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A. HAMILTONIAN OF THE CPS

Inside the left and right dots ¢ € {L, R}, an electron with spin o € {1, ]} can be in the orbital 7 € {K, K'}, which
is reminiscent from the K /K’ degeneracy of graphene. We use a double dot effective hamiltonian which includes the
superconducting proximity effect due to the superconducting contact, i.e.

ngjic(yft = Z(E + AsoTO)Nire + Hint + AKHK’Z(dIKodiK’U + dl‘LK'adiKﬁ) (1)
+ t€€ (dTLTO'dRTU + dTRTO'dLTU) + tehz { (dETTdTR?l - dz?ld}‘lﬁ) + hC}
T,0 T

with K = K’ and K’ = K. The term in t.; accounts for coherent injection of singlet Cooper pairs inside the double
dot [1]. Taking into account the superconducting contacts with the term in ¢.p, is valid provided quasiparticle transport
between the superconducting contact and the double dot can be disregarded (see part C of the Supplemental Material).
For simplicity, we assume that the orbital energies in dots L and R are both equal to €, which can be obtained by
tuning properly the dots’ gate voltages. The term H;,; accounts for Coulomb charging effects. We assume that there
cannot be more than one electron in each dot, due to a strong intra-dot Coulomb charging energy. The constant
A, corresponds to an effective spin-orbit coupling [2]. The term Ag., g describes a coupling between the K and
K’ orbitals of dot ¢, due to disorder at the level of the carbon nanotube atomic structure [2-4]. The hamiltonian
Hs({i must be supplemented by the normal leads hamiltonian Hjeqqs = Zkﬂi,agikr Cj:kracik-ro' + h.c. and the tunnel

coupling between the dots and normal leads H; = Zkﬂm,gtcgkmdim + h.c., with ¢;;, » the annihilation operator for
an electron with spin o in orbital k, of the normal lead ¢ € {L, R}.

B. EXPRESSION OF THE CPS EIGENSTATES

We now discuss the eigenstates and eigenvectors of hamiltonian (1) in the general case. The diagonalization of
hamiltonian (1) can be performed by block in five different subpaces, the two subspaces of states occupied with
a single spin o € {1, ]}, the two subspaces of states occupied with two equal spins o € {1, |}, and the subspace
comprising the empty state and states occupied with two opposite spins.

B.1. Subspace of singly occupied states with spin o

One can treat separately the subspace of singly occupied states with spin T and the subspace of singly occupied
states with spin |. For a given spin direction o € {7, ]}, the eigenenergies and corresponding eigenvectors of Hjﬂt



are:
eigenenergy eigenvector
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with A, =, /A2 + A? KK Note that t.. occurs in the expressions of the eigenenergies but not in the expressions of

the eigenvectors because we have assumed that the left and rights dot have the same orbital energy e.

B.2. Subspace of states occupied with two equal spins o

One can treat separately the subspace of states occupied with two equal spins T and the subspace of states occupied
with two equal spins |. For a given spin direction o € {1, ]}, the eigenenergies and corresponding eigenvectors of

H§§£ are:

eigenenergy|eigenvector
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with A, = \/AEO

K K /2). These states correspond to generalized triplet states with spin 1.

B.3. Subspace of states occupied with two opposite spins

We now discuss the subspace of states comprising the empty state |0,0) and states occupied with two opposite

spins. It is practical to first define the eigenenergies and eigenvectors of HS({({,‘ for tep, = 0:

eigenenergy |eigenvector
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where |Cy(10,7'0")) = (|r0,7'0") + |7'0’, 70)) /+/2. From the definition of |C+ (70, 7'0")), one can view the states |s;),

|s2), |ss) and |s4) as generalized singlet states whereas [t1), |t2), |t3) and |t4) can be viewed as generalized triplet




states with total spin 0. In the subspace {]0,0),|s1),[t1),]s2), |t2),|s3),|t3), [s4),|ta)}, the hamiltonian (1) writes
exactly:

AL = 6(Is1) (s1] + Is2) (sal + [t1) (1] + [b2) (tal) + (6 — 2A) ([t3) (ta| + |sa) (ss]) + (8 +2A,) ([ta) (Fa] + [54) (s4])
+ V2t (]54) 0, 0] + 10,0 {sa] — |s3) (0,0] 10, 0) (s3])

Thus, the states [s1), |s2), [t1),|t2), |t3) and |t4) are eigenstates of H§££ while the states |s3), and |s4) and are
hybridized with |0,0). This hybridization leads to three eigenstates |V1), |V2) and |V3) with energy Eq, E2 and Es.
Figure 1 shows the energy of the different doubly occupied eigenstates (with total spin 1 or 0, i.e. given by sections
B.2 or B.3) as a function of §. The triplet states have energies 8, 6 — 2A,. or § + 2A,. (blue lines), while the energies
E1, Ey and FEj3 (red, green and pink lines) show two anticrossings at § = —2A, and § = 2A,.
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FIG. 1: Energy of the different doubly occupied eigenstates (with total spin 0 or 1) as a function of §.

B.4. Expression of the CPS doubly occupied eigenstates for § ~ 2A,

In the main text, we work near the right anticrossing in Figure 1 (6 ~ 2A,). For § ~ 2A,, a simplified expression
of the relevant doubly occupied eigenstates of Hsg ({f can be obtained by performing a diagonalization in the subpace

{]0,0), |s3),|ts), ‘SST>7 §31>}. This leads to the CPS eigenstates |V1), |Va), |To), |T4) and |T-) discussed in the main

text, which are defined by:
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and

1) =lon) = E {5052 ~ o) € (Ko, Ko | + SLEF (e 1,7 1)

Note that o = %1 stands for o € {1, |} in algebraic expressions. The state |Tp) corresponds to a generalized triplet
state with zero spin, |T_) and |T;) correspond to a coherent mixture of two triplet states with finite spin, and the state
|S) corresponds to a generalized spin-singlet state. Note that without disorder (Ax.,x» = 0), |S) has components in
|C+(7 1,7 1)) only and |T—) has components in |70, 7o) only. In the presence of disorder, |S) also includes components
in C_(|7 1,7 1)), and |T_) has also components in |Ko, K'o) and |K'c, Ko). This enables a coupling between the
states |V (2)) and |T_) through H,,.

C. BIAS VOLTAGE WINDOW

The hamiltonian H;g; Oft can be used provided there is no quasiparticle transport between the superconducting lead
and the dots. This requires

A< —-eV <A (2)

In the main text, we furthermore assume that electrons can go from the double dot to the normal metal leads but
not the reverse. This is true provided the bias voltage V' belongs to a certain range which we derive below.

(1) We recall that the double dot singly occupied states |s;,) have energies €;,, with ¢ € {1,2, 3,4}, given in section
B.1 of the supplemental material. We assume § ~ 2A,, so that the states |V;) and |V2) have significant components
in |0,0) and |S) and their energies E; and FEs are well approximated by the expressions given in section B.4. Since
[V1) and |V3) have components in |S), they can decay towards the singly occupied state |s;,) while an electron is
transferred to the normal metal leads (and the reverse process is forbidden) if

—eV < By(9) — €i0 — akpT (3)

for i € {1,2,3,4}. Above, « is a dimensionless factor of order 1 which takes into account the temperature broadening
of the levels.

(2) Since |V1) and|Vs) have also components in |0,0), a singly occupied state can decay towards |V1) or |Va) while
an electron is transferred to the normal leads (and the reverse process is forbidden) if

—eV < gijg — El(g) — akpT (4)

for i € {1,2,3,4]}.

(3) Since we assume 6 ~ 2A,, the state |V3) has a negligible component in |0,0). Hence, it can be considered as
a pure doubly occupied state, with energy F3 ~ ¢ + 2A. The other doubly occupied states have energies § — 2A,.,
d +2A,., or ¢ (see section B.2 and B.3). The doubly occupied states (including |V3)) can relax to the singly occupied
state |s;,) while an electron is transferred to the normal leads (and the reverse processes are forbidden) if

—eV < § £2A, — ;o — akpT (5)
and
—eV <6 —¢ijp — akpT (6)

Since Fy < 6 — 2A, < F1,§ <0 4 2A, < E3 and €1, < €24,€3, < €40, the combination of Egs. (2), (3), (4), (5) and
(6) yields the constraint

—A < —eV <min(E2 — €40,€10 — E1) — akpT

We note § = 2¢. For 6 ~ 2A,., one has

1
By — 40 = —20, — oo — 5\/8152,7/ +(0—20,)2 = ey — By — 27,



We conclude that we have to satisfy

1
A< eV < 2D, — e — 5\/8@ 4 (6—2A,)2 — akpT

with A the BCS gap of the superconducting contact. Since the temperature 7' is much smaller than A, in a typical
experiment, we simplify this criterion as

1
SA < eV <2, — e — 5 [882, + (5 24,)2

With the parameters of Fig.2, tee < A, § ~ 2A,. and A the BCS gap of NbN;, this gives 1.8 meV < eV < 3 meV.

To populate the state |V3) and the triplet states other than |7_), one needs to have a transition from a singly
occupied state to one of these states. In the regime we consider above, this is not possible since this would require an
electron to go from the normal metal leads to the double dot. Therefore, the state |V3) and the triplet states other
than |T_) are not active. In contrast, the state |[T_) can be populated due to lasing transitions |V;) — |T-).

D. EFFECT OF THE SPIN-ORBIT COUPLING

In order to discuss the effect of the term hg, appearing in Eq. (2) of the main text, it is practical to redefine the
eigenvectors of Hsﬂt in the subspace of states occupied with two equal spins as

eigenenergy |eigenvectors

5 IT,) = —- [S1)=1%0) o [S2)-[Su)
a \/a2_+a3_ \/5 \/a2_+a3_ \/E
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0+ 2A,. §4T>

6+20,  ||Su)

with

AS‘O
axr =AL —ARTF A (AL + ARr)

T

For 6 ~ 2A, and the bias voltage conditions considered in section C, the states |V1) and |V3) can be populated but
not |V3). Only two of the triplet states, namely |T_) and |T}), are coupled to |V1) and |V3) by hs,. One has

. A — K’
(T_|heo [Vi2)) = Tv12) KA (AL — Ar) (7)
which corresponds to Eq. (3) of the main text, and

iU1(2)A§o()\%z - )\%)

_ A2
\/AT (A%O()\% + )\%) + %(AL — )\R)Z)

<Tb| hso }‘/1(2)> = (8)

The couplings to |T-) and |T},) are both subradiant since they vanish for A\, = Ag. For A,k = 0, the coupling
between |T_) and |Vy(2)) vanishes, whereas the coupling between |T},) and |Vy(2)) persists:

) iv A% — A2
lim  (Ty| heo Vi) = M (9)

Agerr—0 A /)\% + )\%
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We conclude that it is not necessary to use a finite Ag ../ to obtain a coupling between }Vl(g)> and a triplet state.
It is nevertheless impossible to use the transitions |Vi(9)) < [T}) for lasing since |T}) is higher in energy than [V;)
and |V3).
For § ~ —2A,, the state |V3) can be populated. When Ak .,k = 0, we find that only one of the triplet states,
namely |7, ), is coupled to |V3), with a coupling element
: 2 2
lm  (Ty] heo V) = 2208 ZAL) (10)

Agerr—0 A /)\% + )\%

When Ak, g # 0, one has:

\/ A, (Azo(A% +0Z) 4+ S (6 — ARP)

(Tal hso |V3) = (11)

These equations are analogue to Eqs. (9) and (8). In principle, if the cavity frequency is matching with E3 —
§ ~ 2A, + \/2t.p, there can be lasing transitions from |V3) to |T,) since |V3) is higher in energy than |T,). The
|V3) < |T,) transitions are subradiant since (T, | hs, |V3) cancels for A\, = Ag. Importantly, (T, | hs, |V3) remains finite
for A, g = 0. Therefore, Ag.. g # 0 is not a fundamental constraint to obtain a subradiant lasing transition in
our system. Nevertheless, in practice, the frequency of the |V3) < |T,) transition is not likely to match with the cavity
frequency because Ag /g, Ay, > 211y is expected [2, 4]. We have chosen to discuss the lasing transition |V1) < |[T_)

at § ~ 2/, because it corresponds to a frequency of the order of v/2t.,, which is expected to be much smaller [15].

E. OTHER POSSIBLE LASING TRANSITIONS

e In principle, there can be radiative transitions from |7_) to |V2), which are taken into account by Eq.(7) of
the main text. However, the lasing threshold corresponding to this transition is not reached in the regime of
parameters we consider, because the population of state |T_) is negligible for § > 2A,..

e Since the parameter 0 depends on the dots’ gate voltages, cavity photons can also couple to the CPS through the
operator ddiff = >, , 1 o |70, 7'0") (To,7'0’|. One finds (Vi|dairys [Va) = V2ten/\/8t%, + (6 — 2A,)2. Hence,
in principle, there can be lasing between the states |V;) and |Va2). Nevertheless, this can be avoided by using
Ey = 2rhvy < 2v/2te, or by tuning properly d, so that Ey # Fy — Fs.

e In principle, spin-orbit interaction can also induce lasing transitions inside the CPS singly occupied charge sector,
corresponding to energy differences 2A,., 2A,. + 2tce, 2A, — 2t.. and 2t... Since the scale A, is expected to be
much larger than Fjy, only the transitions with frequency t../mh can possibly match with the cavity frequency
vg. However, it is rather unlikely to have such a matching in practice. In the main text we assume vy # te./mh.
This criterion can be checked experimentally by extracting te. from the data.

F. EVALUATION OF THE SPIN/PHOTON COUPLING IN A CARBON-NANOTUBE BASED
QUANTUM DOT

In this section, we estimate the spin/photon coupling Ar,(g) which can be obtained in the single-wall carbon-nanotube
based quantum dot L(R) thanks to spin-orbit coupling,.

F.1. Electronic wavefunction in the absence of inter-subband coupling elements

The position @ of an electron on the nanotube is marked with a longitudinal coordinate ¢ and an azimuthal angle
@, ie. U = EZ + Reos[p] T + Rsin[p]y with R the nanotube radius. We write electronic wavevectors under the
form

[¥) =" [¢h) @ |o) (12)



where « is the electronic circumferential wavevector, |o) denotes the spin part of the wavefunction and |¢) is the &-
dependent orbital part, which has a structure in sublattice space. We use the spin index o € {1, |} and the sublattice
index 7 € {K, K'} or equivalently o € {4+, —} and 7 € {4+, —} in algebraic expressions. For a zigzag nanotube, (£ |¢)
is an eigenvector of

.0
Hswnt = ho(Ths) — zsza—g) +07A% 50+ 0TAL st — Agsy + V(€)so
with V'(€) a longitudinal confinement potential and {so, $1, s2, s3) the identity and Pauli operators in sublattice space.
We have used the same conventions as in Refs. [2, 11] to write Hgw nr. The motion of electrons along the nanotube
circumference is quantized, i.e.

™, 1
k=(N+—)=
( 3 )R
with N the subband index and n € {—1,0,1} a parameter which depends on the nanotube chiral vector. We have
introduced in the above hamiltonian intra-subband spin-orbit coupling terms in Al | A% and a spin-independent
term in Ay, which are derived e.g. in Refs. [5, 6]. The constants Al  and AY are first order in the atomic spin-orbit
interaction V;, and the nanotube curvature R~!, whereas A, is proportional to R~2.

For a problem uniform in the ¢ direction (V(£) = 0), the eigenstates [¢)) = wB’N,k’U’b> of the above hamiltonian

: 0 _
satisfy Hsw Nt 1/177N,k,(,> =FE; Nko

1/127 N, k,a>, with £ the electrons longitudinal wavevector. One can check:

h’l)FTh‘,-‘rO'TAlo—Aq—ih’l)Fk
(€ |2 ko) = ( UTJIM ) ehs = | “\(hoprrtorAl,—A,)7+(hork)? | eike
1
and
ErNko =0TAY + b\/(h’UFTH +oTAl, — Ag)2 + (hvpk)? (13)

with b = %1 for the conduction/valence band. In the following, we use b = 1. In order to define a quantum dot, we
take into account a rectangular confinement potential

Viony for € <0
V(E)=L{ 0for 0< &< L
‘/conffOI‘§>L

We obtain confined electronic states 1)) = |V, n ), With n the index corresponding to a longitudinal confinement
of electrons. More precisely, one has

. u Tn
AT\’/];'_T’:’”eklg ( 77N7;7/k1 o ) for £ <0

_ ) CrNno ikte [ Ur, Nk} o Ds Nono —ik?¢ [ UT,N,—k}',o
<§ |"/}T,N,n,0> = Von et < 1 + Nor e 1 forO0<€é< L

1

BT\,/J\Q_;,oeIch'(Lfg) <UT7N,H~€?,U ) for é- > T

with k7 > 0 and Re[k?] > 0. The wavevectors k7 and k7 can be obtained from the energy-conservation condition
ET,N,k%U = ET,N,fiI;:{Ho’ + Veony (14)

the constraint
T

"I

<K <(n+1)7



and the secular condition

S (“T,N,ifc;aa - “T,N,fk{‘,o) (UT,Nﬁu}y,a - “T,N,ki‘,o>
exp (i2k7L) =

(uT,N,filzﬁf,o’ - uTva_kTH”) (uT,N,il}?,o’ - uT,N,kf’,a‘)

which results from the continuity of |¢r nNne) at & = 0 and ¢ = L. The constants A; Nno, BrNmnos
Cr Nno, and Dy N, can be obtained from the continuity of [, nn.) and its normalization condition, i.e.

ffooodf |<w‘r,N,n,d |"/JT,N,n,a>|2 =1

F.2. Effect of the inter-subband coupling elements

In this section, we discuss the coupling between electronic spins and cavity photons, mediated by the electromagnetic
field of the cavity.

We assume that the nanotube is parallel to the cavity central conductor. We take into account the interaction
—
of electrons with the vector potential A of the cavity treated in the Coulomb gauge [11, 12]. We quantize the
—
field A in terms of the photonic operators[13, 14]. This gives a coupling operator

ehVims

0 0
A o TrTrms T _ 42 _
Hznter 87Tm€fle/0d(a +a )[(/J“-‘r /J‘—) a@ + a@ (/J‘+ /J‘—)]

We have used above sin(p) = (4 — p—)/2i, where the operator ps+ = e®? increases/decreases the index N.
The subband and spin subspaces are coupled by a term [5, 6]
Hisfr(z)ter = _AioSQi(o-*/”LF - 0-+/J’*)

which is first order in the atomic spin-orbit interaction Vi, and the nanotube curvature R~! (spin-orbit inter-
action in carbon nanotubes was also discussed in Refs. 7-11). Here, o4 is the operator increasing/decreasing
the spin index in |o).

Note that the terms H7, —and H:°, . apply to the full wavefunctions [see Eq. (12)]

inter inter

Vs o) = VT Y o) @ o)

One can perform a first order perturbation of these wavefunctions by H2?,.,:

|¥r Vo) = 9 Nio) + DN s [N, o)
TL,

with
2\ — <¢’7‘,N70,n’,0| H;r(L)ter |¢[7‘,N,n,70>
N ET,N,n,—a' - ET,N—a,n’,a
The term H;},.. couples the perturbed wavefunctions )@T, N,n,g> for o =7 and o =|. This yields intra-subband

spin/photon coupling elements, which write for the lower subband N = 0 which we consider:

Ar = <¢’T,N:0,n,—1(?)‘ Hpter

qj‘r,N:O,n,-&-l (?)>

TT] — * 1 — *
=P <? ()\T,N:(],n,n + )\;’:N:O,n,n ) + 5 (AT,N:(],n,n - )\j,N:(],n,n ))
with P = iehVyps/8mmes s Rupd.

Omne can check that Ax = Ags = —i) is purely imaginary due to the assumptions used above [zigzag nanotube
and V(€ — £) = V(% — ¢)]. One thus obtains the intra-subband spin/photon coupling term of Eq.(3) of the
main text. For L =100 nm, R=1nm, n =1, d =5 pm, Vi = 4 4V, vy = 3.64 GHz, E.ony = hvr/3R,
mess = hl|k| /vp = 4.4 10732 kg, and using the parameters Al, = —0.08 meV, A% = —0.32 meV, and
Ay = 5.7 meV taken from Ref. 6, we obtain A ~ 0.4 MHz.



e In order to obtain a tunable spin/photon coupling, one can insert in one of the dots gate voltage supply a
tunable capacitance made out of a single electron transistor (SET). The electric field seen by the nanotube can
be modulated electrostatically by placing the SET in the blockaded or transporting regimes. This allows one to
vary the couplings Az gy for dot L(R).

e In the case \ix # Mk, with ¢ the dot index added in the main text, the results of the main text can be
generalized straightforwardly by using

AI(<—>I(’

<T7 } hso Vi) = vn, oA,

ALk + ALk’ — ArRK — ARK’) (15)
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