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Résumé. - Cet article traite du comportement d’une interface tracée sur un réseau tridimensionnel en présence
d’un potentiel de paroi, en géométrie semi-infinie. Ce problème est une modélisation de la transition de mouillage,
observée dans des systèmes de mélanges binaires ou de gaz adsorbés. La méthode de la matrice de transfert nous
permet d’accéder à des résultats exacts sur des rubans de largeur finie. Nous proposons une façon de les extrapoler,
et d’en déduire le diagramme de phases du système infini. Le mécanisme de la transition change lorsque la tempé-
rature d’accrochage croise la température de transition rugueuse.

Abstract. 2014 We consider the pinning of an interface on a 3D lattice by an edge potential (semi-infinite geometry).
This situation models the wetting transition occurring in such physical systems as binary fluids or adsorbed gases.
The transfer matrix method is used to get exact results on strips of finite width; we propose a way of extrapolating
them and of deriving the phase diagram of the infinite system. The mechanism of the transition changes when the
pinning and roughening temperatures coincide.
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1. Introduction.

A wall of a container enclosing a binary mixture
cooled below its consolute temperature T, can be
completely wetted by one of the coexisting phases.
The formation of a macroscopic film of one phase
on the surface of the wall at a certain well-defined

temperature TW (T w  T e) is an example of the

wetting transition. It has been observed recently in
various experiments [1].
A theoretical description of this phenomenon,

based upon mean field approximation [2], shows
that the wetting transition can be either first-order
or continuous, according to the values of several

physical parameters characterizing the wall (its geo-
metry and its ‘interaction with the system). The case
of a continuous phase transition is usually called. the
critical wetting. It has been proved [3] that the mean-
field approximation is valid above three dimensions,
that is, de = 3 is the upper critical dimension for this
transition. In three dimensions one can construct
some simple effective models [3, 4], in which the main
statistical variable is the displacement of the interface
separating the two coexisting phases. In these models,
the formation of the macroscopic film in the (critical)
wetting transition is simply described as the moving
away of the interface from the wall. A renormalization-

group analysis of the interface displacement models [4]

shows that the critical exponents at the transition
point depend continuously on a certain dimensionless
parameter OJ which characterizes the interface.
The wetting transition in binary fluid mixtures

can be well described by such continuous models,
because the microscopic structure of the fluids in
contact with the wall plays no important role in the
transition mechanism. This is not always the case in
other physical systems (e.g. crystals [5] or adsorbed
gases [6]); one should then introduce a lattice to take
into account the discreteness on the microscopic level.
The phenomenon analogous to (critical) wetting in
lattice models is not well understood The critical
dimension is still expected to be de = 3 : this coincides
precisely with the dimensionality at which the rou-
ghening transition occurs at a nontrivial temperature
TR [7]. At low temperatures the discreteness of the
system ensures that the free interface in an Ising-like
system has a finite intrinsic width; above TR, on the
other hand, the interface position fluctuates on a

logarithmic scale, as if it were a continuous surface.
These two situations are separated by an infinite
order roughening transition, characterized by an
essential singularity [7, 8]. It is important to note that
this phenomenon does not occur at other dimensions :
an Ising interface is always rough (T R = 0) for d  3,
and always localized (TR = Te) for d &#x3E; 3.
The roughening transition has been studied mostly
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in the so-called S.O.S. (solid-on-solid) approximation
[8], which discards disconnected parts and overhangs
of the interface. The same simplification of the wetting
problem leads to the pinning problem [9] of a S.O.S.
surface placed in an external potential mimicking the
attraction of the wall. The two-dimensional problem
has been the subject of much effort [9, 10] : in this
case the interface going away from the wall always
becomes rough ; the lattice structure of the model
is in fact unimportant There exist very few results
concerning the three-dimensional pinning problem
in lattice models. The existence of the transition can
be supported using the duality with the Coulomb gas
problem [11] ; there also exists a rigorous proof [12]
that a S.O. S. model with a particular potential exhibits
a transition for every value of the depth u of the poten-
tial well.
The aim of this paper is to study the nature of the 3D

pinning transition in a discrete lattice mode, and in
particular to understand the relation between the

wetting and roughening transitions. For this purpose
we use the finite-size lattice method (strip geometries).
In section 2 we introduce the model and describe the
method used to solve it on strips of finite width. In
particular we show that, despite the broken transla-
tional invariance of the problem (in the direction
perpendicular to the wall), we can still leave the
boundaries of the interface free, and thus easily observe
its moving away from the wall. In section 3 we give
the numerical results for several thermodynamical
quantities, and study their behaviour as a function
of temperature T and pinning potential u. The analysis
of these quantities as a function of the strip width N
allows us to postulate a form of the phase diagram
for the pinning transition. We do this in section 4,
where the method of extrapolation of the (exact)
finite-width results to the N - oo limit is described,
together with its difficulties and limitations. In section 5
we give a summary of the results, and give the physical
picture of the transition, as obtained from our calcu-
lation.

2. The model and the method.

We consider a S.O.S. interface model in an external

pinning potential, defined by the following Hamil-
tonian :

An integer height hi is attached to each site i of a square
lattice. The nearest-neighbour potential V ensures
the coherence of the interface; U describes the attrac-
tion of the wall and the semi-infinite geometry of the
medium. Our choices for V and U read :

This model is very similar to that of [12], except for
the fact that we allow only height jumps of 0, ± 1.
It has been called the restricted S.O.S. (R.S.O.S.) model
in the first paper cited in [9] in the two-dimensional
case. This kind of restriction is known not to affect the
3D roughening singularity, as we know from van
Beijeren’s exactly soluble model [13]. In a previous
work [14], one of us has applied the finite-size lattice
method to the pure R.S.O.S. model (i.e. without the
potential U), and our results are in good agreement
with the essential singularity expected from univer-
sality. In the following, we present the results of the
same method applied to the problem defined by (1).
This finite-size lattice method was introduced by
Nightingale [15] and successfully adapted to many
different problems (see [16] and references therein).
It consists in solving exactly the theory on strips of
width N, by a transfer matrix approach, and in extra-
polating the results to N -.. oo, for instance by finite-
size scaling laws.

Let us first consider our model on a strip of width 1,
i.e., describing the pinning transition in two (bulk)
dimensions. This case is well understood (see [9]).
The partition function at temperature T = p-l reads :

where we use periodic boundary conditions (hL + 1 == h 1)’
and we introduce the transfer matrix T defined by :

The reduced free energy is therefore :

where A is the largest eigenvalue of T. Let C{Jh be the
associated eigenvector; it satisfies :

The reduced temperature t is defined by :

According to the values of t and u, the largest A can
correspond either to a bound state or to an extended
one :

a) bound state : the unique normalizable solution
of (6) is : gh = z" with z given by :

The associated eigenvalue is related to z by :

These formulae are valid as long as z  1, i.e. for
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t  tp, where the pinning temperature is defined by :

r

b) extended states : they are characterized by a
wavenumber p : C{Jh = e iph . The corresponding eigen-
value of T is :

The free energy for t &#x3E; tp is therefore :

Note that there exists a finite tp for every (positive)
value of the potential parameter u.
The mean transverse position of the interface is

given, for t  tp, by :

When t goes to tp from below, z goes linearly to unity,
and therefore we have :

At the pinning temperature tp itself, the free energy
and the internal energy E, defined as :

are continuous. The specific heat :

has a finite discontinuity at tp. For fixed t below tp,
the largest eigenvalue A is given by (8), and the second
largest one A’ by (10) with p = 0. The correlations
along the interface are dominated by the gap between
these two values. A parallel correlation length can
be defined by :

It diverges therefore according to :

All these results, and particularly (13-17) agree with
other 2D edge pinning models, with discrete or

continuous heights.
Let us now show how these results can be genera-

lized to a strip of arbitrary width N &#x3E; I with periodic
transverse boundary conditions : the square infinite
lattice is replaced by a strip : S = { 1, 2, ..., N} x Z,
and we identify N + 1 with 1. The dynamical variables
are now { hi , ..., h N } (hN + 1 = - h 1 ). Let us characterize
one such collection in the following way :

where H is the smallest of the hi, and A is a symbol
for the internal structure of the h;, i.e. for all differences
between them. Since our potential V is truncated,
the number D(N) of internal configuration indices A
is finite as long as N is finite. Taking into account
symmetries of the Hamiltonian, like cyclic (hi -.. hi+ 1)
and reversal (hi - hN + 1 - i) invariances, D(N) can be
considerably reduced to its optimal value, which is
given (up to N = 7) in table I.

Table I. - Dimension D(N) of the matrices T M and WM
as a function of N, the width of the strip.

Although the number of degrees of freedom is still
infinite in a nontrivial way (H = 0, 1, 2, ...), we have
a rather simple method of computing exactly the free
energy for arbitrary finite N. The transfer matrix
element between neighbouring configurations { hi I
and { hi } reads :

This nonsymmetric formulation of T is the most appropriate to the following analysis.
The eigenstate equation, generalizing (6), reads :
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The TM are three matrices of size D(N) whose entries
are polynomials in t ; the two matrices W M also involve
powers of t-u.
The resolution of (20) consists in two steps :
a) find a basis of solutions of (20a) of the form

(PH A = xA ZI. In other words, look for z and XA such
that the following operator :

admits A as eigenvalue and that the associated eigen-
vector is X’. If z is a solution, then its reciprocal 1/z
is also a solution. Let us call z., (a = 1, 2,... D(N))
the solutions satisfying I z,,, I  1 (then I z. I &#x3E; 1) and
x: the associated eigenvectors. Note that za and £
are generally complex.

b) select the particular linear combination of these
basis vectors which satisfies the boundary equa-
tion 20b. It is necessarily of the form :

It contains no 1 /za terms, because they would make
the wavefunction grow at infinity. The linear system
in the Ca obtained by putting (22) into (20b) must
have a normalizable, and therefore nonzero, solution.
Its rank has therefore to be strictly less than D(N).
This condition reads :

This last formula solves our problem, giving (impli-
citly) 2 as a function of t and u. It reduces a nontrivial
problem with infinitely many degrees of freedom to
finite-dimensional, and therefore numerically trac-

table, equations. The transfer matrix approach to
this problem has a particular interest by itself, since
the model on a strip has a phase transition, although
it is one-dimensional. Similar cases exist in polymer or
lattice animal problems [17].

3. Exact numerical results on strips.

3.1 TRANSITION TEMPERATURES. - The first quantity
we compute is the pinning temperature Tp(u) for
a strip of width N, generalizing the analytic result (9).
The procedure we choose is the following. For fixed N
and t, determine the largest eigenvalue A of the operator
T(z) with z =1 (see (21)). For that A, find a basis of
solutions of (20a) and solve (23) by Newton’s method,
considering the potential parameter u, involved in the
entries of the WM matrices, as the unknown quantity.
The convergence of the method is always good (up
to N = 6); the D(N) - 1 values of z which are not
forced to be unity lay in a circle which gets smaller
and smaller when N is increased.

The variations of Tp with u are represented in
figure 1, for widths N = 1 to 6. For fixed small u,
the Tp(N) seem to converge to some finite value;
for large enough u, they seem to diverge. We shall
return to this point in next section.

3.2 THERMODYNAMICAL QUANTITIES. - The internal
energy E and the specific heat C are given through
formulae 5,14,15 as functions of the largest eigenvalues
A of the transfer operator. The situation is completely
analogous to the N = 1 case (see sect. 2) : tp is the
boundary between a bound state and an extended state
regime.

For t &#x3E; tp(u), we have just to consider the largest
eigenvalue of T(z = 1) (see (21)), that we already
considered in the last subsection. Thermodynamical
quantities are therefore independent of u in this phase.
For t  tp(u), we have to solve (23), considering A

as the unknown. We use Newton method; for each
test value of A, we have to find all the z,,,, 4. These
quantities are generally complex, and each za is itself
determined by Newton’s method on the function
Det [T(z) - /L1]. We have checked (up to N = 6)
that the mechanism of the transition is the same as
for N = 1, i.e. the fact that the unique bound state
disappears continuously into the continuum of extend-
ed states. In particular, we never encountered more
than one bound state, nor any anomalous variation
of the eigenvalue A.

Fig. 1. - Variation of the pinning transition temperature Tp
as a function of the potential parameter u, on strips of
widths N = 1 to 6.
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- in figures 2, 3 and 4, we present the variations of the
specific heat versus the reduced temperature t, for
three typical values of the potential parameter u.

The choice of these particular values will be justified
in next section, which is devoted to the extrapolation
of the data to the 3D system.

In most problems studied by the strip method, the
first limitation on the width N comes from the size
of the transfer matrix, which grows exponentially
with N. In our problem, table I shows that the storage
of the matrices TM, WM is not at all the first limitation
we encounter. The most serious constraint on the

Fig. 2. - Specific heat as a function of t, for strips of width
N =1 to 5. The potential parameter is u = 0.02.

Fig. 3. - Specific heat as a function of t, for strips of width
N = 1 to 5. The potential parameter is u = 0.06.

Fig. 4. - Specific heat as a function of t, for strips of width
N =1 to 4. The potential parameter is u = 0.2.

values of N we can correctly deal with is the fact that,
for N larger than 5 or 6, our iterative procedures
become very slow, and very unstable with respect to
initial conditions on A and the z,,, and to convergence
to « ghost » states with negative A. Moreover, we
could not guarantee a good enough accuracy of our
solutions for N &#x3E; 7, which could therefore not be
used in our extrapolation methods. ,

4. Extrapolation to the 3D system

Let us insist upon the fact that the results we report
in sections 2 and 3 are exact, whereas the following
assertions are numerically and heuristically supported
conjectures on what the 3D phase diagram is likely
to be.
The analysis of the transition temperatures and of

the specific heat leads us to a very plausible existence
of two critical values of the potential parameter u,
namely uR and us, demarcating three regions. Neither
the characteristics nor the existence of these three

regimes is the result of any proof, but we shall present
arguments in favour of the consistency of the strip
method with other approaches. Let us describe the
phase diagram we predict (Fig. 5).

Region 1 : 0  u  UR - 0.04. - The first region is
characterized by a fast convergence of the Tp(N)
to a value Tp, transition temperature of the 3D
system. The variations of the specific heat (for u =0.02 :
see Fig. 2) suggest that the transition of the bulk 3D
system is a discontinuous one (first order). More
precisely, let us define a temperature ti (ti  tp), for
fixed u and N, as being the intersection point between
the curve C(t) Ittp and the continuation of C(t) It&#x3E;tp
(which exists for arbitrary t, independently of u).
The width of the specific heat peak is defined by :
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Fig. 5. - Our prediction for the phase diagram of the model :
in phase I, the interface is pinned near the wall; in phase II,
it is delocalized and smooth; in phase III, it is delocalized
and rough. The natures of the transition lines are as follows :
the solid line between the origin and R is first-order; the
dash-dotted line represents the leading order of the low- T
expansion. The dotted line is the infinite-order roughening
transition. The dashed line (between points R and S, and
along t = 1 above u = us is presumably continuous. The
white circles are improved Neville approximations to the
transition lines.

and the effective latent heat by :

The numerical values of these quantities (see left
hand side of table II) are an evidence for a first-order
transition (constant AE; widths At - 0). This pre-
diction is in agreement with the following low-tem-
perature expansion.

Consider first the interface far from the wall. At zero

temperature, it is completely flat, and its first exci--
tations are one height difference of (± 1). We have
therefore :

(A is the area of the sample), and :

In presence of the wall, analogous arguments lead to
the following partition function :

Table II. - Analysis of the specific heat curves for two
typical values of u. A star in the last row indicates that
we assume convergence of the data.

and then :

Both free energies are equal along a line in the (u, t)
plane :

..4.

The corresponding transition is first-order, with a
latent heat :

For u = 0.02, the analysis reported in table II predicts
AE = 0.15, while formulae 30-31 lead to AE = 0.099.
The discrepancy is only due to higher-order terms in
the low temperature expansion and we think that this
low-temperature picture is valid up to some value
u = uR.

Region 2 : UR  u  us - 0.075. - Let us come
back to figure 1 : the pinning temperatures seem to
obey two different convergence regimes, separated
by a crossover around u = 0.04. In order to support
more precisely this observation, we use the following
extrapolation method Let us remark that we tried
other methods without getting stable enough results.
Consider the uN (N = 1 to 6) at fixed t. The ordinary
Neville method on this suite consists in defining the
VNby:

If uN - u. + AN -Y, then VN converges much faster
towards Uoo for the choice of a = 1 + 1 /y. Since we
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do not know the exponent y for the present problem,
we propose to eliminate it between the two equations
obtained by setting N = 4 and N = 5 in (32). The
corresponding «improved Neville » results lie on

figure 5 for some values of particular interest At very
large T (t close to 1), the method involves differences
of large numbers, and gets unstable. Around t = 0.6,
we get unexpectedly unstable results.

This analysis leads to a transition line ending at a
point S (T = oo, u = us - 0.075). A typical point of
this line is u = 0.06, where we observe (Fig. 3) a large
peak in the specific heat, but the numerical data
(Table II, right hand side) show that the transition
is not first-order. The maxima of C do not seem to

diverge rapidly with N. This fact is compatible with
the continuous theory of reference 4, which predicts
v = v 11 I &#x3E; 1 in all cases, so that the specific heat
critical exponent a, given by the hyperscaling relation :
a = 2 - 2 v 11, is always negative.
The point uR at which the first-order low-tempera-

ture transition becomes a continuous one is very
likely to correspond to the roughening transition :
the low-temperature expansion considers small exci-
tations of a nearly flat surface, while the field theory of
[4] is expected to be valid when the interface is rough.
This scenario is supported by the following numerical
fact : taking the value of tR = 0.60 from [14], we get
from figure 5 : UR - 0.04, point at which none of the
quantities mentioned in table II (At, Net, AE) seems
to converge. The infinite-order roughening line com-
pletes our plausible phase diagram.

Region 3 : u &#x3E; us. - In this last region, we do not
see any sign of a phase transition. The values of Tp
diverge quickly (- linearly with N) ; the specific heat
(Fig. 4, for u = 0.2) seems to converge to a smooth
function. We have also observed that the parallel
correlation length ç BI defined in (16) is a decreasing
function of N at flxed t and u &#x3E; us : in other terms,
the interface is more and more bound to the wall
and off-critical, when N is increased.
Although we have no proof of the existence of a

finite us in our model, this fact is not very surprising.
It has been proved (see [12]) that the (unrestricted)
S.O.S. model in the potential we consider has a phase
transition for arbitrary u, but both models (S.O.S.
and R.S.O.S.) are very different at very high tempera-
tures. We know that the two-point function of both
models, in the absence of a pinning potential, has the
following behaviour (for T &#x3E; TR, I R &#x3E; 1)

In the S.O.S. model, we expect a(7) to go to infinity
with T, as it does in a continuous field theory; while,
in the R.S.O.S. model we consider, J(7J goes to a
constant, we estimated to be 0.37 in [141. The entropy
is therefore much smaller in the restricted model,
and the pinning potential may win for arbitrary
temperature when it is strong enough (u &#x3E; us). Another

similar argument, based on duality, leads to the same
possibility. It has been shown in [ 17] that the interface
is unbound for sufficiently small dual temperature T*.
Assume the transition dual temperature T* and the
potential parameter u are related by (once one precise
definition of T * is chosen) :

Let us recall that the dual potential is defined (see [8])
by :

The dual temperature can be defined by :

These formulae lead to :

When t goes to unity, T * goes to zero for the S.O.S.,
model, and there exist two phases for arbitrary u,
In our R.S.O.S. model, T* goes to its lower bound 1
and therefore there exist two phases only for :

Let us mention that a similar fact is encountered
in mean field theory [19], where the true S.O.S. model
has a pinning transition, while the discrete gaussian
model has only one phase (the interface is bound for
every temperature, like in our case for u &#x3E; us).

5. Conclusions.

In the previous section we have proposed an inter-
pretation of the observed behaviour of physical
quantities, which gives rise to a coherent description
of what the phase diagram of a 3D edge pinning lattice
model is likely to be.
For weak pinning potentials the interface, when

moving away at T = Tp from the boundary, still has
a finite width. The depinning transition is in this case
of first-order. For T &#x3E; Tp the interface is far away from
the wall and in fact does not interact with it For
T = T R &#x3E; T p it will of course undergo the usual
roughening transition of a free model. z

For pinning potentials strong enough to make T p
and TR coincide, another mechanism takes place.
The interface when moving away gets rough. In this
case large excursions of the unbound interface play
an important role, as they do in continuous models.
The depinning transition is now continuous.
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For very strong pinning potentials (u &#x3E; uo, the
interface seems to be always bound to the wall. We
think that this is a pathology of our model, connected
with the truncation of the interactions, as we have
explained in section 4.
One should notice that, when defining our model,

we have not considered any bulk field or any long-
range interactions [18], which are usually present in
real systems. Therefore, at Tp, the interface moves
infinitely far from the wall. Neither have we observed
the so-called o layering » transitions (see [6]), where
the interface is moving away by a series of separate
discontinuous «jumps ».

In this paper, we have shown how the transfer
matrix method can work in the case of an infinite
number of configurations per site. A considerable

advantage of this method is that it leads to exact
results on finite strips, the only questionable part of
the analysis is the way to extrapolate these results
to the infinite system. This approach may certainly
be used in other problems, for which a naive formu-
lation of the transfer matrix leads to an infinite dimen-
sional operator, and especially when the ID system
exhibits a phase transition.
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