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I. CIRCUIT SIMULATION OF THE MATCHING
NETWORK

The fits in Fig. 2 are obtained using the circuit model
shown in Fig. S1. The three capacitors CS, CD and CM

are taken as simple lumped elements, each incorporat-
ing any parasitic capacitance in parallel with the varac-
tor. The inductor is modelled as a network of elements
as shown, which simulate its self-resonances and losses.
Other losses in the circuit are modelled by an effective
resistance R. The device under test is taken as a parallel
RC circuit.

The reflection coefficient Γ is then equal to

Γ(fC) =
Ztot(fC)− Z0

Ztot(fC) + Z0
, (S1)

where Ztot is the total impedance from the circuit’s input
port and Z0 = 50 Ω is the line impedance. We relate the
measured transmission S21 to Γ by assuming a constant
overall insertion loss A, incorporating attenuation in the
cryostat lines, the coupling of the directional coupler, and
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FIG. S1. Circuit model of the matching network and de-
vice. Capacitors CM, CD and CS are taken as simple lumped
elements, including any parasitic capacitances in parallel. El-
ements RL, RC and CL model parasitic contributions to the
impedance of the inductor L. The effective resistance R mod-
els other losses in the circuit. The quantum dot is modelled
by the combination of Rdot = 1/GRF

dot and Cdot.

the gain of the amplifier, such that

|S21(fC)| = A|Γ(fC)|. (S2)

Fitting to Eq. (S2), we take CD = 87 pF from the
known component value; take L = 223 nH, RL = 3.15×
10−4 Ω×

√
fC [Hz], RC = 25 Ω and CL = 0.082 pF from

the datasheet of the inductor; and assume Rdot = 1 GΩ
and Cdot = 1 aF for a pinched-off device. Fit parameters
are then A, CM, R, and CS. From the fit at VS = 13.5 V,
we obtain A = −27.6± 0.3 dB and CM = 14.5± 0.9 pF.
For other fits, we hold these values constant; extracted
values for CS and R at each voltage are plotted in Fig. S2.

II. CIRCUIT SENSITIVITY

In this section we give further details of how the sen-
sitivities in Fig. 3 are measured and simulated.
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FIG. S2. Values of CS and R at TMC = 1 K, obtained from
fits as in Fig. 2(a). Dashed line is the datasheet value of
CS at room temperature including a parasitic capacitance of
0.7 pF. The comparatively small fitted values of CS indicate
that some of the dopants in the varactor have frozen out.
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A. Measuring the sensitivity

For the sensitivity measurement in Fig. 3, we deter-
mine the root-mean-square (RMS) capacitance modula-
tion δCS as follows. From a measurement of |S21| as a
function of fC and VS (Fig. S3(a)), we extract the res-
onance frequency f0(VS), defined as the location of the
minimum at each voltage. Approximating that

f0(VS) ≈ 1

2π
√
LCS(VS)

, (S3)

we relate δCS to the RMS varactor modulation voltage
Vm by:

δCS =

∣∣∣∣dCS

dVS

∣∣∣∣Vm

=
Vm

2π2Lf3
0

∣∣∣∣ df0

dVS

∣∣∣∣ , (S4)

where df0/dVS is taken as a smoothed numerical deriva-
tive of the measured f0(VS) (Fig. S3(b)).

Although Eq. (S3) applies strictly only for a simple
LC resonator, we have confirmed numerically that this
procedure gives a good approximation for dCS/df0 in our
circuit model.

B. Simulating the sensitivity

Taking the amplitude of the incident signal as V 0
in, the

reflected signal from the matching network is:

Vr(t) = V 0
in Re(Γeiωt).

In response to a change δCS in the capacitance, the re-
flection coefficient changes by δΓ, leading to a change in
reflected voltage:

δVr(t) = V 0
in Re(|δΓ|ei(ωt+arg(δΓ))),

giving for the variance in Vr

〈δV 2
r 〉 =

(V 0
in)2

2
〈|δΓ|2〉

=
(V 0

in)2

2

∣∣∣∣ dΓ

dCS

∣∣∣∣2 〈δC2
S〉.

The sensitivity is defined as the root-mean-square δCS

per unit bandwidth for which 〈δV 2
r 〉 becomes equal to

the noise fluctuation S2
V ∆f :

SC =

√
2∣∣∣ dΓ

dCS

∣∣∣V 0
in

SV .

Assuming that the system noise is dominated by the am-
plifier noise temperature TN and that there are no losses
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FIG. S3. (a) Response of the circuit as a function of VS and
fC. (b) Points: Numerical derivative (df0/dVS) as a function
of VS. Line: Smoothed data used in Eq. (S4) to calculate δCS.

between the matching circuit and the amplifier input, we
obtain:

SC =

√
2kTNZ0∣∣∣ dΓ
dCS

∣∣∣V 0
in

, (S5)

where k is Boltzmann’s constant. This is the formula
used to simulate SC in Fig. 3.

In this simulation, we took the amplifier noise from the
manufacturer’s specification, giving TN = 3.7 K. We cal-

culated
∣∣∣ dΓ
dCS

∣∣∣ numerically using the same circuit model

as above, taking parameters from fits as in Fig. 2. The
signal level to the matching circuit, V 0

in, is in principle
known from the applied power P1 = −29 dBm and the
insertion loss in the injection line. However, we find
that the fits in Fig. 2 yield an overall insertion loss
(A = −27.6 ± 0.3 dB) that is greater than the sum of
the fixed attenuators on the injection line (-31 dB), the
coupling of the directional coupler (-20 dB), and the spec-
ified amplifier gain (+32 dB). This implies a distributed
additional insertion loss of∼ −8.6 dB, with a correspond-
ing uncertainty in the value of V 0

in. For the simulations
in Fig. 3, we assumed this contribution was distributed
equally before and after the matching network, but the
possibility of unequal distribution dominates the error
bars in simulated SC and SCV0.

C. The figure of merit for readout bandwidth

In the main paper, we stated that the figure of merit
for a dispersive qubit readout circuit is not the capaci-
tance sensitivity SC , but rather the product SCV0. In
this section, we justify this statement. For any transi-
tion being measured, such as the inter-dot transition in
a double-dot qubit, the quantum capacitance peaks in a
window about zero detuning. Although Eq. (S5) predicts
an improving capacitance sensitivity with increasing inci-
dent signal, once the detuning excitation becomes larger
than the peak width, over most of the detuning cycle
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the device is configured to have zero capacitance. The
benefit of the larger drive voltage is therefore lost.

To calculate the bandwidth with which the inter-dot
transition can be resolved, we note that the average ca-
pacitance over the RF cycle is

C =
∆q

∆V

where ∆V = 2
√

2V0 is the peak-to-peak voltage on the
source electrode and ∆q is the change in electrode charge
over the cycle. The maximum value of ∆q is achieved
when V0 is set much larger than the peak width, and is
given by ∆q = λe, where λ is the lever arm. The readout
bandwidth ∆f for unit SNR then satisfies:√

∆f =
C

SC
=

∆q

2
√

2SCV0

=
λe

2
√

2SCV0

. (S6)

For given lever arm, the figure of merit is therefore
given by SCV0, which from Eq. (S5) is fixed by the cir-
cuit parameters independent of the incident power. For
the optimum tuning of this circuit, we have SCV0 =
1.2 × 10−3e/

√
Hz, so for λ = 0.3 we could achieve unit

SNR for single-shot readout in bandwidth ∆f = 7.8 kHz,
or an integration time of 64 µs.

III. CARRIER SIGNAL POWER

The carrier power in Fig. 4(a) was chosen separately
at each frequency fC to avoid broadening the Coulomb
peak. Fig. S4(a) shows this peak broadening for increas-
ing P1 for a typical combination of fC and VS. For each
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FIG. S4. (a) Current as a function of VL and P1, showing the
Coulomb peak at which the SNR measurements in Fig. 4(a)
and (b) were performed. For these data, VS = 13.5 V,
fC = 211 MHz, and Vbias = 100 µV. The dashed line in-
dicates the threshold carrier power PT; for P1 < PT no de-
tectable broadening of the Coulomb peak is observed. (b)
Measured PT (points) as a function of carrier frequency for
VS = 9 V (triangles) and VS = 13.5 V (circles). Solid lines are
Lorentzian fits from which values of P1 were chosen for the
SNR measurements in Fig. 4(a).

such combination, a threshold power PT is extracted, de-
fined as the largest power for which no peak broadening
could be detected. Figure S4(b) shows how this thresh-
old power depends on fC for two different VS settings.
Each dataset is fitted to a Lorentzian to define a function
PT(fC, VS). This is the carrier power chosen in Fig. 4(a).

IV. MEASUREMENT OF THE QUANTUM DOT
CAPACITANCE

To determine the device capacitance Cdot as in
Fig. 5(b), we begin by measuring |S21(fC)| with VL set
so that the device is pinched off. In this situation, we
assume that Cdot = 0. Fitting as in Fig. 2, we ob-
tain CS = 2.673 ± 0.005 pF, CM = 15.0 ± 0.8 pF,
R = 11.7 ± 0.9 Ω and A = −24.9 ± 0.2 dB. The dif-
ferences from the values at 1 K indicate that parasitic
losses are reduced at 20 mK.

Given these circuit parameters, the phase of the re-
flected signal for other VL settings is determined entirely
by Cdot and Rdot; from Eq. (S1), Γ can be expressed in
terms of an amplitude (Av) and a phase (φ) as follows,

Γ = Av(Ztot)e
iφ(Ztot), (S7)

where Ztot = Ztot(Rdot, Cdot). Eq. (S7) makes explicit
how the phase shift measured as in Fig. 5(a) is depen-
dent on both Rdot and Cdot, as mentioned in the pa-
per. While the phase shift extracted from the curves in
Fig. 5(a) corresponds directly to φ, the conversion from
the amplitude of the demodulated signal (VD) toAv is not
equally straightforward; it depends on the overall circuit
gain that we cannot determine accurately due to small
non-linearities. For this reason, as mentioned in the pa-
per, we have just relied on the measured phase shift to
determine Cdot.

Finally, from the measured phase shift as a function of
VL, obtained by fitting curves similar to Fig. 5(a), and
assuming Rdot = 1/GDC

dot, we numerically evaluate Cdot

to obtain the values plotted in Fig. 5(b).

V. PROPORTIONALITY BETWEEN
QUANTUM DOT CAPACITANCE AND

CONDUCTANCE

This section presents a simple model which explains
the relationship between GDC

dot, G
RF
dot and Cdot. We con-

sider a quantum dot coupled to left and right leads by
tunnel rates ΓL and ΓR respectively, and assume the low-
temperature limit kTMC/~ � ΓR,ΓL. The linear DC
conductance can then be written

GDC
dot =

2e2

h

ΓLΓR

ΓL + ΓR
ρ(εF, VL) (S8)

where ρ is the quantum dot density of states, εF is the
the Fermi level and VL the gate voltage that allows us
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to control the electrochemical potential of the quantum
dot [1].

We now consider a time-dependent voltage V (t) =√
2V0 cosωt applied to the left lead. The current that

flows in response to this voltage is not in general [2, 3]
determined by Eq. (S8). However, so long as ω �
ΓL,ΓR, electron tunnelling occurs instantaneously on the
timescale of the oscillating voltage and there is no addi-
tional dissipation due to the time dependence. From the
width of the smallest Coulomb peak in Fig. 5(b), we de-
duce ΓL + ΓR ∼ 30 GHz, and therefore this assumption
is justified. The RF conductance is therefore the same as
the DC conductance:

GRF
dot = GDC

dot.

A capacitance arises because the quantum dot charges
and discharges in response to the RF voltage. The charge
on the dot is

Q(t) = Q0 + eκρ(εF, VL)V (t)

where Q0 is the charge with no bias, e is the elementary
charge, and κ is the occupation probability of a state in
the transport window. To supply this charge, the current

from the left lead is

I(t) = βQ̇(t)

= eβκρ(εF, VL)V̇ (t)

with β a constant which parameterizes how much of the
charge tunnels from the left lead, as well as how plas-
monic screening currents triggered by tunneling events
are distributed in the circuit [4]. We identify this cur-
rent as due to a capacitance

Cdot = eβκρ(εF, VL).

Comparing with Eq. (S8), we see that

Cdot = βκ
ΓL + ΓR

ΓLΓR
GDC

dot.

In the general case, Cdot and GDC
dot should not be ex-

actly proportional since β, κ, and the tunnel rates vary
independently with VL. We cannot determine the full de-
pendence of βκ with the tunnel rates ΓL and ΓR from our
phenomenological model. However, in the limit where
ΓR � ΓL and only ΓL increases with VL, βκ should sat-
urate to its asymmetric limit, while ΓL+ΓR

ΓLΓR
' 1

ΓR
should

remain constant. In this case, the variations of Cdot and
GDC

dot with VL should be proportional. From our con-
ductance data, we can see that ΓR and ΓL are clearly
asymmetric. Therefore this scenario could explain why
we find that Cdot and GDC

dot are proportional.
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