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This work discusses theoretically the interplay between the superconducting and ferromagnetic

proximity effects, in a diffusive normal metal strip in contact with a superconductor and a nonuniformly

magnetized ferromagnetic insulator. The quasiparticle density of states of the normal metal shows clear

qualitative signatures of triplet correlations with spin one (TCS1). When one goes away from the

superconducting contact, TCS1 focus at zero energy under the form of a peak surrounded by dips, which

show a typical spatial scaling behavior. This effect can coexist with a focusing of singlet correlations and

triplet correlations with spin zero at finite but subgap energies. The simultaneous observation of both

effects would enable an unambiguous characterization of TCS1.
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Hybrid superconducting-ferromagnetic circuits can con-
tain fascinating unconventional superconducting correla-
tions [1]. Although a standard s-wave superconductor
naturally hosts even-frequency singlet superconducting
correlations, the superconducting proximity effect in an
adjacent ferromagnet can lead to odd-frequency pairing,
because the ferromagnetic exchange field lifts time rever-
sal symmetry. This can correspond to either triplet super-
conducting correlations with spin zero (TCS0), i.e.,
correlations between opposite electronic spins, or triplet
superconducting correlations with spin one (TCS1), i.e.,
correlations between equal spins. The existence of TCS0 is
confirmed experimentally since a decade (see, e.g., [2–4]).
The possibility of obtaining TCS1 has been investigated
more recently [5]. The features observed so far are quanti-
tative. It has been observed that, in certain conditions,
ferromagnets can sustain a supercurrent on a much longer
length scale than expected [6]. This suggests the presence
of TCS1, because in diffusive ferromagnets, TCS1 are
expected to propagate on a much longer distance than
TCS0 [7]. Most of the strategies discussed so far to observe
TCS1 require to measure a supercurrent, which is an
energy-integrated quantity. Alternatively, the quasiparticle
density of states (DOS) yields spectroscopic information
and thus appears as a powerful tool to characterize the
nature of superconducting correlations. This Letter
presents a geometry in which the DOS gives a particularly
rich access to odd-frequency superconducting correlations.

I suggest to use a lateral geometry, where the super-
conducting correlations are induced in a normal metal
(NM) strip in contact with a superconductor (S) and a
ferromagnetic insulator (FI) with two noncollinear magne-
tization domains. This configuration is compatible with
spatially resolved DOS measurements using several tunnel
contact probes [8] or a low temperature STM [9]. The
propagation of odd-frequency superconducting correla-
tions has been studied thoroughly in ferromagnets [5],

but only elusively in NMs [10–12]. Here, the FI turns the
NM strip into an effective ferromagnet with an unusually
weak exchange field. This is advantageous to study the
propagation of odd-frequency superconducting correla-
tions. The TCS1 induce a zero-energy peak in the DOS
of the NM [10]. Such an effect is not specific to TCS1
[13–16]. However, in the present geometry, important ad-
ditional features allow us to identify unambiguously TCS1.
Indeed, the low-energy DOS peak is surrounded by dips,
and this structure shows a characteristic spatial scaling
behavior when one goes away from the superconducting
contact, i.e., it ‘‘shrinks’’ on a length scale which depends
on a longitudinal Thouless energy. If one observes simul-
taneously finite-energy dips, which confirm the existence
of the effective exchange field inside the NM, the zero-
energy peak points unambiguously to TCS1.
I consider the lateral geometry of Fig. 1, where the central

element is a NM strip with thickness h, width w, and
longitudinal coordinate x. A portion with length dL of the
NM strip is contacted to a S and a FI domain magnetized
along a direction ~mL at x < 0, and a portionwith lengthdR is
contacted to a FI domainmagnetized along a direction ~mR at
x > 0. I assume that the structure is diffusive, so that a
quasiclassical isotropic Green’s function G can be used to
describe the propagation of superconducting correlations

FIG. 1 (color online). Scheme of the lateral geometry consid-
ered in this work (see text).
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inside the NM [17]. The function G has a structure in the
spin and Nambu (electron-hole) subspaces, so that it can be
decomposed in terms of the spin [Nambu] Pauli matrices
�i½�i� (see below). In the following, I use ~mL ¼ ~x. In the
colinear case ~mR ¼ ~x, only singlet correlations and TCS0
can appear inside the NM. In the noncollinear case ~mR � ~x,
TCS1 can also appear.

The spatial evolution ofG inside the NM is described by

the Usadel equation @D� ~r� ~j ¼ �ði"� �Þ½ ��3; G�, with �
the resistivity of the NM [20]. The density of matrix

current ~j ¼ G ~rG=� characterizes the flows of charge,
spin, and electron-hole coherence in the device. The rate
� accounts for inelastic processes. The Usadel equation
alone is not sufficient to predict the behavior ofG, because
the influence of the S and FI contacts must be taken into
account. When h and w are smaller than the typical spatial
scale � characterizing the variations of G inside the NM
[21], it is possible to derive a one-dimensional effective
Usadel equation onG ’ GðxÞ, which takes into account the
effects of the S and FI contacts. This equation can be
derived with an approach inspired from circuit theory
[22], using spin-dependent boundary conditions for iso-
tropic Green’s functions [18]. This requires one to define a
surface tunnel conductance Gs

T for the S/NM interface and
a surface conductancelike coefficient Gs

� for the NM/FI

interface. The last parameter accounts for the fact that
electrons from the NM are reflected by the FI with spin-
dependent reflection phases. Indeed, the internal Stoner
exchange field of the FI can affect the evanescent tails of
electronic wave functions on a scale of a few atomic layers.
One finds, for x < 0

2l2rxðGrxGÞ ¼ �2�"½ ��3; G� � �T½G;GS�
þ i��½�3�L;G�; (1)

with ETh ¼ @D=h2, �" ¼ ði"� �Þ=ETh, �T ¼ Gs
T�h,

�� ¼ Gs
��h, and �LðRÞ ¼ ~mLðRÞ � ~�. Here, GS denotes

the value of the isotropic Green’s function inside the
superconductor. For x > 0, one finds a similar equation
with �T replaced by 0 and �L by �R.

Equation (1) describes an interplay between the super-
conducting and ferromagnetic proximity effects. On the
one hand, the �T term tends to induce a minigap inside the
NM, due to the confinement of electrons in the ~z direction.
This effect depends on the interface parameter �T but also
the lateral Thouless energy ETh defined below Eq. (1). For
instance, at the left end of the NM strip, the DOS is sup-

pressed for energies j"j< ~� ¼ ETh�T=2 when dL ! þ1,
ETh�T � �, and �� ¼ 0. On the other hand, the interface

parameter Gs
� causes an effective exchange field Eeff

ex ¼
ETh��=2 ¼ @DGs

��=h oriented along ~x [ ~mR] at the left

[right] side of the NM strip, i.e., x < 0 [x > 0] [23]. This
type of effective field has already been observed and
accurately characterized for various types of S/FI bilayers
[24–27]. For x < 0, the exchange field due to the left

contact splits the minigap induced by the S contact and
induces TCS0 with respect to the ~x direction. These corre-
lations can propagate to the right part of the NM strip
where they correspond to TCS1 when ~mR ¼ ~z. The induc-
tion of TCS1 in diffusive S/F structures presents similar-
ities with this process [5]. However, minigap effects are
usually destroyed in ferromagnets, due to strong ferromag-
netic exchange fields, except in some particular disordered
cases [19]. In the NM strip of Fig. 1, Eeff

ex is expected to be
much smaller than the exchange field inside standard fer-
romagnets. Hence, the situation studied here is qualita-
tively different from that of standard S/F structures.
Interestingly, for a given type of NM/FI contact, the am-
plitude of Eeff

ex can be tuned by choosing h at the sample
fabrication stage, since Eeff

ex scales with 1=h [23,25,28].
This gives an interesting flexibility with respect to material
constraints.
In the following, I assume that the value GS of G

inside the superconductor is equal to the bulk BCS
value, i.e., GS¼ cosð�SÞ ��3þsinð�SÞ ��1, with �S¼
arctan½�=ð�i"þ�Þ�. Inside the NM, one can use the

angular parametrization G ¼ �3ð coshð�Þ cosð�Þ þ
i sinhð�Þ sinð�Þ ~v � ~�Þþ �1ðfs þ ~ft � ~�Þ, with fs¼
coshð�Þsinð�Þ, ~ft ¼ �i sinhð�Þ � cosð�Þ ~v, and ~v a unit
vector. This convention automatically satisfies the normal-
ization condition G2 ¼ 1. I discuss below the anomalous

components of G, i.e., fs, f
x
t ¼ ~ft � ~x, and fzt ¼ ~ft � ~z,

which reveal the existence of superconducting correlations
inside the NM. Defining TCS0 and TCS1 components
requires one to define a reference direction ~mref . A natural
choice is to use ~mref ¼ ~mL for x < 0 and ~mref ¼ ~mR for
x > 0. Then, TCS0 and TCS1 correspond to the compo-

nents of ~ft parallel and perpendicular to ~mref , respectively.
The DOS inside the strip can be calculated as Nð"Þ=N0 ¼P

� Re½cosð�þ i��Þ�=2, with N0 the normal-state DOS
of the NM.
The spatial evolution of the DOS can be first studied

with an analytic linearized description, which yields a
transparent interpretation of the circuit behavior. This ap-
proach is valid in the limit of a weak superconducting
proximity effect, i.e., �,� � 1 inside the NM. This occurs,
e.g., when �T is small and � large, so that the minigap is
closed and just gives residual dips at the left side of the
NM strip. For simplicity, I assume dLðRÞ ! þ1. For x < 0
one has

½fs; fxt ; fzt � ¼ ½0; 0; 1�A0e
kSx

þ X
�¼�1

½1; �; 0�
�
�B

�

2
þ A�e

�~k�x

�
; (2)

with k2Sh
2��T cosð�SÞ¼�2i½ð"þ i�Þ=ETh�, and ~k�h

2 �
�T cosð�SÞ ¼ 2i½�Eeff

ex � "� i��=ETh. Here, I note
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�B
� ¼ arctan

�
�T sin½�S�

�T cos½�S� þ 2ð½�i	þ �þ i�Eeff
ex �=EThÞ

�

(3)

the value of �� i�� at x ! �1. For x > 0 and ~mR ¼ ~z,
one has

½fs; fxt ; fzt � ¼ ½0; 1; 0�B0e
�k0x þ X

�¼�1

½1; 0; ��B�e
�k�x (4)

with k20h
2 ¼ �2i½ð"þ i�Þ=ETh� and k�h

2 ¼ 2i½�Eeff
ex �

"� i��=ETh. For x > 0 and ~mR ¼ ~x, the second and third
components of the vectors in Eq. (4) must be exchanged.
The coefficients A�, A0, B�, and B0 can be calculated by
assuming the continuity of fs, f

x
t , f

z
t and their first deriva-

tives at x ¼ 0. This leads to the results shown in Fig. 2,
obtained for ~mR ¼ ~z (noncollinear case).

At zero energy and x ! �1, fxt is dominant due to
�T � �� (Fig. 2, left panel) [29]. I now comment the

behavior of the different types of correlations for x > 0
(Fig. 2, right panel). In this area, TCS1 (fxt ) propagate
independently of the two other components, with the char-
acteristic vector k0. At " ¼ 0, k0 is small, so that TCS1
propagate on a relatively long distance: this is why TCS1
are usually called ‘‘long-range’’ correlations. However,
this is true only at low energies. Indeed, for " ¼ �Eeff

ex ,
the real part of k0 is larger, so that TCS1 decay more
quickly. Conversely, for x > 0 and " ¼ 0, the propagation
of singlet correlations (fs) and TCS0 (fzt ) is short range.
Indeed, fs and fzt show a damped oscillatory behavior
ruled by the propagation vectors k�, which correspond to

a scale ð@D=Eeff
ex Þ1=2 for Eeff

ex � � and " ¼ 0. In contrast,
for " ¼ �Eeff

ex , the fs and fzt components do not oscillate
and decay more slowly. Hence, it is the singlet correlations
and TCS0 which are long range for " ¼ �Eeff

ex . As a result,
sufficiently far from the superconductor, TCS1 remain
dominant at " ¼ 0, whereas singlet correlations and
TCS0 become dominant for " ¼ �Eeff

ex . In other terms,
one obtains ~vð" ¼ 0Þ k ~x and ~vð" ¼ �Eeff

ex Þ k ~z. This leads
to characteristic features in the energy dependence of the
DOS, shown by Fig. 3(a). For x sufficiently large, one

obtains characteristic dips at " ’ �Eeff
ex , due to singlet

correlations and TCS0. In contrast, TCS1 produce a zero-
energy peak which reaches a maximum higher than the
normal-state DOS N0. Importantly, Nð0Þ>N0 is not spe-
cific to TCS1. Indeed, an enhanced zero-energy DOS can
also be due, for instance, to interaction effects [13], or to
TCS0 [15,16,29,30], as observed experimentally in S/F
bilayers [2]. However, in the present geometry, TCS1 can
be detected unambiguously due to the additional features
discussed below.
Because of the peculiar energy dependence of k0, the

zero-energy DOS peak is surrounded by low-energy dips,
and this ensemble shows a characteristic spatial scaling
behavior when x increases [see Fig. 3(a)]. Let us note�"d
the position of the low-energy dips. In the limit of a
vanishing �, "d scales with a longitudinal Thouless energy
~ETh ¼ @D=x2, provided the finite-energy dips are well
separated from the low-energy peak, i.e., "d � Eeff

ex .
When � is finite, a scaling behavior can persist. For in-
stance, in the limit "d � �, Eeff

ex , Eq. (4) gives

FIG. 3 (color online). Density of states in the NM in the
noncollinear case ~mR ¼ ~z [panel (a)], the colinear case
~mR ¼ ~x [panel (b)], and the case where there is no FI contact
at x > 0 [panel (c)]. The data are shown in terms of the deviation

N ¼ N � N0 of the DOS in the NM from the normal-state
value N0. The parameters used are the same as in Fig. 2.

FIG. 2 (color online). Absolute values of the anomalous
components fs, f

x
t , and fzt of G in the NM strip at 	 ¼ 0 (left

panel) and 	 ¼ Eeff
ex (right panel), respectively, for ~mR ¼ ~z and

dLðRÞ ! þ1.
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"d ’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�~ETh=2

q
/ 1=x: (5)

The scaling behavior of the low-energy DOS features
represents a ‘‘smoking gun’’ for the fact that some super-
conducting correlations propagate along the strip with the
vector k0. Importantly, the DOS dips at " ’ �Eeff

ex follow
an equivalent scaling behavior, due to the structure of the
k� vectors. It is instructive to discuss other magnetic
configurations. Figure 3(b) shows the DOS of the NM in
the colinear case. The finite-energy dips are still present,
but there are no low-energy features because TCS1 are
absent. At last, Fig. 3(c) shows the DOS of the NM when
there is a FI contact with a uniform magnetization at x < 0,
but no FI contact or Eeff

ex ¼ 0 at x > 0. In this case, for
x > 0, weak DOS dips appear at " ’ �Eeff

ex , due to the
spin-split minigap effect occurring for x < 0. Importantly,
these dips are very different from those obtained in the
previous cases: they are not surrounded by peaks and
quickly vanish with increasing x. In contrast, there is still
a spatially scaling zero-energy peak, although there is no
TCS1 in the circuit. This is because singlet correlations and
TCS0 propagate with the characteristic vector k0 in this
case. One can conclude that it is important to see DOS dips
appear at " ’ �Eeff

ex and persist with increasing x, to con-
firm the existence of Eeff

ex at the right side of the strip. In this
case, the spatially scaling zero-energy peak can only be
due to TCS1, which is the only component which can
propagate with k0. For a good visibility of the finite-energy
DOS dips, it is important to use Eeff

ex <�. In practice,
this limit can be reached by using an appropriate value
for h. Note that the long-range behavior of TCS0 and
singlet correlations at " ¼ �Eeff

ex is usually not discussed
for standard ferromagnets, in which exchange fields are
too high.

The amplitude of the DOS variations in Figs. 2 and 3 is
very weak due to the small �T used. Experimental obser-
vations call for an increase in �T . This requires one to use a
numerical approach to solve the problem in the nonlinear
limit. In practice, ferromagnetic domains have a finite size,
so that dL and dR must be finite. The resulting finite size
effects are studied below with the numerical approach.
Figure 4 presents results for the noncollinear case. The
spatial behaviors of fxt , f

z
t , and fs remain qualitatively

similar [see Fig. 4(a)]. At x > 0, fxt still yields the expected
low-energy features in the DOS [Fig. 4(b)]. The variations
of "d with x are shown in Fig. 4(c) for various values of �
(symbols). The scaling behavior of the DOS low-energy
features is robust to finite size effects. One can check that
the semi-infinite expression Eq. (5) yields the right order of
magnitude for "d at the right boundary of the NM strip.
Finite size effects slow down the scaling behavior of the
low-energy features at x ! dR; i.e., one has @"d=@x ! 0.
Nevertheless, it is still possible to observe a strong de-
crease of "d with x, when x is not too close to dR. If �T is
too large with respect to ��, the zero-energy DOS peak has

a reduced amplitude because fxt is weakened [29]. To
maximize Nð0Þ, one must use �T ¼ �� and decrease �.

For instance, using �T ¼ 0:08, � ¼ 0:005�, and the other
parameters of Fig. 4(b) (in particular, �� ¼ 0:08), one

obtains Nð0Þ ¼ 1:35N0 at x ¼ 40h. Nevertheless, using
unfavorable parameters such as those of Fig. 4(b), one still
obtains Nð0Þ ¼ 1:003 25N0 at x ¼ 40h, and amplitude
which is measurable, in principle [2]. The geometry dis-
cussed here also presents the advantage that spin-flip scat-
tering effects, which could reduce the amplitude of
superconducting correlations, are usually small in NMs.
Interestingly, a NM strip with a S contact but no ferromag-
netic contacts has been studied experimentally (Eeff

ex ¼ 0
for any x). In this case, one can only have singlet
correlations propagating with k0. As a result, a spatially
scaling zero-energy dip has been observed in the DOS of
the NM [8,31].
To conclude, TCS1 can appear in a diffusive NM strip in

contact with a S and a FI with several noncollinear mag-
netic domains. These correlations induce in the DOS of the
NM a low-energy peak surrounded by dips, which show a
characteristic spatial scaling behavior away from the S
contact. Meanwhile, if the thickness of the strip is chosen

10 20 30 40

2
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8

(c)

(a)

ε d 
/∆

 (
%

)

x/h

Γ=0.02∆
Γ=0.01∆
Γ=0.005∆

FIG. 4 (color online). Predictions for ~mR ¼ ~z, a value of �T

much larger than in Figs. 2 and 3, and finite values of dLðRÞ. Panel
(a) shows jfsj, jfxt j, and jfzt j at zero energy, as a function of the
coordinate x. Panel (b) shows 
N as a function of " and x. Panel
(c) shows the dependence of "d on x, for various values of �. The
value � ¼ 0:02� is used in panels (a) and (b). All curves have
been obtained with the numerical approach, except the dotted
lines in panel (c), which correspond to Eq. (5).
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properly, superconducting correlations between opposite
spins will focus at finite but subgap energies. The simul-
taneous observation of both effects would enable an un-
ambiguous identification of TCS1.

I thank T. Kontos and W. Belzig for useful discussions.
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