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DEFINITION OF THE CHARGE SUSCEPTIBILITY IN THIS WORK

In this work, we define the charge susceptibility as χ(ω) =
∫ +∞

−∞
dt χ(t)eiωt with

χ(t) = −iθ(t)
〈

[ĥC(t), ĥC(t = 0)]
〉

0
(1)

and 〈〉0 the statistical average when ĥC is disregarded from ĥtot. The operator ĥC only involves charge occupation
numbers. Note that this definition is slightly different from the definition used in Ref.[4], where the lever arm between
(â + â†) and the circuit orbital energy is not included in χ(t). Here, we prefer to use Eq.(1) because it enables one
to have a unique definition of χ(t) for all the cases considered. This is why the photonic lever arms Nαβ, g or β are
included in χ(t) for the three models considered by us.

ANDREEV DOTS AND QUANTUM DOTS IN THE SPIN-DEGENERATE CASE

The purpose of this section is to show that the impossibility to induce microwave transitions between pairs of
electron-hole conjugated states is not contradictory with experiments on superconducting atomic point contacts (also
called Andreev dots)[1] and predictions for quantum dots with superconducting reservoirs[2]. In these cases, transitions
between energy-symmetric electron and hole states occur due to the spin degeneracy in the system. Let us use the
model mesoscopic QED Hamiltonian

HA = E0(ĉ
†
↑ĉ

†
↓ + ĉ↓ĉ↑) + g0(ĉ

†
↑ĉ↑ + ĉ†↓ĉ↓)(â+ â†) + ω0â

†â (2)

Above, the term in E0 describes Andreev reflection processes in the Andreev or quantum dot, and g0 describes the
coupling of the dot to the cavity with frequency ω0. The Bogoliubov operators can be defined as

γ̂↑ = (ĉ↑ + ĉ†↓)/
√
2 (3)

γ̂↓ = (ĉ↓ − ĉ†↑)/
√
2 (4)

Hence, one finds

HA = E0(γ̂
†
↑γ̂↑ + γ̂†

↓γ̂↓ − 1) + g0(1− γ̂†
↑γ̂

†
↓ − γ̂↓γ̂↑)(â+ â†) + ω0â

†â (5)

In this case, applying the general expression of χ(ω0) given in the main text for discrete systems, we obtain

χ∗(ω0) ≃ g20(ω − 2E0 + i0+)−1 (6)

The presence of a resonance at ω = 2E0 is clearly due to the creation of two degenerate quasiparticles by the operators
γ̂†
↑ and γ̂†

↓.

QUANTUM DOT CONTACTED TO A SUPERCONDUCTOR AND SUBJECT TO A ZEEMAN FIELD

It is important to discuss the signatures of Andreev bound states with a trivial lifting of spin-degeneracy due
to a Zeeman field. The minimal model for this situation is a single-orbital quantum dot tunnel contacted to a
superconductor and subject to a Zeeman field Ez . This system is described by the Hamiltonian

HB = E0(ĉ
†
↑ĉ

†
↓ + ĉ↓ĉ↑) + Ez(ĉ

†
↑ĉ↑ − ĉ†↓ĉ↓) + εorb(ĉ

†
↑ĉ↑ + ĉ†↓ĉ↓) (7)
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FIG. 1: Schemes of the density of states in the quantum dot (left panel) and microwave cavity response (right panel) in the
presence of Andreev bound states with a trivial spin-splitting by a Zeeman field Ez

For the sake of generality, we have included above the dot orbital energy εorb which was assumed to be εorb = 0 in
the previous section. A Bogoliubov-De Gennes transformation gives

HB = εAd̂
†
Ad̂A + εB d̂

†
B d̂B + εC d̂

†
C d̂C + εDd̂†Dd̂D (8)

The quasiparticle modes in the above expression belong to two independent subspaces. The subspace combining
electrons with spin up and holes with spin down gives the modes d̂†A and d̂†A with energies εA and εB defined by

εA = Ez +
√

E2
0 + ε2orb, d̂

†
A =

√

√

√

√

1

2

(

1 +
εorb

√

E2
0 + ε2orb

)

ĉ†↑ +

√

√

√

√

1

2

(

1− εorb
√

E2
0 + ε2orb

)

ĉ↓

εB = Ez −
√

E2
0 + ε2orb, d̂

†
B = −

√

√

√

√

1

2

(

1− εorb
√

E2
0 + ε2orb

)

ĉ†↑ +

√

√

√

√

1

2

(

1 +
εorb

√

E2
0 + ε2orb

)

ĉ↓

The subspace combining electrons with spin down and holes with spin up gives the modes d̂†C and d̂†D with energies
εC and εD defined by

εC = −Ez +
√

E2
0 + ε2orb, d̂

†
C = −

√

√

√

√

1

2

(

1− εorb
√

E2
0 + ε2orb

)

ĉ↑ +

√

√

√

√

1

2

(

1 +
εorb

√

E2
0 + ε2orb

)

ĉ†↓

εD = −Ez −
√

E2
0 + ε2orb, d̂

†
D =

√

√

√

√

1

2

(

1 +
εorb

√

E2
0 + ε2orb

)

ĉ↑ +

√

√

√

√

1

2

(

1− εorb
√

E2
0 + ε2orb

)

ĉ†↓

The modes B and C cross at zero energy for Ez =
√

E2
0 + ε2orb, which enables a zero energy crossing in the density of

states ν(ω) of the dot (see Fig. 1, left panel). Each of the levels B and C can lead to photo-assisted tunneling to the
fermionic reservoirs, which should give signals similar to feature 1 of Fig.2 of the main text (see Fig. 1, right panel,
pink line). The coupling term between transition B-C and the cavity is strictly zero because these two states belong
to two different Nambu-spin subspaces (see above equations). This implies that direct microwave transitions between
B and C are not possible. Hence, one could worry that the trivial zero energy crossing between states B and C could
mimic the first zero energy level crossing in Fig.1,b (case B) and its microwave response. However, these two cases can
be discriminated by considering the analogue of feature 2 which reveals a specific signature of the trivial degeneracy
lifting provided by the magnetic field. Indeed, transitions between the states A and B or C and D can occur at a
frequency ω2 =

√

E2
0 + ε2orb/π~ which is independent of Ez , with a matrix element −

√

E2
0/(E

2
0 + ε2orb) which is also

independent of Ez . At low temperatures, this transition should be visible for low values of Ez (Ez <
√

E2
0 + ε2orb)

such that states C and B are populated and empty respectively (εC < 0 and εB > 0), as shown by the see red line
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in Figure 1, right panel. The independence of ω2 from Ez is a specific property of the trivial case, because in the
Majorana case, the frequency of feature 2 strongly depends on Ez due to the topological phase transition (see the
strongest resonance in Figure 3a). One should keep in mind that this distinction problem raises only if it is not
possible to observe several consecutive zero energy crossings in ν(ω), because a trivial pair of Andreev states should
give only one zero energy crossing when Ez is increased from 0.

DEFINITION OF THE RESERVOIRS CONTRIBUTION ĥR TO OUR CHAIN HAMILTONIAN

We describe explicitly the S and NL(R) reservoirs with the Hamiltonian

ĥR =
∑

O,k,σ

εkO ĉ
†
Okσ ĉOkσ +∆

∑

k

(

ĉ†Sk↑ĉ
†
S−k↓ + h.c.

)

+
∑

n,O,k,σ

(tOknd̂
†
nσ ĉOkσ + h.c.) + hS

diss (9)

where ĉ†Okσ is the creation operator for an electron with momentum k and spin σ in the reservoir O ∈ {S,NL, NR}.
Above, tOkn is the tunneling constant between site n and reservoir O. In the following we use energy-independent
tunnel constants tSkn = tS and tNkn = tN (δn,1+δn,N), and a broad band approximation for the reservoirs. The tunnel

rates are defined as ΓO = 2π |tO,n|2 ρO with ρO the density of states per spin direction in reservoir O ∈ {S,NL, NR}.
In the main text, we use ΓNL(R)

= ΓN . The term hS
diss accounts for the broadening of the BCS peaks in the DOS of

S and the finite subgap DOS (see details in Ref.[4]). These effects depend on the DOS broadening parameter Γb.

DETAILS OF OUR KELDYSH APPROACH

The retarded Green’s function Gr of the chain has site-indexed elements with the following structure in the
Nambu⊗spin subspace:

Gr
n,n′ =















Gr

d̂n,↑,d̂
†

n,↑

Gr

d̂n,↑,d̂n,↓

Gr

d̂n,↑,d̂
†

n,↓

Gr

d̂n,↑,d̂n,↑

Gr

d̂
†

n,↓
,d̂

†

n,↑

Gr

d̂
†

n,↓
,d̂n,↓

Gr

d̂
†

n,↓
,d̂

†

n,↓

Gr

d̂
†

n,↓
,d̂n,↑

Gr

d̂n,↓,d̂
†

n,↑

Gr

d̂n,↓,d̂n,↓

Gr

d̂n,↓,d̂
†

n,↓

Gr

d̂n,↓,d̂n,↑

Gr

d̂
†

n,↑
,d̂

†

n,↑

Gr

d̂
†

n,↑
,d̂n,↓

Gr

d̂
†

n,↑
,d̂

†

n,↓

Gr

d̂
†

n,↑
,d̂n,↑















(10)

For any operators A and B, we use Gr
A,B(t) = −iθ(t) 〈{A(t), B(t = 0)}〉 . Using Hamiltonian ĥW + ĥR, we obtain:

Gr
dd = [ω1+Ω− Σr

N − Σr
S ]

−1
(11)

Above, the matrices Ω, Σr
N Σr

S are given by:

Ωn,n′ =









µ− Ez 0 0 0
0 −µ− Ez 0 0
0 0 µ+ Ez 0
0 0 0 −µ+ Ez









δn,n′

+









t 0 0 0
0 −t 0 0
0 0 t 0
0 0 0 −t









(δn−1,n + δn+1,n) +









0 0 −Λx 0
0 0 0 −Λx

Λx 0 0 0
0 Λx 0 0









(δn+1,n − δn−1,n) (12)

Σr
N,n,n′ = −i

ΓN,n

2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









δn,n′ (13)

and

Σr
S = −iΓSG̃/2
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with

G̃n,n′ =









Gω Fω 0 0
Fω Gω 0 0
0 0 Gω −Fω

0 0 −Fω Gω









δn,n′ (14)

Gω = −i(ω + i
Γb

2
)/Dω, Fω = i∆/Dω (15)

and Dω =
√

∆2 − (ω + i(Γb/2))2.
The lesser self energy Σ<(ω) can be expressed as:

Σ<
n,n′(ω) = if(ω)ΓSnRe

[

G̃
]

δn,n′ + iΓNnf(ω − eVb)









1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0









δn,n′ + iΓNnf(ω + eVb)









0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1









δn,n′

(16)
The above expressions can be used to calculate the charge susceptibility χ(ω) from Eq. (2) of the main text. Note
that this last Eq. is divided by a factor 2 in comparison with Ref.[4] because we have introduced a redundancy in the
spin sector to describe properly non-collinearities induced by the spin-orbit coupling.

ABSENCE OF MICROWAVE TRANSITIONS INSIDE A MAJORANA DOUBLET IN THE PRESENCE

OF DISSIPATION

In the main text, we have derived analytically the absence of microwave transitions inside a Majorana doublet by
considering a nanocircuit with a discrete spectrum. We have also found with a Keldysh numerical approach that
this result persists in the presence of fermionic continua of states from metallic reservoirs, at least in the regime of
parameters explored by us. It is instructive to reconsider this second case analytically with a simplified approach.
We assume that a pair of Majorana fermions (m̂L, m̂R) is coupled to a fermionic continuum of states described by

an energy-dependent fermion creator operator f †(E). The total Hamiltonian of the system is

Ĥ = Ĥ0 + V̂ (17)

with

Ĥ0 = εγ̂†
1γ̂1 +

∫ +∞

0 dE Ef̂ †(E)f̂ (E) (18)

V̂ =
∫ +∞

0
dE λ(E)

(

γ̂†
1f̂(E) + f̂ †(E)γ̂1

)

+
∫ +∞

0
dE µ(E)(γ̂†

1 f̂
†(E) + f̂(E)γ̂1) (19)

and γ̂†
1 = (m̂L − im̂R)/

√
2 the ordinary fermion operator associated to the Majorana pair. The coupling term V̂

between the operators (γ̂†
1, γ̂1) and (f̂ †, f̂) contains a particle conserving term in λ as well as a non-conserving term

in µ due to the presence of superconductivity in the circuit. One can diagonalize Ĥ , i.e.

Ĥ =
∫ +∞

0
dE Ed̂†(E)d̂(E) (20)

with E > 0 by using:

d̂†(E) = f̂ †(E) + u(E)γ̂†
1 + v(E)γ̂1 +

∫ +∞

0 dE′
(

x(E,E′)f̂ †(E′) + y(E,E′)f̂(E′)
)

(21)

The operator d̂†(E) can be obtained by solving the Lippmann-Schwinger equation[3]

d̂†(E) = f̂ †(E) +
1

E − ad
Ĥ0

+ iη
ad

V̂
(d̂†(E)) (22)
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with η → 0+ and ad
b̂
(â) = [b̂, â]. This equation can be transformed into:

(E − ad
Ĥ
+ iη)d̂†(E) = iηf̂ †(E) (23)

By combining Eqs.(18), (22) and (23), we obtain the system of equations:

(E − ε+ iη)u(E)−
∫ +∞

0
dE′ (x(E,E′)λ(E′) + y(E,E′)µ(E′)) = λ(E) (24)

(E + ε+ iη)v(E) +
∫ +∞

0 dE′ (x(E,E′)µ(E′) + y(E,E′)λ(E′)) = −µ(E) (25)

(E − E′ + iη)x(E,E′)− λ(E′)u(E) + µ(E′)v(E) = 0 (26)

(E + E′ + iη)y(E,E′)− µ(E′)u(E) + λ(E′)v(E) = 0 (27)

From Eqs.(24-27), we obtain

[

u(E)
v(E)

]

= D−1(E)

[

E + ε+ iη − Σ̃d −Σc

−Σc E − ε+ iη − Σd

] [

λ(E)
−µ(E)

]

(28)

with

D(E) = (E − ε+ iη − Σd)
(

E + ε+ iη − Σ̃d

)

− Σ2
c (29)

Above, the quantities

Σc =
∫ +∞

0 dE′ λ(E′)µ(E′)

(

1

E − E′ + iη
+

1

E + E′ + iη

)

(30)

Σd =
∫ +∞

0 dE′

(

λ2(E′)

E − E′ + iη
+

µ2(E′)

E + E′ + iη

)

(31)

Σ̃d =
∫ +∞

0
dE′

(

λ2(E′)

E + E′ + iη
+

µ2(E′)

E − E′ + iη

)

(32)

are self-energies which account for the coupling between the Majorana pair and the continuum of states.
Accordingly with the main text, we now assume that the Majorana doublet couples to the cavity through the term

ĥC(â+ â†) with

ĥC = βγ̂†
1 γ̂1 (33)

We also assume that the system is in the ground state of Hamiltonian (20), i.e. all quasiparticle states are filled up
to ε = 0. For our circuit, this corresponds to a filling of the energy levels up the Fermi energy, in an equilibrium
situation (V = 0, T = 0). In these conditions, using the equations

γ̂†
1 =

∫ +∞

0 dE
(

u∗(E)d̂†(E) + v(E)d̂(E)
)

(34)

and

γ̂1 =
∫ +∞

0
dE
(

v∗(E)d̂†(E) + u(E)d̂(E)
)

(35)

which result from Eq.(21), one finds that the only term of ĥC which contributes to the charge susceptibility of the
circuit is:

Ôadd
C ≃

∫ +∞

0

∫ +∞

0 dEdE′ N(E,E′)d̂†(E)d̂†(E′) (36)

with

N(E,E′) = β(u∗(E)v∗(E′)− u∗(E′)v∗(E))/2 (37)
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FIG. 2: (a): Im[χ(ω0)] and Im[χ̃(ω0)] versus ω0. (b): D−1(E) and D−1(ω0 − E) versus E for different values of ω0, which
correspond to the empty circles in panel (a).

Indeed, by generalizing the expression χ∗(ω0) ≃
∑

αβ |Nαβ |2 (ω0 − Eα − Eβ + i0+)−1/2 of the main text, we obtain

Im[χ(ω0)] =
π

2

∫ +∞

0

∫ +∞

0 dEdE′ |N(E,E′)|2 δ(ω0 − E − E′) (38)

which gives

Im[χ(ω0)] =
π

2

∫ ω0

0 dE |N(E,ω0 − E)|2 (39)

Equations (36) and (38) are particularly instructive, since they show how dissipation could possibly induce a microwave
resonance in the Majorana subspace for ω0 = 2ε. One has N(E,E) = 0, similarly to the fact that Nαα = 0 in the

main text. However, due to the broadening of the Majorana states, terms in d̂†(E)d̂†(E′), with E ≃ E′ ≃ ε but
E 6= E′, could modify the cavity response. Therefore, the effect of Ôadd

C must be considered carefully.
To evaluate Im[χ(ω0)], we now make the wide band approximation on the continuum of states, like in the main

text. We furthermore assume that λ(E) and µ(E) are independent from energy, which is relevant for ε ≪ ∆ if
the S contact dominates low energy quasiparticle tunneling to/from the chain sites. We finally perform the usual
simplification |λ| = |µ| (see Refs.[5–9]). This gives Σc = Σd = Σ̃d = −iΓ with Γ = 2πλ2 = 2πµ2 the dissipation rate
associated to the continuum of states. With the above assumptions we find

N(E,E′) = β
εΓ

π

(E − E′)

D(E)D(E′)
(40)

and

Im[χ(ω0)] =
(βεΓ)2

2π

∫ ω0

0 dE
(2E − ω0)

2

|D(E)D(ω0 − E)|2
(41)

with

D(E) = (E − ε+ iΓ) (E + ε+ iΓ) + Γ2 (42)

Figure 1a shows with a black full line Im[χ(ω0)] versus ω0, calculated from Eqs. (41) and (42). First, we recover the
general result Im[χ(ω0 = 0)] = 0 of the adiabatic limit[4]. Then, Im[χ(ω0)] shows a maximum for ω0 = ε, whereas
no particular feature is visible at ω0 = 2ε. To understand how this behavior arises from Eq.(41), it is useful to

study the variations of |D(E)|−1 and |D(ω0 − E)|−1 with E (see Figure 1b, blue and red full lines respectively). The

integration window E ∈ [0, ω0] in Eq.(41) is indicated with gray rectangles. The function |D(E)|−1
shows two peaks

at E = ±ε, whereas |D(ω0 − E)|−1
shows two peaks at E = ω0 ± ε. From Fig.1b, the maximum of Im[χ(ω0)] at

ω0 = ε occurs because a peak from |D(E)|−1
and a peak from |D(ω0 − E)|−1

enter the integration window. At first
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glance, it may seem surprising that no resonance occurs in Im[χ(ω0)] at ω0 = 2ε since the two peaks from |D(E)|−1

and |D(ω0 − E)|−1
coincide and are in the middle of the integration window in this case. To understand this fact, we

show with pink dashed lines the pseudo-susceptibility

Im[χ̃(ω0)] = 2(βε)2Γ4
∫ ω0

0
dE

1

|D(E)D(ω0 − E)|2
(43)

obtained by replacing the numerator (2E − ω0)
2 in the integrand of Eq.(41) by an arbitrary constant 4πΓ2. The

pseudo-susceptibility Im[χ̃(ω0)] shows a step at ω0 = ε but also a resonance at ω0 = 2ε. Hence, the absence of
resonance in χ(ω0) is clearly due to the (2E − ω0)

2 factor. Importantly, this factor is directly due to the Pauli
exclusion principle since it stems from the factor (E − E′) in Eq.40, which ensures N(E,E) = 0. We recall that the
Pauli exclusion principle is at work in this situation due to the fact that a single Majorana pair is coupled to cavity
photons. We conclude that the transition between the two MBSs at ω0 = 2ε is still inhibited by the self adjoint
character of MBSs when these MBSs are broadened by the coupling to a fermionic continuum of states. Finally,
Im[χ(ω0)] decreases for ω0 > ε, and vanishes for ω0 ≫ ε. This is because in the limit ω0 ≫ ε, photon absorption and
emission processes between the Majorana doublet and the continuum of states compensate each other, regardless of
the details of the fermionic continuum in the area E ∼ 0. Note that in this supplementary material, we have studied
the absence of peak in Im[χ(ω0)] at ω0 = 2ε for the case T = 0. However, from the numerical Keldysh approach of
the main text, we find that this transition remains absent for finite temperatures.
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