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Abstract. Critical exponents of the two-dimensional, g-state Potts model are calculated by
means of finite size scaling and transfer matrix techniques for continuous g. Results for the
temperature exponent agree accurately with the conjecture of den Nijs. The magnetic
exponent is found to behave in accordance with the conjecture of Nienhuis et al.

It has been shown (Nightingale 1977, 1979, Sneddon 1978, Nightingale and Blote
1980, Roomany et al 1980, and references therein) that finite size scaling in conjunction
with the transfer matrix technique for the calculation of properties of finite systems
provides a powerful method to calculate critical exponents. A particular implemen-
tation of this idea was applied to the g-state Potts model on a quadratic lattice. In order
to obtain the free energy of a n Xt Potts model, the g" Xg" transfer matrix was
straightforwardly constructed for g = 2, 3,4 and 5, after which its largest eigenvalue was
calculated. The specific heat and susceptibility were evaluated by means of numerical
differentiation. A comparison with known scaling relations for finite systems produced
estimates of the desired critical point exponents. The results (Nightingale and Blote
1980) were in good agreement with rigorous and conjectured results for g =2 and 3
respectively. It was demonstrated that the exponents could be accurately determined
from data on small systems with linear sizes up to about ten. However, this procedure
does not work for the percolation (Wu 1978) problem (g - 1), while large g also cannot
be handled. In the present formulation g enters as a continuously variable parameter
only.

Consider a simple quadratic lattice consisting of # horizontal rows and m vertical
columns; n, the width of the system, will be treated as fixed. At the lattice sites one has
Potts variables o; =1, ..., q, with a nearest-neighbour coupling K. In zero field the
partition function reads

Zn=3 ... exp(K Z) 5(,,.,,.) (1)

oy O €9

where o, = (o1}, . . . , 0;) runs through all states of column j, while (, j) runs through all
nearest-neighbours pairs. The boundary conditions in the vertical directions are
arbitrary; horizontally we assume free boundaries. The partition function (1) may be
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written (Kasteleyn and Fortuin 1969, Baxter 1973) as a Whitney (1932) polynomial
u b(G)
Z,=q"" % (—) q‘? (2)
Ge¥,, \q4
where u =exp(K)—1, and the sum is over all graphs G on the lattice %,..; (G) and /(G)
respectively are the number of bonds and independent loops in G. Expression (2) is the
partition function of a system of interacting bond variables with Hamiltonian

H'(G)=nm In(q)+b(G) In(u/q)+1(G) In(q). 3)

As it stands, this Hamiltonian is not a sum of column—-column contributions.
Therefore, the transfer matrix in its usual form cannot be applied. However, the
desired additivity property can be obtained as follows. Consider a graph F on the lattice
ZFn+1 Which is the original lattice extended by one column. The graphs F can be split
into two parts F=GUg, where G is F restricted to %, and g is that part of F
containing bonds between the columns m and m +1 and bonds within column m + 1.
Graph G on %, defines a state of connectivity « of the sites on column m. Specifically,
we define @ = ({4, i3, .. ., in), where the i, are integers such that: (i) ; = i if and only if
there is a path in G connecting the sites j and k of column m; (ii) /1 = 1, and either
ljv1 =max(iy, ..., )+ 1 or {j.1 =i, for some k <j. Clearly, if i; =i and i, =i, with
j <k <l<m, then also {; = i; the integers in the sequence « are referred to as being
well nested. With the help of the splitting F = G U g, one has

a(F) depends on «(G) and g only } @

H'(F)=#(G)+A¥ («(G), ¢)

since a (G) and ¢ together determine the increase in the number of bonds and loops due
to adding column m + 1, as well as the state of connectivity of this column. To define the
transfer matrix, one introduces the constrained partition function

Zn(a) =}, exp(%¥), ()
Gla
where the summation is over all graphs G compatible with a state of connectivity a of
column m. One obtains, using property (4),

ZuaB)= Y exp3) =5 | T explas# (2,571} Zn(@) ()

Flg P

where the second summation is over all partial graphs g compatible with columns m and
m + 1 being in states « and B respectively. The factor in braces depends on « and 8
only, and defines the transfer matrix T. As usual, its largest eigenvalue Ao is related to
the free energy per site f=—(k7T/n)In Ap in the limit m »o0. Since g enters as a
parameter only, the present calculations are no longer restricted to integral g.

Temperley and Lieb (1971) have shown how the transfer matrix of a Whitney
polynomial can be expressed in spin operators. We have not used this formulation.
Instead, we constructed a fast algorithm for the transfer matrix multiplication, directly
using connectivities, and writing T=V" « H” where V (or H) is a matrix which cor-
responds to adding one vertical (horizontal) bond variable at a time. Our approach is
close in spirit to the one used by Derrida and Vannimenus (1980) for the percolation
problem. Technical details concerning the calculation of Ay will be published else-
where.
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For the calculation of the magnetic exponent we define

H=K Y S0, +h Y o (7)

o) (,0)
where we have introduced a ghost site labelled 0, with Potts variable oo=1, and
interacting with all other spins via the bonds (i, 0). In order to write the partition
function of (7) as a sum over graphs, we introduce the following notation. By
F=L. UL we denote the m-column lattice &£, extended by #° which stands for
the ghost site and its bonds. Accordingly, each graph G’ on the lattice #,, can be split
into two parts, G'=G U G°, where G and G° are subgraphs of £, and ¥° respec-
tively. The partition function of (7) can now be written as

0\ PO 4 BGO )
N

G' \q q
where v =exp(h)—1. A transfer matrix for expression (8) can be defined as before,
provided that we modify the definition of the connectivities @' = (i1, . . ., ;) such that

the i, are now also allowed to assume the value 0; i, = 0 whenever site k is connected to
the ghost site by some path. The well-nestedness property now holds for integers iy >0
only. Since the number of connectivities ' is considerably larger than the number of
connectivities @ for given n, calculations are restricted to smaller » when a field is
included. For & <0 expression (8) contains negative terms. Thus for general g it can no
longer be directly interpreted as a partition function, and (8) may become unphysical.
We have observed that for g <1 the largest eigenvalue of T may become complex for
negative 4. However, for sufficiently small || the eigenvalue is real and behaves
smoothly as a function of A.

Temperature exponents were obtained from heat capacity data on infinitely long
strips with widths up to » =10 and periodical boundaries in the finite direction.
Extrapolation to n = 00 was performed in two different ways: (i) Padé approximants in
1/n to estimates y, of the exponent y (Nightingale and Blote 1980); (ii) extrapolations
based on the assumption that yo—y, = a(q)b(n) and exact results for y at ¢ = 2. May
it suffice to note that these methods display a high degree of internal consistency and
yield an estimate of the accuracy. The value of yr at ¢ =1 was found by interpolation
between values obtained close to g = 1. Results are shown in figure 1 together with the
conjectured exact formula of den Nijs (1979): yr=3-32-2p) with p=
cos MW q/2)/ . Differences between our data points and this expression are about 10>
or smaller for g <3, not visible on the scale of figure 1. These small differences are of
the same order as the estimated accuracy of our method. For g =4 slow convergence
may be attributed to the presence of a marginal eigenvalue as argued previously
(Nightingale and Blote 1980). The excellent agreement suggests that the conjecture of
den Nijs is correct (cf Burkhardt 1980). It is also noteworthy that our result for g =1,
i.e. yr=0.750x0.001, excludes a conjectured exact value given by Klein et a/ (1978).

The magnetic exponent y, was similarly obtained from susceptibility data on strips
with widths up to 8. Results are plotted in figure 2, together with the conjectured exact
formula of Nienhuis et al (1980): y, =3 +3/(8 —8p) —p/2 with p given above. The data
points agree with this conjecture within the estimated accuracy of our method (~0.001
on the y; scale for g <3).

Calculation of the energy for g » 4 (up to 64) gave results rapidly approaching a step
function with increasing n, in accordance with a first-order transition (Baxter 1973).
Fitted exponents were found to increase approximately linearly with system size,



L48 Letter to the Editor

Vg
i 1 3
T 7 ! 7 2
LI T Al L T )
15 I3
el
3
1.6F o
_-ia
1 3
osh
-8
oL (- B I | ] 1 o
1 1 1 3
T = 7 1 1 1 34
g

Figure 1. Temperature exponent yr of the Potts model according to the conjecture (full
curve) of den Nijs (1979) and the present results (data points). Agreement is very good
except near the point g =4 (cf Nightingale and Bléte 1980).
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Figure 2. Magnetic exponent y, of the Potts model according to the conjecture (full curve)
of Nienhuis et al (1980) and the present results (data points). Agreement is very good
except near the point g = 4 (cf Nightingale and Blote 1980).

corresponding to exponential divergence of specific heat with » and exponential
convergence of the energy to a step function. Similar divergent behaviour for the
susceptibility was observed.

We are indebted to Professor I M J van Leeuwen, Dr V J Emery and Dr H ] Hilhorst for
valuable discussions. These investigations form part of the research programme of the
‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’ which is financially
supported by the ‘Nederlandse Organisatie voor Zuiver-Wetenschappelijk Onderzoek
(ZWO)'.
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