the calculations. For example (61) can be
rewritten as

J log (sin @) [G(p — ma) — G(e)] do
Rey =22 - (63)
f G(p) do

0

and since G(p ~ na) — G((p) starts like A2, one needs to know G(¢) up to order A"~ 2 if one wants the expansion
of Re y up to order A"

1
In the next sections, we shall consider explicitly the cases o« = = and a = 1

2 3
5. The band centre.

We shall now see how the method presented in the previous section can be applied to the case a = %
For a given energy E’,
E =3x (64)
we are going to look for a solution of (60) of the form (56)
G(9) = Go(@) + AGy(9) + 2% Gy(p) +

Using the expression of (60) given in the appendix, we get a hierarchy of equations for G, G,, G,, ...

o) = Go( o - 5) )

Gy(p) = Gl(‘P - g) (66)

Gy(e) — G,<¢ - -’25> . %[(1 - cos2<p)ai +2$in2q)]Go(¢ ~ g) +

R \ 2sinze — 6snag)
T @3 4cos2<p+cos4<p)a(p2+(12$1n2(p 6sm4<p)a¢

+@Bcos2¢ — 8cos4(p):| G0< - g) 67

One sees clearly that equation (65) or (66) are not sufficient to determine the functions G, and G,. However since
G(op) is a periodic function of period =, this means that G2<(p + g) = Gz((p - g—) and therefore equations (67)
and (65) give

0G0 +3) =G0 =5) = (0 +3) - G0 + G0) - (0 - 7) -

d (VY 0 ]
=x5(;Go(<o)+ 3 (3+C054(P)a—(p2Go((P) 6sm4qoa Go(p) —8cosdp Go(p)[=0  (68)

So (68) gives us a differential equation which will determine G,(p). The idea followed to obtain (68) is exactly
the same as the one which led to (60). Although (68) is a second order differential equation, the fact that G, is
a periodic function (see (65)) determines G, uniquely. For example, when x'is small, one can expand the general
solution of (68). One finds for x < 1 :

et9( /2 + 1) +\/_—1>+

Gole) = < [1 2 log (
(3 + cos 4 p)'/? % )ﬁ 4""(\/5 - 1) 2 +1

C P
——g—lf (3 + cosd )12 d(p’] + ——l———j (3 +cosd ) 12de +0(x?).  (69)

( >< 2y (3 + cos4 @)'/? |,
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There are 2 arbitrary constants C and C, because (68) was a second order differential equation. However to
satisfy the condition that G(¢) is periodic, C, in (69) has to be zero
C,=0. (70)
Similarly one can see easily that (68) determines G, uniquely for x > 1 :
2 2
Golp) =1 + <: >sm4qo <32 z (12cos4 ¢ + 3cos 8 ) + 0( ) an

We were only able to find explicitly G,(@) for x < 1 or x > 1. For finite x, one can solve numerically the diffe- -
rential equation (68).
Let us now obtain the expression of y up to order 42 in terms of G,(¢). From (63), we see that

f log (sin <p)( <<p - 5) G(¢)) do

Rey = =2 — : (72)
f Go(p) do

V]

From (65), (66) and (67), one finds that

f log (sin <p)( ((p - -) - 2(<p))
(1]

I Go(o) do

0

Rey = 42 do + 0(2%) (73)

which becomes after a short calculation (which uses (67))
(1 + cos 4 ¢) Gy(p) de
vy I ’

8 T
f Go(o) do

o

Rey = 22 < +0(2%) (74)

Using (62), we can obtain the imaginary part Im y

in f Gordp f [G(q») - G(cp - g)] do
/2 — in I Yn2

Imy = - 2 + 3 - (75)
f G(p) do j G(p) do
0 0
The using (65), (66) and (67), one finds that the expansion of Im y up to the order A2 is just
o f [Gzap) - (w - 5)] do
_im it
Imy = > + 3 A -
f Go(o) do
]
oG
i xGo(0) + < V?) 6_;(0)/2
_Ir_ w2
Imy=>->2 - (76)
f Go(o) dp
0

For any value of x, one has to find first the periodic solution of the differential equation (68) and then Re y
and Im y are given by (74) and (76).
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For x < 1, we have in (69) the expression for G,(¢). In that case we get
2
I3)
Rey = A2 N (VEY +0(x)| ~0.11424... 22 V?*)> (77a)
\()
- 2
- ()
Im y =% 1 - 22x2./2 —| |+ 00
| )
2
)
- 4
p(E) =2 — |+ 0 0161 56... (77¢)
()
Forx > 1, we get from (71)
_g2¢pesy|l_3 Kv?)? 1
Rey = A*(V )[8 8 32 +0F (78a)
il afx LV 1 (78b)
Imy—2[l A<n+32n e +0x2
| 1 (V)2
P(E) = 7 <1 —nT (78¢)

All our results (77) and (78) are in complete agreement with those of Kappus and Wegner [15] after an appro-
priate change of notation. As they did, we can compare these results with the order A2 of the expansion (13)
(which is known to be incorrect in the limit E — 0)

PvEy in Px] - 1
Rey—T, Im?—i I—T, P(E)—ﬂ- (79
One shoult notice that (79) is just what one gets if in (74) and (76) we had replaced G, by a constant, ie. we had
believed that the solution G, of (65) is a constant and not a periodic function. In principle one should be able to
calculate G, (¢), G,(¢)... and to obtain higher orders in the A expansions of y.

6. The energy E = 1.
We want now to apply the method described in sec-
tion 4 to the case o = l We have again to find

3
perturbatively in A the solution G(¢) of (60) :

G(p) = Go(@) + AG (@) + 42 Gy(o) +
for an energy E’

E’=1+12x=2cos<g->+12x. (80)

As in section 5, the equation (60) gives us a hierarchy
of equations for G,, G,, G,,... when we equate the
two sides of the equation order by orderin 1

Golop) = Go( - g) @1

Gy(p) = G,<<p - g). ®2)

The next order (order A?) determines the function G,
and gives also an equation for G,(¢).

It implies that the second derivative of G, should
vanish and therefore that G, is constant because of

@1

Golp) =1 (83)

and then G, has to satisfy.
Gy(o) — Gz<¢ - g) = 22sin2¢ +
NG

vy

+ T(S cos2 ¢ — 8cosdp) (84)
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The next order (4%) gives an equation for G, () and

x <V2> 9?2 n G,(p) =
(\[aq,* I W)G( ‘§)+ 2(V?) n n
[cos<2<p—3)—cos(4(p +3)] +
+ ; 3>sm6<p=0. (85) 33

\/_ + 2—;5 sin (2 o — g) + W(p) @87

These equations can be easily solved : . . . . PR
where W(p) is a periodic function of period 3

_ (V3 _ LAY .
G (p) = VY T O x W(p) = Wlo + 3 which cannot be determined from
4 - (84) but should be determined from further equations
X [2\/5 {V%*>sin6¢ +=xcos6 (p] (86) in the hierarchy. We shall not determine it because

3 it will not be used later.

Let us now calculate the real part and the imaginary part of y. Re y can be written as

J log (sin (p)( ((p - -) G(fp)) do
(1]

f G(e) do

(1]

which can be written up to order 41* using the expression given in the appendix and a few integrations by parts

" 2x (. T
G(p)dp [Rey = 2= 290G{p — =)d
Uo (o) (p] ey ﬁLsm ¢ (tp 3) ¢

Rey = (88)

4 .2 2 2 T
A KV (—1-f-200$2(p—C0s4(p)G(p—E do
6 o : 3
4,2\ _ 33 3 i
4 x<V9i/§’1 v >f (—3sin2<p+3sin4<p-sin6¢)6(¢—-3’5)d¢
<rey 3—-12 8 4
-—T ( cos2 ¢ + 8cos (p—1200s6qo+3cos8(p)G<p——— do.

Using the expressions (83), (86) and (87), we find
2 2 2 2N2 _ 4
2y >H4[X<V > L3V = (¥4

R4 R4

Re y —
°y 9 36 IBI(VEY +12x7)

6 ] + 0(4%). (89)

Similarly by writting Im y in the following way

Imy = _L G(“’)fl‘”]/U Gig) do | - |
2 f,,,s (G(q») - (cp - —)) do + f : (G((p) - G( - §>) do

3
f G(o) do

]

1+

and by using the expression given in the appendix, one gets :
i BLVEIdI(VEH9
Imy = ?[1 _Ex3 BV ‘/_] + 0(A%) . (90)

n n81 { VZ)* +12x?)
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Formulae (89) and (90) give our final results for the neighbourhood of the energy E = 1. We see in (89) the pre-
sence of a term which contains { ¥ ) whereas in the expansion (13) no term contains { V3 ) at the order 1.
This term is an anomaly of the same nature as the one discussed in section 5.

We see also in (90) that the term which contains { V3 ) depends on { V2 > whereas such a term does not
appear in (13) at order A3,

In this section, we have seen that in the neighbourhood of E = 1, one can find an anomaly very similar to
the one which occurs in the neighbourhood of E = 0. Such an anomaly at E = 1 has been noticed in numerical
work by Pichard [16] and the analytic work of Lambert [18].

As in the section 5, we notice that the anomaly is due to the fact that G,(¢) is a periodic function of period g .

If we had believed from (82) that G, (¢) was a constant, then, we would not have found the anomaly.

7. Conclusion.

In this paper we have described several kinds of weak disorder expansions of the Lyapounov exponent y : the
expansion of section 2 is valid outside the spectrum of the pure system, the expansion of section 3 is valid in the
neighbourhood of the band edge and the expansion of section 4 should be valid in the neighbourhood of the
energies of the form E = 2 cos na with o rational.

In section 5 and 6 we have applied the method described in section 4 to the cases a = % and o = % We

. o . . 1 1
think that it is interesting to notice that the band centre anomaly [ « = 3 has a counterpart for o = 3 We

effect should occur for all rational a = r/s although the power of A at which it can be seen will increase with
s [18].

We believe that the origin of these anomalies is the fact that the function G(¢) contains a periodic function
of period o It would be interesting to generalise the results for o = :,12- and % to other rationals. In doing so, we
think that the method presented in section 4 constitutes a good starting point.

Also we think that is should be interesting to extend the results presented here to quasiperiodic situations.
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Appendix.

We give an expression of the expansion of (60) up to the power A*

6 ={1+-2% [ - cos20)-2 +25in2
¢ = 1 2 sinna ¢ op e+
A2VEY + )4 x? o2 . ) 0
- — +(12sin2¢ — 4 @) —
+ 16 sin” na [(3 4cos2¢ +cos4(p)a(p2+(1 sin2 ¢ — 6sin (P)6(p+

+(8cos2¢ — 8cos4(p)]

3

3 3N 4 &
_ARKVT> 347 X< >[(10—150032<p+6cos4(p—cos6(p)aa—(p3+

192 sin® na

2

+(60sin2¢ —48sind ¢ + 125in6(p)-;¢—2

+(—8 +84cos2¢ — 120cos 4 ¢ +44cos6<p)%

+(—48sin2¢ +96sin4 ¢ —48sin6<p)]
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INEQ A (
3 072(sin mo)*

+ (280sin2 ¢ — 280sin4 ¢ + 120sin 6 ¢ —20sin8(p)a—

ONE DIMENSIONAL ANDERSON MODEL

35 — 56cos2¢ +280084(p—80086(p+0088(p)ai2
¢

1295

4

63
(p3

+(— 100 + 640cos2 ¢ — 1040 cos 4 ¢ + 640 cos 6 ¢

62

- 1400038(p)a— +(—800sin2 ¢ + 1760sin4 ¢

(pz

— 1440sin 6 ¢ +400sin8(p)—5%; +(— 384cos2 ¢

+1152cosd4¢p — 1152cos6 ¢ + 384cos8(o)]}G((p — ma) .
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