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LETTER TO THE EDITOR

A self-avoiding walk on random strips
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Abstract. To describe a polymer in a random medium, we consider a self-avoiding walk
(sAw) on a lattice whose bonds are randomly favourable (with probability 1-p) or
unfavourable (with probability p). The size of a SAW of N steps is calculated when the
lattice is a strip by performing products of random matrices. When the weight of unfavour-
able bonds tends to 0, there exist critical concentrations p. where the size of the saw
undergoes first-order transitions. The origin of these transitions is explained as well as
the fact that the limits p>0 or p-»1 are discontinuous. Possible consequences for
higher-dimensional systems are discussed.

According to Harris (1974), the critical properties of a physical system are modified
by the presence of impurities if the exponent « is positive. It is the case of polymers
below dimension 4 (@ =0.236 in d =3 and a =0.5 in dimension 2) (Chakrabarti and
Kertész 1981 and references therein). So one expects that the properties of a long
polymer are modified by the presence of quenched impurities (which can be either
attractive or repulsive for the chain). In particular, the exponent » which relates the
size R of a polymer to its molecular weight N (R>~ N?") should be changed by the
presence of these impurities.

However by studying a simple model of a polymer in a random medium, one could
believe that the randomness has no effect. This model is the n» -0 limit of the
Heisenberg model on a lattice with random nearest-neighbour ferromagnetic interac-
tions J;

H = —(Z) ],,S, * Sj. (1)
if
The J;; are random positive numbers distributed according to a probability distribution
p(J;). Exactly as in the pure case (Daoud et al 1975), the correlation function (S, * Sg)
gives in the limit n - 0 the generating function Gog of the self-avoiding walks (saw)
whose ends are 0 and R.

}li_l'.l'é (8o Sr) = Gor({J;h) = Y JouJiir o o Jin_sire 2)

0,i1,i2,...,in—1,R

Here {0, i1, i, ..., in-1, R} represents a sAw of N steps which passes through sites
i1, 2, ..., in-1. The'sum (2) runs over all the sAw going from 0 to R. Because each
interaction J; appears in (2) only with power 0O or 1, the average of Gog is given by

G—m=IZVJVon(N)(J-)N €)
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where Nog (V) is the number of saw of N steps going from 0 to R. So the average
correlation function Gog is identical to the correlation function of the pure system
where all the J; are replaced by their average J. This identity (3) does not contradict
the Harris criterion because, for large R, the quantity which is meaningful to average
is the logarithm of Gog (Derrida and Hilhorst 1981). To average this logarithm is a
difficult task and up to now it has never been done for polymers. For the numerical
results presented in this letter, the calculations were done by performing products of
random transfer matrices and the average was done automatically by taking long
enough strips.

The distribution g (J;;) chosen in the present work is a sum of two delta functions:

p(]i,-)=(1—p)6(],~,——x)+p6(],~,»—xa). (4)

This represents a lattice formed of two kinds of bonds: normal bonds with a concentra-
tion 1—p and unfavourable bonds (if @ <1) with concentration p. The parameter a
is a weight given to each unfavourable bond. A given configuration of a saw of N
steps which passes through N; normal bonds and N, = N — N; unfavourable bonds
has a weight a™2.

The average size (R?) of a saAw of N monomers with a fixed origin O is given by

-1

(R)=( % a™R:Won(N,No)( % a™Wor(N, N2) (s)

R.N; R.N>

where Nog(N, N,) is the number of saw of N steps going from 0 to R and passing
through N; unfavourable bonds. Another quantity of interest is the number of
unfavourable bonds (N,) on the walk

-1

N =( @ Nakor (N M) " or, N) (6)

Because the lattice is formed of random bonds, the N yg(N, N;) depend on the local
arrangement of bonds around the site 0. However, in the limit of long chains (V —» ),
the polymer can explore a very large part of the lattice and it is reasonable to assume
that the effect of this local arrangement is washed out. Therefore, one expects that
in this limit N>o0, (R*) and (N,) depend only on N, a and p in the following way

(R)=(R*»'*~N"""/A(p, a) (N2)~NB(p, a) (7)

where v, A and B are functions of a and p only. Of course, the first physical quantity
one should like to calculate is »(p, a) for lattices in two and three dimensions.
Unfortunately, one does not know how to do it directly. Thus it is interesting to
study the problem on strips with the intention of using finite size scaling to obtain the
behaviour of two- or three-dimensional systems.

The simplest way to study one-dimensional systems is to use transfer matrices.
For polymers, the idea of a transfer matrix was first introduced by Klein (1980) and
later in a work on the phenomenological renormalisation (Derrida 1981). From the
eigenvalues of the transfer matrix, one can calculate the physical quantities of interest.
The generalisation of the transfer matrix to random lattices is straightforward.
However, one has to work with products of random matrices and there does not exist
a simple way to calculate the Liapounov numbers which play the role of the eigenvalues
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for products of random matrices. In most cases, the only way to calculate the properties
of random one-dimensional systems is to generate the transfer matrices at random
and to do the product numerically. To eliminate the fluctuations due to a particular
sample of matrices, the product has to be as long as possible.

For more details about the study of disordered systems by products of random
matrices, I refer to the work of Pichard and Sarma (1981) who have used this method
for the problem of localisation.

The quantity which can be obtained directly from this product of random matrices
is the generating function Gog. If the points 0 and R are far from each other, one
finds that this generating function behaves like

GOR -~ exp(RI-" (x’ p,a ))° (8)

Then by applying to the random case the ideas worked out by Klein (1980) for pure
lattices, one can calculate the average size (R) and the number of unfavourable bonds
(N,) of a walk of N monomers

0
N =xc—”
ox

(R)=A(p, a)(R) (9)

(Np)=(R)a

=NB(p, a) (10)
da

Xc

where x. is the value of x where u(x, p, a) vanishes

wu(x, p,a)=0.

The size {(R) is proportional to N as it should be for a sAw on a one-dimensional
lattice. In figure 1(a), the circles and the stars represent the function A(p, a) as a
function of p for a strip of width 2 with periodic boundary conditions. The weight a
of the unfavourable bonds was either 10~ '* (circles) or 107*® (stars). These two curves
show a rather complicated behaviour as a function of p. First, the two curves do not
coincide everywhere and this means that a =10"'? or 107*® is not small enough to
reach the asymptotic limit a -+ 0. Another surprise is that in the limit p » 1, one does
not recover the value of the pure system. One can show (Derrida 1982) that A(p, a)
is in fact continuous at p = 1, but the slope is proportional to log a. One has also to
understand the origin of the maximum around p = 0.2 and of the irregularity around
p =0.75. The maximum is due to a competition between the fact that the saw tries
to avoid the unfavourable bonds and the entropy which tends to spread the saw. We
shall see that in the limit a - 0, this maximum disappears. The most interesting result
is the irregularity around p =0.75. In the limit a » 0, it becomes a phase transition
that we shall discuss further.

One should notice that these results show clearly that the most probable value of
Gog is not equal to its average Gor (Derrida and Hilhorst 1981). If Gog could be
replaced by its average in equation (8), A (p, a) would be an horizontal line (A (p, a) = 3).
Here the calculations have been done for strips of iength 10 000 without averaging.
The smoothness of the curves is an indication that the statistical errors are small.

In figure 2(a), the circles and the stars represent the function A(p, a) as a function
of p for a strip of width 3 with periodic boundary conditions (a = 1072 corresponds
to the circles and a = 10™*8 to the stars). The results are very similar to those for a
strip of width 2. One difference is that the irregularity around p = 0.7 seems to be
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Figure 1. The circles and the stars represent the function A(p, a) for two values of

a=10""and a = 107*® in the case of a strip of width 2 with periodic boundary conditions.

The curves represent (a) A{p, a) and (b) B(p, a) in the limit a > 0. We see the transition
1

at p.=3(v17- 1),

more complicated. We shall see that for a strip of width 3, the function A(p, a) has
several jumps in the limit a » 0. Another difference is that the maximum p =0.35 is
more pronounced than for a strip of width 2. Preliminary results for strips of larger
width (4 and 5) show that this maximum becomes sharper and sharper with increasing
width.

The problem becomes simpler in the limit a » 0. If there is percolation of favour-
able bonds, it is the problem of a saw on a diluted lattice. However even if there is
no percolation of favourable bonds, the problem is well defined. The only configur-
ations allowed for a saw of length N starting at point 0 are those for which N, is
minimum. This means that the walk tries to pass through the maximum number of
favourable bonds with the constraint to remain a self-avoiding walk. This limit a >0
is simpler because the pioduct of random matrices is reduced to a Markov process:
in each term of the product of random matrices it is sufficient to know the dominant
power of a. The same kind of simplification was also used for a spin glass model in
the limit of low temperatures (Derrida et al 1978).

The simplification is such that for a strip of width 2, it is possible to obtain the
analytic expression of A(p,0) and B(p,0). One finds that there exists a critical
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Figure 2. The same as figure 1 but for a strip of width 3 with periodic boundary conditions.
We see several jumps of the function A(p, 0) corresponding to simple rational values of

B(p, 0).

concentration p, = (v 17- 1)==0.7808 and that A(p, 0) and B(p, 0) are given by

2+p-—;72+6p3+;)“’—4115

A(P,0)= 1+p_+_3p3 "
Hp<p.
B( 0)_ p2+P3+2P4+p5 P=D
P 2+p-p*+6p°+p*—4p°
6—5p—6p*+7p>+p*-2p°
A(p,0)=
(. 0) 3—2p—3p>+3p° .
P> Pe.
+2p°-3p°-p*+2p°
B(p, 0)= pTip P —p 14

6-5p—6p>+7p°+p*-2p°

The details of this calculation will be presented elsewhere (Derrida 1982)

11

(12)

. The curves
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A(p, 0) and B(p, 0) are represented respectively on figures 1(a) and 1(b) (full curves).
In the limit p > 1, A(p, 0) tends to unity. The reason is that when the concentration
of favourable bonds is small, the SAwW must be as long as possible to pass through the
maximum number of favourable bonds. In the limit p » 0, A(p, 0) tends to 2. When
the concentration of unfavourable bonds is small, there exists along the strip walls of
unfavourable bonds with a concentration p>. To cross the minimum number of these
walls, the sAw must be as compact as possible. The transition at p. occurs when
B(p,0)= 3, i.e. there are as many unfavourable bonds (N,) as favourable bonds (N,)
on the walk. This transition can be understood by looking at figure 3. In several
places along the strip, the SAw can choose between path 1 or path 2. If B(p, 0)<},
the concentration of unfavourable bonds on the walk will be lowered by passing
through path 1. If B(p, 0)>3, this concentration is lowered by passing through path
2.

[ I
Favourable

R
Unfavourable

LA

Figure 3. If the self-avoiding walk can choose between path 1 and path 2, it will take
path 1 if there are more favourable bonds on the walk than unfavourable bonds (B(p, 0) < H
and path 2 otherwise. The fact that this choice occurs a macroscopic number of times
along the walk is the origin of the transition.

In figures 2(a) and 2(b), the functions A(p, 0) and B(p, 0) are represented (full
curves) for a strip of width 3. The calculations were done by studying numerically
the Markov chain for strips of length 10 000. For the same reasons as for the strip
of width 2, the saw is as long as possible (i.e. A(p,0)> 1) if p> 1 whereas the saw
is compact (i.e. A(p, 0)~3) if p-> 0. The main difference with the strip of width 2 is
that A(p, 0) has now several jumps. This is due to the fact that for a strip of width
3, situations similar to the one described by figure 3 occur involving configurations
of more than four bonds. The jumps correspond always to values of p where B(p, 0)
is a simple rational number.

At the end of this letter, the main questions are: to know how these results can
be generalised to strips of larger widths, to bars (lattice infinite in one direction and
finite in d — 1 directions), and what are the possible consequences for infinite lattices.

For the same reasons as above, in the limit p - 1 (which corresponds to a case of
diluted attractive impurities) A(p, 0)—> 1 for strips or bars of any width. In the limit
p->0 (which corresponds to a case of diluted obstacles), A(p, 0)>n for strips of
width » and A(p, 0)~> n?"! for bars of section n¢'. Usual finite size scaling relates
the n dependence of A(p, 0) to the exponent » of the infinite (d-dimensional) lattice
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(Daoud and de Gennes 1977, Guttmann and Whittington 1978).
A(p,0)~n'""1, (13)

If we assume that finite size scaling remains valid here (in particular if the limits n »
and p-0 commute) this would imply that »=1 for p>1 and v =1/d for p->0.
Therefore a small amount of disorder would change » in agreement with the Harris
criterion. The prediction v = 1/d in the limit p > 0 neither agrees with a recent Monte
Carlo simulation (Kremer 1981) which predicts that the exponent is not changed by
the disorder, nor with a field theory approach (Chakrabarti and Kertész 1981) which
argues that » = 3. More work is certainly necessary to clarify this problem.

For strips of larger widths as well as for infinite lattices, the size of the saw will
have several transitions corresponding to local situations like the one shown in figure
3. These transitions will correspond to rational values of B(p, 0). So they are all
located in the region where the favourable bonds do not percolate (otherwise B(p, 0) =
0).

The numerical calculations presented here were done during my visit at the Courant
Institute of New York University. I should like to thank Professor J L Lebowitz for
his invitation and his encouragements and the physicists of the Courant Institute for
their hospitality.
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