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Résumé. 2014 La classification topologique des distorsions dans les milieux ordonnés conduit natu-
reglement à une distinction entre distorsions singulières (défauts) et distorsions non singulières.
Cependant, dans les cristaux liquides cholestériques, où le paramètre d’ordre contient des compo-
santes de rigidités différentes, les distorsions optiquement observées présentent à la fois des aspects
singuliers et non singuliers : elles ont un double caractère topologique. Ce phénomène, que l’on
prédit exister aussi dans d’autres systèmes ordonnés, est analysé ici en termes de l’indice de Hopf
pour un champ de directeurs.

Abstract. 2014 The topological classification of distortions in ordered media leads naturally to a
distinction’between singular distortions (defects) and non singular distortions. However, in choles-
teric liquid crystals, where the order parameter contains components with different rigidities, the
optically observed distortions present both singular and non singular aspects : they have a double
topological character. This phenomenon, which is predicted to exist also in other ordered systems,
is analysed here in terms of the Hopf index for a director field.
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In a 1974 paper [1], which is the basic reference for
the present paper, one of us (Y. Bouligand) has
presented various optical observations in cholesteric
liquid crystals, together with a review of preceding
work and theoretical interpretations.

Since then, a general topological classification of
distortions in ordered media, based on homotopy
theory (homotopy groups), has been developed.
Obviously, it was interesting to examine what progress
in understanding this topological theory could bring
to the observations in cholesterics, which are among
the most convenient materials for the experimental
study of defects, due to the applicability of direct
optical techniques. However, from the theoretical

point of view, the order which exists in cholesterics
is rather complex, with several subtleties ; as shown
below, these subtleties have required refinements of the
theoretical analysis, which promise to be of general
interest.

1. Brief history of theoretical interpretations. -
In 1969, before the developments of the topological
analysis, Kléman and Friedel [2] introduced a classi-
fication of defects in cholesterics : they defined three
types of disclination lines (called x, À, r), each type
with an index (+ or -).

In 1976, when the topological analysis was syste-
matically applied to distortions in ordered media [3],
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it was soon realized that, for some materials, the first
homotopy group of the manifold of internal states,
which describes linear defects in three-dimensional

media, could be non commutative, with remarkable
consequences [4, 6]. The best example, from a theo-
retical point of view, was found to be in biaxial nematic
liquid crystals, which unfortunately have not yet been
discovered nor synthesized.

In the meantime, Volovik and Mineev [7] were the
first to apply the topological analysis to cholesterics
and they showed that, in this case also, the first

homotopy group was non commutative ; in fact,
ni = Q, the discrete quaternion group with eight
elements, i.e. the same group that is predicted for
biaxial nematics. In the light of the analysis of Volovik
and Mineev, the early Kléman-Friedel classification
reveals some insufficiencies, which is not surprising
because they could hardly be guessed without the
homotopic tools.
Another step had to be made before the theory

could be usefully applied to the observations, such as
those referred to earlier [1]. This was the full reco-
gnition, presented here, of the following fact : the
order parameter, in cholesterics, is a frame of three

orthogonal directions, but, among those, one is the

direction of the elongated constituent molecules and,
for energetic reasons, it, more than the other directions,
dislikes any singularity. Therefore, the commonly
observed distortions in cholesterics tend to be singular
for the full order parameter and non singular for one
part of the order parameter, the direction of the
molecules. This double topological character can be
seen as a complication, or, more accurately, as an

enrichment compared to the standard situation, with
simpler order parameters.

2. General topological analysis and specificities of
the cholesterics. - The symmetry group of a medium
with cholesteric order contains mixed translation and
rotation elements. The cholesteric manifold of internal

states, which is the quotient space of the disordered
phase symmetry group by the ordered phase symmetry
group [6, 7], is homeomorphic to SO(3)/D2, as shown
by Volovik and Mineev [7].

In the case of biaxial nematics [4], only rotation
symmetry elements are actually relevant, and this
leads to a complete picture in terms of a local order
parameter, which is an orthogonal frame of three
directions. The biaxial nematic manifold of intemal
states is SO(3)/D2 and therefore the classification of
distortions, by homotopy groups, is the same for
biaxial nematics as for cholesterics.
The term distortion is used here as a general name to

include singular distortions (defects), as classified [3],
in dimension three, by the three first homotopy
groups (no, ni, 11:2), and non singular distortions, as
classified by the third homotopy group (11:3)’
For V = SO(3)/D2, one has

where Q is the discrete quaternion group with eight
elements. Using the notations of reference [4], rather
than those of reference [7], these elements will be
denoted

with the combination rules

So this group describes linear disclination defects in
cholesterics or biaxial nematics. Because this is a non
commutative group, it is not possible in general to
attribute to a concrete disclination line an absolute

name, and this leads to important physical conse-
quences, as has been described [5]. A concrete dis-
clination line can be named as belonging to a conjugacy
class (for instance ± ei), and if the conjugacy class
consists of only one element commuting with all the
others, i.e. belonging to the centre of the group
(for instance J), then the naming takes place as usual
with commutative groups.

In biaxial nematics, where the local order parameter
is a frame of three directions (called 1, 2, 3), on a loop
surrounding an + el line, the order parameter under-
goes a rotation of angle n around the el direction and
similarly, respectively, for e2 and e3. On a loop
surrounding a J line, the order parameter undergoes
a rotation of angle 2 n (no direction needs to be

specified). 1

In cholesterics, one may introduce also a local
frame of three directions (with, conventionally, direc-
tion 1 for the molecular director, direction 3 for the
cholesteric direction, and direction 2 for the bi-normal)
but some caution has to be exercised. Thus, in an

undistorted configuration, this local frame is not

homogeneous in space since the direction of molecules
rotates. Therefore, in cholesterics a distortion cannot
be simply regarded as a non homogeneity in space of
this local frame, whereas it could be so defined in

biaxial nematics. This difference is easily traced back
to the presence or absence of translation elements in
the ordered phase symmetry group. Although non
mysterious in origin, this fact leads to some practical
difficulties, in particular in the analysis of non singular
configurations. We show below how this difficulty can
be overcome.

Among the three directions of the cholesteric local
frame, one direction does not like to have singularities :
this is the direction of the molecules or molecular
director. This can be taken as an experimental fact,
but it is intuitively reasonable in terms of energy
costs [1]. Thus the commonly observed defects
are + el or, most commonly, J disclination lines.
Isolated J linear defects are observed forming rings
(see for instance Fig. 5a, b, o, p, q, r in Ref. [1]) with
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either two apparent cusps ( fuseau) or one apparent
cusp (larme), or in the form of two linked rings
(double anneau). We are going to interpret and discuss
these observed forms, with due account of the conti-
nuity of the molecular director. To do this, we need
some results on the non singular configurations of
three-dimensional vectors or directors.

3. Hopf mappings for three-dimensional vectors

or directors. - The manifold of internal states for an
order parameter which is a three-dimensional vector
(resp. director) is the two-dimensional sphere (resp.
projective plane)

In three-dimensional space, the non singular confi-
gurations of a vector (resp. director) field with homo-
geneous boundary conditions at infinity are mappings
S3 -+ V and they are classified by 1t3(V), where V = S2
(resp. P2).

In 1931, H. Hopf [8] was able to prove that

His proof is an historic achievement in algebraic
topology, making manifest the difference between

homology and homotopy groupe. These Hopf map-
pings for a three-dimensional vector field were

introduced in physics by D. Finkelstein [9], and they
have recently attracted much attention in various
domains [7, 10].
To each homotopy class of these mappings S3--&#x3E; S2

is attached an integer number, called the Hopf index.
Before giving the rules for computing the Hopf index
of a given configuration, we present a standard
construction for mappings representative of the

various classes. In this construction a continuous map
S3 --&#x3E; S2 will be described in terms of a vector field

V(x, y, z) in R3, such that for X2 + y2 + Z2 --&#x3E; oo the
limit of V(x, y, z) is well-defined and is independent of
direction.
At the origin, is placed a vector which is arbitrarily

chosen as vertical. At a point M(r), the orientation of
the vector is obtained, from the orientation of the
vector at the origin, through a rotation around r with
an angle which is a monotonous function f (r) of
r = 1 r 1, with f (0) = 0. If f (r --+ oo) = 2 n, one gets
a configuration with a Hopf index equal to one.

Generally, if f(r -+ oo) = 2 nh, h integer, one gets a
configuration with a Hopf index equal to h. (This
construction can be generalized to change the Hopf
index in an already distorted configuration.)
For a given configuration, which may be highly non

symmetrical, the Hopf index can be computed as
follows.

Consider the inverse image of one point in V = S2,
which is in general position. This inverse image in the
three-dimensional base space will consist of a number
of closed loops (this is easily seen on the standard map-
pings given above). Now, if one contracts smoothly

this locus of the inverse image into one point, the
image in V = S2 of the contracting locus is going to
sweep over S2 a number of times, since it is, initially
and finally, just one point. The algebraic number of
times S2 is swept during this process is a topological
invariant (independent of the initial point chosen in S2,
if in general position, and independent of the contrac-
tion path), and this number is the Hopf index [11].
Another computation, first given by Hopf himself,

expresses the index as the linking number of the
inverse images of two points in general position in
V = S2. Consider two such points x, y E S2 ; their
inverse images in real space are curves called, res-

pectively, Cx and Cy. The sphere S2 is orientable ; let us
choose one orientation. Let us choose also one orien-
tation for the three-dimensional base space ; then,
from these two orientations, Cx and Cy become
oriented curves. The linking number of these two
oriented curves is an integer, denoted lk(Cx, Cy),
which is a topological invariant, equal to the Hopf
index h

It is easily shown that lk(C,,, Cy) = lk(Cy, Cx) ; the
linking number is independent of the orientation
chosen in S2 ; it changes sign when the orientation of
the three-dimensional base space is reversed. The-

refore, the sign of the Hopf index for one configu-
ration is arbitrary but the relative sign of two distant
configurations is well-defined. Again this compu-
tation is best visualized by considering the standard
configurations presented above.
We examine now the same problem for a director

field instead of a vector field. Because S2 is a covering
space for P’, it follows that 1t(S2) = ni(P’) for i &#x3E; 2 ;
in particular one also has :

The standard construction given above for a vector
field applies also for a director field. One might think
for a moment that new configurations exist for a
director field, corresponding for instance to

f(r - oo) = n, but it is soon realized that such a
choice does not provide homogeneous boundary
values. In fact, the following theorem can be proved :
any non singular configuration for a director field,
on a simply connected manifold, gives a non singular
configuration for a vector field, obtained by putting
arrows on the directors. It is always possible to put
arrows, whenever the director field is non singular,
and one does not meet any contradiction in doing so.
One can prove this by the following list of remarks :
a) if one orients a director field at some point p, this
induces, automatically,a a well-defined orientation of
the director field in some neighbourhood of p;
b) if q is some other (let us say distant) point, and C is
a path joining p to q one can propagate the orientation
from p to q continuously, along the path ; c) this

could, of course, lead to problems since in general
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different paths could lead to different results at q, but
not so in the simply connected case.
The computation of the Hopf index, from a linking

number, as given above for a vector field, would need
adjustments to be extended to a director field since p2
is a non orientable manifold. However, with the

preceding theorem, there is an easy way out of this

difficulty, which consists in putting arrows first on the
directors, and this brings one back to the vector case.
Since two diametrically opposite points on S2 are just
one point on p2, one sees that it is actually possible to
determine the Hopf index for a director field from the
inverse image of only one point of P2.

4. Interprétation of the optical observations in
cholesterics. - When examined in suitably polarized
light [1], a distorted cholesteric sample exhibits black
lines which give the locus of points where the molecular
director is vertical, that is precisely the inverse image
of one point of P2. This expérimental feature allows
therefore an easy determination to be made for
the Hopf index of the director field as a linking number
(which justifies the considerations presented in the

previous section).
Let us examine successively the ring structures

depicted on figure 5 of reference [1] : anneaux en
fuseau, anneaux en forme de larme, double anneau.
In all these cases, as explained in the drawings of
figure 6 and figure 10 of reference [1], along the rings
there are lines of singularity, of type J, for the full
cholesteric order parameter. Because the element J
of n 1 = Q commutes with all elements of the group Q,
there is no topological obstruction, at this level, for
the crossing of two lines [5].

Then, when it is realized that these ring structures
are also non singular configurations for the molecular
director field (which is only one part of the full
cholesteric order parameter), several questions may
be raised : What are the Hopf indices associated with
these various structures ? That is, can they be created
or transformed into one another continuously, fe.
without ever creating a singularity in the molecular
director field ? Can the linked rings of figure 5r be
unliked continuously ?

a) Anneau en fuseau (Fig. 5a [1]). - Its Hopf index
is h = 0. This can be determined in various ways. The
most direct way consists in recognizing that the black
line is the inverse image of one point of P2 ; to have a
non trivial configuration of the molecular director
field, this inverse image would have to be self-linked,
which is not the case.

Therefore, an anneau en fuseau can be created from
a non distorted configuration, without ever making a
singularity in the molecular director field. There is no
topological barrier for creation, at this level.

b) Anneau en forme de larme (Fig. 5b [1]). - Its
Hopf index is again h = 0. The preceding argument
applies here also, and also the preceding conclusion.
Moreover, an anneau en fuseau may be transformed

into an anneau en forme de larme, without any break
of continuity in the molecular director field. This is not
so obvious when looking at the drawings of figure 6 [1].

c) Double anneau (Fig. 50, p, q, r [1]). - Its
Hopf index is h = - 1. This is best seen by putting
arrows on the molecular directors in the drawings of
figure 10f [1]. Then one black line is recognized as the
locus of up vectors and the other black line as the locus
of down vectors. These inverse images of two points
in S2 have a linking number equal to (- 1). The
arbitrariness in sign, due to the arbitrariness in the
orientation of space, is removed if one chooses the
orientation of space according to the natural orien-
tation provided by the cholesteric order.

As a consequence, there is a topological obstruction
to the unlinking of such double rings, which comes not
from the singular nature of the distortion but from its
non singular nature. Thus, these double rings may be
termed topological atoms.
It is worth pondering on the fact that the simplest

non trivial Hopf configuration for a director field, as
seen in polarized light optical techniques, appears as
a linked double ring. This double ring is a beautifully
direct manifestation of the double connectedness of

projective space. This fact is of importance for all

liquid crystals, nematics, smectics, ... and not only for
cholesterics.

In appendix I, it is shown how detailed predictions
can be made for more complicated distortions, with
double topological character, in cholesterics. In

appendix II, a formula for linking numbers, which is
useful to compute higher Hopf indices, is presented.

5. Conclusion. - In conclusion, some remarks may
be useful to unveil the generality of the phenomenon
studied in this paper.

Consider a material which can exist in three phases
(named Pi, P2, P3) whose symmetry groups are

G, :D G2 zD G3. For instance, one may have a

cholesteric phase (P3), a nematic phase (P2), an

isotropic phase (Pi).
The general topological classification of defects

leads naturally to a classification of the defects of
phase P3 which have a Pi core. However, it may be of
interest, for energetic reasons, to consider the res-
tricted class of defects of phase P3 which have a P2 core.
In our example, this meant considering defects in a
cholesteric phase which have a nematic core (no singu-
larity in the molecular director). In this way, energetic
considerations can be progressively introduced into
the topological analysis.

If, by varying some external parameters (tempe-
rature, pressure, ...) one is able to drive the material
successively from phase Pi to phase P2, and then to
phase P3, some new questions appear. In phase P2,
various topologically stable distortions (singular and
non singular) may exist. What will happen after the
transition from phase P2 to phase P3 takes place ? For
instance, does a non singular configuration (with a
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given Hopf index) in a nematic phase imply the

apparition of cholesteric defects, after a (gedanken)
transition from a nematic phase into a cholesteric
phase ?

This sort of problems appears, more generally,
whenever several types of order coexist in the same
material. The distortions associated with one type of
order may act as obligatory sources of distortions of
another type of order. This problem meets and
enlarges the idea of frustration, which was introduced
to describe the coupling between a matter field and a
gauge field [12]. 

Appendix I. - Expérimental determination of the
orientation of a defect line of type J (Bouligand
convention) and conservation laws for one ring.

In reference [1], it was shown that a defect line of

type J ( fil épais) its seen in suitably polarized light as a
black line, locus of vertical directors, with a whitish
line on one side, the side with one extra cholesteric
pitch. The presence of the whitish line allows one to
give an orientation to the black line and the following
convention was adopted : looking in the positive
direction, the whitish line is on the right side, for a
right handed cholesteric, and on the left side, for a
left handed cholesteric.
Once the inverse image of the vertical direction has

received an orientation, according to the preceding
recipe, the determination of the Hopf index of a give
distortion readily follows.

Actually, there are stronger conservation laws, one
for each closed ring, due to the discrete nature of the
cholesteric translation periodicity. When circumnavi-
gating along a closed ring, one must come back to the
same height on the cholesteric axis. This rule can be
expressed as

where Nq is the change of height due to rotation of
the J line in space (a 2 n rotation in the positive sense,
according the cholesteric orientation, gives a lift

of + 1, in cholesteric pitch units) ; Nt is the change of
height due to traversals of another J type ring (its
value is - 1 per traversal) ; N,, is the change of height
due to cuspoidal points (its value can be either 0
or + 1, per cuspoidal point). For illustrative drawings,
see reference [1].
With these rules, one can make detailed predictions

FIG. 1. - This triple ring structure, with Hopf index h = - 2,
is predicted to be observable in a right-handed cholesteric. The
dotted line represents the optically observed whitish line, discussed

in appendix I.

for the observable distortions. For instance, the triple
ring structure, depicted in figure 1, with Hopf index
h = - 2, should be observable.

Appendix II. - A formula for linking numbers.
We give below a certain formula for computing

linking numbers of composite curves, which is both
useful for our purposes and physically suggestive.

Let us start by considering a simple closed (oriented)
curve Ci c S3. It can be shown that C1 is always the
boundary of some orientable (in general non simply
connected) surface 1 c S3, called a Seifert surface
for C1. If K is some other curve, disjoint from C1,
then lk (C1, K) is simply the number of points in
1 n K, correctly counted (which means each inter-
section point being given the appropriate sign).

In particular, if one pushes C1 slightly into E, one 
gets a curve Ci, which follows closely C1, without
spiraling around C1, and lk(C1, C1) = 0. In general,
if some curve Ci follows closely C1, there will be a
certain amount of spiraling and this is measured

exactly by lk(C1, C’).
Consider now two disjoint curves C1, C2 and two

other curves Ci, C2, following them closely (with a
certain amount of spiraling around). Using the Seifert
surfaces, it can be easily shown that the linking number
for the composite curves C = C1 + C2, C’ = Ci + C2
is :

So there are three terms : the first two coming from
the spiraling of Ci (respectively C2) around Cl
(respectively C2) and a third interaction or orbital term
reflecting the way Ci and C2 are linked together.
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