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Microwave spectroscopy of a Cooper pair beam splitter
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This article discusses how to demonstrate the entanglement of the split Cooper pairs produced in a double-
quantum-dot based Cooper pair beam splitter (CPS), by performing the microwave spectroscopy of the CPS.
More precisely, one can study the dc current response of such a CPS to two on-phase microwave gate irradiations
applied to the two CPS dots. Some of the current peaks caused by the microwaves show a strongly nonmonotonic
variation with the amplitude of the irradiation applied individually to one dot. This effect is directly due to a
subradiance property caused by the coherence of the split pairs. Using realistic parameters, one finds that this
effect has a measurable amplitude.
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I. INTRODUCTION

Quantum entanglement between spatially separated parti-
cles represents a promising resource in the field of quantum
computation and communication. However, this fascinating
behavior can be difficult to observe in practice due to
decoherence caused by the particles environment. This is why
the “spooky action at a distance” was first demonstrated with
photons, atoms, or ions that can be naturally placed in weakly
interacting conditions.1–3

Observing electronic entanglement in solid state systems
is a priori more challenging since an electronic fluid is
characterized by a complex many-body state in general.
However, quantum entanglement has been recently observed
on superconducting chips.4 In this case, the particles are
replaced by superconducting quantum bits, which can be
sufficiently well isolated from the outside world thanks to
the rigidity of the superconducting phase, if an appropriate
circuit design is used. In these experiments, the entangled
degrees of freedom are defined from the charges of small
superconducting islands, or from the persistent current states
of a superconducting loop, for instance.5

Superconductors enclose another natural source of
entanglement that has not been exploited so far, i.e., the
spin entanglement of its Cooper pairs. In a conventional
superconductor, Cooper pairs gather two electrons correlated
in a spin-singlet state. The use of this resource for entanglement
production requires to build hybrid circuits in which the
superconductors are connected to nonsuperconducting
elements that allow the spatial separation of Cooper pairs. In
principle, a double quantum dot circuit connected to a central
superconducting contact (input) and two outer normal metal
contacts (outputs) facilitates this process.6 Such a “Cooper
pair splitter” (CPS) has been realized recently by using double
dots formed inside semiconducting nanowires7–9,12 or carbon
nanotubes.10,11 The spatial splitting of the Cooper pairs has
been demonstrated from an analysis of the current response of
the CPS to a dc voltage bias. It has been theoretically suggested
to use the noise cross correlations of the electrical current
to reveal the entanglement of the pairs of electrons.13–22

On the experimental side, positive cross correlations have
been very recently observed between the two outputs of a
CPS, an effect attributed to the existence of split Cooper

pairs.12 However, coherence was not directly measured in this
experiment.

Alternatively, Ref. 23 proposes to put in evidence spin
entanglement by coupling the CPS to a microwave cavity.
In this reference, a double quantum dot formed inside a single
wall carbon nanotube is considered. Spin-orbit interaction
produces a coupling between electronic spins and cavity
photons. Such a coupling leads to a lasing effect which involves
a transition between the spin singlet state in which Cooper pairs
are injected and some spin triplet states. This effect vanishes
when the spin/photon coupling is equal in the two dots, due
to a subradiance property caused by the entangled structure
of the spin-singlets. However, realizing such an experimental
scheme is challenging since it requires to couple a complex
quantum dot circuit to a photonic cavity.24–26

The present work suggests an alternative strategy to exploit
the subradiance of spin-orbit mediated transitions between
spin singlet and spin-triplet CPS states. One can measure the dc
current at the input of the CPS when microwave gate voltage
excitations are applied separately to the two CPS dots. The
microwave-induced state transitions mediated by spin-orbit
coupling result in current peaks at the input of the CPS
versus the dots dc gate voltages. Assuming that two on-phase
microwave excitations are applied to the two dots, these peaks
vanish when the amplitude of the two excitations become
equal. This subradiant behavior is directly related to the
spin-entanglement of the split Cooper pairs hosted by the CPS.

Note that the effects described in the present work and in
Ref. 23 have the same physical origin: they both exploit spin-
orbit mediated transitions between spin singlet and spin-triplet
CPS states caused by the electromagnetic field. In Ref. 23, the
CPS is coupled to a microwave cavity so that the electromag-
netic field must be quantized in terms of the cavity photons.
In the present work, no cavity is used and the electromagnetic
field, which is imposed by external microwave sources, is
treated classically. Nevertheless, the CPS state transitions
considered in the two works are described by similar matrix
elements. One important difference between the two works is
that the lasing effect considered in Ref. 23 requires the CPS to
lose the energy necessary for the creation of cavity photons.
Therefore, all kinds of singlet/triplet transitions cannot lase:
the spin singlet injected from the superconducting lead must be
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higher in energy than the triplet state involved in the transition.
The spectroscopic method studied in the present work allows
one to probe a wider range of singlet/triplet transitions: since
the microwave excitation can trigger absorption as well as
emission processes, transitions in which the singlet state is
lower as well as higher than the triplet state can be active.

This article is organized as follows. Section II defines the
CPS hamiltonian, for a single wall carbon nanotube based
implementation. Section III discusses the CPS even-charged
eigenstates in the absence of the microwave excitations and
without the normal metal contacts. Section IV describes the
coupling between the CPS even-charged eigenstates and the
microwave excitations. Section V describes the CPS state
dynamics in the presence of the voltage-biased normal metal
contacts, by using a master equation description. Section VI
describes the results given by this approach, and, in particular,
the predictions obtained for the dc current at the input
of the CPS. Section VII presents further examination and
modifications of the model, which are useful to put the results
of Sec. VI into perspective. In particular, it discusses the
role of atomic-scale disorder in the nanotube, the role of the
form assumed for the spin-orbit interaction term, and possible
microwave induced transitions in the CPS singly occupied
charge sector. Section VIII compares the measurement strategy
discussed in this work to the one of Ref. 23. Section IX
concludes. Although this article focuses on a carbon-nanotube-
based CPS, the entanglement detection scheme discussed in
this work could be generalized to other types of quantum dots
with spin-orbit coupling lik,e e.g., quantum dots made in InAs
nanowires, in principle. This is briefly discussed in Sec. VII E.

II. HAMILTONIAN OF THE CPS

Let us consider the circuit represented schematically in
Fig. 1. Two normal metal contacts and a superconducting

FIG. 1. (Color online) Scheme of a Cooper pair splitter made out
of a carbon nanotube. The two quantum dots L and R are defined
by the normal metal contacts (in green) and the superconducting
contact (in blue) deposited on top of the carbon nanotube (in light
blue). The dot L(R) is capacitively coupled to a dc gate voltage V L(R)

g

and microwave gate voltage V L(R)
ac . The superconducting contact is

connected to ground and the normal metal contacts are biased with a
voltage Vb.

contact are used to define two quantum dots L and R along a
single wall carbon nanotube. The superconducting contact is
connected to ground, and a bias voltage Vb is applied to the two
normal metal contacts. The dot L(R) is connected capacitively
to a dc gate voltage source V L(R)

g and a microwave gate voltage
source V L(R)

ac (t). In the following, it is assumed that V L
ac(t) and

V R
ac (t) are in phase, i.e., V L(R)

ac (t) = vL(R)
ac sin(ωRFt) with ωRF

the pulsation of the microwave excitation.
Inside the left and right dots i ∈ {L,R}, an electron with

spin σ ∈ {↑,↓} can be in the orbital τ ∈ {K,K ′} of the
nanotube, which is reminiscent from the K/K ′ degeneracy of
graphene. One can use a double dot Hamiltonian that takes into
account the proximity effect caused by the superconducting
contact, i.e.,

H eff
DQD =

∑
i,τ,σ

(ε + �soτσ )niτσ + Hprox

+�K↔K ′
∑
i,σ

(d†
iKσ diK ′σ + d

†
iK ′σ diKσ )

+ tee
∑
τ,σ

(d†
Lτσ dRτσ + d

†
Rτσ dLτσ ) (1)

with

Hprox = teh

∑
τ

[(d†
Lτ↑d

†
Rτ↓ − d

†
Lτ↓d

†
Rτ↑) + H.c.]. (2)

d
†
iτσ the creation operator for an electron with spin σ in orbital

τ of dot i ∈ {L,R} and niτσ = d
†
iτσ diτσ . For simplicity, one can

assume that the orbital energies in dots L and R are both equal
to ε in the absence of the external microwave irradiation, which
can be obtained by tuning properly the dots’ dc gate voltages
V L(R)

g . The term �so is caused by spin-orbit coupling inside
the carbon nanotube.27 The term �K↔K ′ describes a coupling
between the K and K ′ orbitals of dot i, due to disorder at
the level of the nanotube atomic structure.27–30 The term in
tee describes interdot hopping. The term Hint accounts for
Coulomb charging effects. One can assume that there cannot
be more than one electron in each dot, due to a strong intradot
Coulomb charging energy. Therefore Cooper pairs injected
inside the CPS are split into two electrons, one in each dot. The
term Hprox accounts for coherent injection of singlet Cooper
pairs inside the double dot.31 This approach is valid provided
quasiparticle transport between the superconducting contact
and the double dot can be disregarded. This requires eVb < �,
with � the BCS gap of the superconducting contact. The
Hamiltonian HDQD must be supplemented by the normal leads
Hamiltonian

Hleads =
∑

kτ ,τ,i,σ

εikτ
c
†
ikτ σ

cikτ σ + H.c. (3)

and the tunnel coupling between the dots and normal leads

Ht =
∑

kτ ,τ,i,σ

tc
†
ikτ σ

diτσ + H.c. (4)

with cikτ σ the annihilation operator for an electron with spin σ

in orbital kτ of the normal lead i ∈ {L,R}.
The effect of the microwave gate voltage bias can also

be described with Hamiltonian terms. The gate voltage
V L(R)

ac (t) = vL(R)
ac sin(ωRFt) corresponds to an electric field
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EL(R)
ac = V L(R)

ac (t)/d, with d the center to ground separation of
the waveguide providing the microwave signal. This also cor-
responds in the Coulomb gauge to a vector potential AL(R)

ac =
−vL(R)

ac cos(ωRFt)/ωRFd on dot L(R), which is assumed to be
perpendicular to the carbon nanotube. The interplay between
AL(R)

ac and intersubband spin-orbit coupling elements induced
by the nanotube curvature results in a spin/photon coupling
term (see Ref. 32 for details)

H so
RF = −

∑
i,τ,σ

eαiτσ vi
ac cos(ωRFt)d

†
iτσ diτσ (5)

with e > 0 the electron charge. For simplicity, this article
uses the particular structure αiτσ = iσαi with αi ∈ R and
i the imaginary unit number, obtained from a microscopic
description of spin-orbit coupling in a zigzag nanotube quan-
tum dot,32 based on Refs. 33 and 34 (see also Refs. 35–39).
However, Sec. VII A will show that the results presented
here can be generalized straightforwardly to a more general
αiτσ . The dimensionless coefficient αi corresponds to the
coefficient λi/eVrms of Ref. 23, with Vrms the amplitude of
vacuum voltage fluctuations for the photonic cavity considered
in this reference. The value of αi can be estimated to typically
3 × 10−4, while vL(R)

ac can reach typically 100 μV. One can also
use a Hamiltonian term H

g

RF to account for the modulation of
the dots orbital energies by the microwave gate voltages. For
simplicity, one can disregard the mutual capacitive coupling
between the two dots. In this case, one finds

H
g

RF = −
∑
i,τ,σ

κiev
i
ac sin(ωRFt)niτσ , (6)

where κi is a dimensionless capacitive coupling constant which
is typically of the order of 10−2.

In the following, it is assumed that electrons can go from
dot L(R) to the corresponding normal metal contact but not
the reverse. This can be obtained by using a bias voltage Vb

such that

eVb > 2�r + tee + 1
2

√
8t2

eh + (δ − 2�r )2 + λkBT (7)

with �r =
√

�2
so + �2

K↔K ′ and λ a dimensionless coefficient
which takes into account the effective thermal broadening of
the levels (see Ref. 32 for details).

III. EXPRESSION OF THE EVEN-CHARGED
CPS EIGENSTATES

This section discusses the relevant eigenstates of H eff
DQD in

the even charge sector for δ ∼ 2�r , with δ = 2ε the energy
of a CPS doubly occupied state for teh = �so = �K↔K ′ = 0.
The parameter δ can be tuned with V L(R)

g .
The coupling teh hybridizes the CPS empty state |0,0〉 with

the subspace of the CPS doubly occupied states {|τσ,τ ′σ 〉},
where |τσ,τ ′σ 〉 denotes a CPS state with one electron with
spin σ in orbital τ of dot L and one electron with spin σ ′ in
orbital τ ′ of dot R.40,41 The resulting even-charged subspace is
called Ẽ . Near the working point δ ∼ 2�r , the CPS dynamics
involves a subspace E of at maximum five eigenstates from
Ẽ . Three of these eigenstates have an energy E− = δ − 2�r ,

namely,

|T0〉 =
∑

σ

1

2

(
σ

�so

�r

− 1

)
|C+(Kσ,K ′σ̄ )〉

+ �K/K ′

2�r

∑
τ

|C+(τ↑,τ↓)〉, (8)

|T+〉 =
∑

σ

1

2

(
�so

�r

− σ

) |Kσ,Kσ 〉 − |K ′σ̄ ,K ′σ̄ 〉√
2

+
∑

σ

σ
�K/K ′

2�r

|C+(Kσ,K ′σ )〉, (9)

and

|T−〉 =
∑

σ

1

2

(
�so

�r

σ − 1

) |Kσ,Kσ 〉 + |K ′σ̄ ,K ′σ̄ 〉√
2

+
∑

σ

�K/K ′

2�r

|C+(Kσ,K ′σ )〉, (10)

where σ̄ denotes the spin direction opposite to σ and
|C±(τσ,τ ′σ ′)〉 = (|τσ,τ ′σ ′〉 ± |τ ′σ ′,τσ 〉)/√2. The two re-
maining eigenstates

|V1〉 =
√

1 − v2
1 |0,0〉 + v1|S〉 (11)

and

|V2〉 =
√

1 − v2
2 |0,0〉 + v2|S〉 (12)

have eigenenergies

E1(2) = 1
2

[
δ − 2�r ±

√
8t2

eh + (δ − 2�r )2
]

(13)

with

|S〉 =
∑

σ

[
1

2

(
�so

�r

− σ

)
|C−(Kσ,K ′σ̄ )〉

]

+ �K/K ′

2�r

∑
τ

|C−(τ↑,τ↓)〉 (14)

and

v1(2) = 2teh√
8t2

eh + (δ − 2�r )
[
δ − 2�r ∓

√
8t2

eh + (δ − 2�r )2
] .

(15)

The existence of the K/K ′ degree of freedom complicates
slightly the definition of the CPS eigenstates. However,
from the definition of |C±(τσ,τ ′σ ′)〉, one can see that |S〉
corresponds to a generalized spin-singlet state whereas |T0〉,
|T−〉, and |T+〉 correspond to generalized spin-triplet states.
The coupling teh hybridizes the empty state |0,0〉 with |S〉
only, due to the hypothesis that the superconducting contact
injects spin-singlet pairs inside the CPS. Figure 2(a) shows the
energies E1, E2, and E− as a function of δ. The energies E1 and
E2 show an anticrossing with a width 2

√
2teh at δ = 2�r , due

to the coherent coupling between |0,0〉 and |S〉. The energy
E− of the triplet states lies between E1 and E2. Figure 2(b)
shows the transition frequencies ωV1T− , ωT−V2 , and ωV1V2 of the
CPS, with ωm′m = (Em′ − Em)/h̄. These frequencies will play
an important role in the following.
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FIG. 2. (Color online) (a) Energies E1, E2, and E− of the states |V1〉, |V2〉, and |T−〉 as a function of δ. (b) Transition frequencies ωV1T− ,
ωT−V2 and ωV1V2 of the CPS as a function of δ. (c) Dynamics of the CPS near the working point δ = 2�r . We consider a bias voltage regime
such that the tunnel transitions between the different CPS states (blue arrows) occur together with the transfer of one electron towards the
normal contacts. A microwave irradiation can induce transitions between the states |V1〉 and |V2〉, |V1〉 and |T−〉, or |T−〉 and |V2〉 without any
transfer of electrons between the CPS and the leads (red wavy arrows). We have used teh/�so = 1/3 and �K/K ′/�so = 6 in (a) and (b).

IV. MICROWAVE-INDUCED MATRIX ELEMENTS

This section discusses the effect of the microwave gate bias
on the eigenstates defined in Sec. III. Inside the subspace E ,
H so

RF has only three finite matrix elements, i.e.,

〈T−|H so
RF|V1(2)〉

= −iev1(2)
�K↔K ′

�r

(
αLvL

ac − αRvR
ac

)
cos(ωRFt) (16)

and

〈T+|H so
RF|T0〉 = ie

�K↔K ′

�r

(
αLvL

ac + αRvR
ac

)
cos(ωRFt). (17)

These terms are finite because H so
RF flips the spins in the dots.

The minus sign in Eq. (16) is a direct consequence of the
fact that |V1(2)〉 comprises a singlet component whereas |T−〉
is a triplet state. In contrast, the plus sign in Eq. (17) is due
to the fact that |T0〉 and |T+〉 are both triplet states. The matrix
element of Eq. (17) is always nonresonant since it couples two
states with the same energy. Therefore it can be disregarded
in the present study. The Hamiltonian H

g

RF has only one finite
coupling element in the subspace E , i.e.,

〈V1|Hg

RF|V2〉 = −v1v2e
(
κLvL

ac + κRvR
ac

)
sin(ωRFt) (18)

with v1v2 = √
2teh/

√
8t2

eh + (δ − 2�r )2. The addition of κLvL
ac

and κRvR
ac in Eq. (18) is due to the fact that the double

occupation energy δ is shifted by −[κLV L
ac(t) + κRV R

ac (t)]
when a microwave excitation is applied to the device.

One can find experimental means to have V L
ac and V R

ac on
phase, in agreement with the assumption made in Sec. II. In
this case, the matrix element 〈T−|H so

RF|V1(2)〉 vanishes when
αLvL

ac = αRvR
ac. This effect is directly related to the injection

of coherent singlet Cooper pairs inside the CPS since it is
due to the existence of the minus sign in Eq. (16). If the
injected pairs were in a product state instead of an entangled
state, the matrix element (16) would not be subradiant (see
Sec. VII D). Therefore coherent pair injection inside the CPS
can be revealed by observing microwave-induced transitions
between |V1(2)〉 and |T−〉, and checking that these transitions are
suppressed for αLvL

ac = αRvR
ac. The following sections describe

how to probe these microwave-induced transitions with a dc
current measurement.

V. MASTER EQUATION DESCRIPTION
OF THE CPS DYNAMICS

In the following, the states |T0〉 and |T+〉 are disregarded
because they are not populated in simple limits where
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relaxation towards them is neglected. The sequential tunneling
limit �N � kBT is furthermore assumed, with �N the tunnel
escape rate of an electron from one of the dots to the corre-
sponding normal lead and T the temperature. For simplicity,
it is assumed that this rate does not depend on the dot orbital
and spin indices. This would change only quantitatively the
results shown in this paper. In the absence of microwave
irradiation, the dynamics of the CPS can be described with
a master equation31,42

dP

dt
= MP (19)

with

P =

⎡
⎢⎢⎢⎣

PV1

PV2

PT−

Psingle

⎤
⎥⎥⎥⎦ (20)

and

M =

⎡
⎢⎢⎢⎣

−2v2
1�N 0 0

(
1 − v2

1

)
�N

0 −2v2
2�N 0

(
1 − v2

2

)
�N

0 0 −2�N 0

2v2
1�N 2v2

2�N 2�N −�N

⎤
⎥⎥⎥⎦ . (21)

Above, Pi denotes the probability of state |i〉, with i ∈
{V1,V2,T−}. The vector P also includes the global probability
Psingle of having a double dot singly occupied state. The use
of this global probability is sufficient to describe the dynamics
of the CPS because the single electron tunnel rate �N to the
normal leads is assumed to be independent from the dot orbital
and spin indices. The various singly occupied eigenstates of
H eff

DQD are defined in Sec. VII C. The exact relation v2
1 + v2

2 = 1
has been used to simplify the above expression of M .

The microwave excitation H so
RF can induce resonances

between the states |V1(2)〉 and |T−〉, while the excitation
H

g

RF couples |V1〉 and |V2〉. One can use a rotating frame
approximation on independent resonances to describe these
effects. This approach is valid provided one of the microwave-
induced resonance has a dominant effect on the others,
which requires the frequencies ωV1T− , ωT−V2 , and ωV1V2 to be
sufficiently different. The rotating frame approximation also
requires to use small amplitudes κL(R)v

L(R)
ac and αL(R)v

L(R)
ac

compared to ωV1T− , ωT−V2 , ωV1V2, and ωRF. In this case, the
stationary state occupation probabilities can be obtained from

0 = (M + MRF)Pstat (22)

with

MRF (23)

=

⎡
⎢⎢⎢⎣

−rV1T− − rV1V2 rV1V2 rV1T− 0

rV1V2 −rT−V2 − rV1V2 rT−V2 0

rV1T− rT−V2 −rV1T− − rT−V2 0

0 0 0 0

⎤
⎥⎥⎥⎦ ,

(24)

rab(ω) = |Cab|2
h̄2

2�ab

(ω − ωab)2 + �2
ab

> 0, (25)

CV1T− = v1e
�K↔K ′

2�r

(
αLvL

ac − αRvR
ac

)
, (26)

CT− V2 = v2e
�K↔K ′

2�r

(
αLvL

ac − αRvR
ac

)
(27)

CV1V2 = v1v2

2
e
(
κLvL

ac + κRvR
ac

)
, (28)

and
∑

iPstat,i = 1. Above, �ab corresponds to the coherence
time between the states |a〉 and |b〉. Assuming that �ab is lim-
ited by tunneling to the normal leads, one obtains �V1V2 = �N ,
�V1T− = (1 + v2

1)�N , and �T−V2 = (1 + v2
2)�N .

Figure 2(c) represents schematically the dynamics of the
CPS near the working point δ = 2�r . Due to the assumptions
made in Sec. II on Vb, the tunnel transitions between the
different CPS states (blue arrows) always occur together with
the transfer of one electron towards one of the normal metal
contacts. In contrast, the microwave irradiation induces tran-
sitions between the states |V1〉 and |V2〉, |V1〉 and |T−〉, or |T−〉
and |V2〉 without any exchange of electrons with the normal
contacts (red wavy arrows). The state |T−〉 can be reached
through a microwave-induced transition but not through a
tunnel process because it has no component in |0,0〉. The states
|V1〉 and |V2〉 can be both reached or left through a tunnel event
because they have components in both |0,0〉 and |S〉.

VI. RESULTS

A. Principle of the measurement

From Eq. (21), the tunnel rate transitions from the states
|V1〉, |V2〉, and |T−〉 to the ensemble of the singly occupied
states are 2v2

1�N , 2v2
2�N , and 2�N , respectively, while the

tunnel transition rate from a singly occupied state to |V1〉 or
|V2〉 is �N . As a result, the dc current I flowing at the input of
the CPS can be calculated as

I = RPstat (29)

with R = e�N [2v2
1,2v2

2,2,1]. Figure 3(a) shows the coeffi-
cients v2

1 and v2
2 as a function of δ. One can conclude from this

plot that except at δ = 2�r , the various components of R have
different values. Therefore, a microwave excitation changing
the population of the states |V1〉, |V2〉, and |T−〉 should affect
the value of the dc current flowing through the CPS. This effect
will be used in the following to reveal the microwave-induced
transitions between |V1〉, |V2〉, and |T−〉.

B. Stationary CPS state occupations

Let us first discuss the dependence of the CPS state
probabilities Pi on the parameter δ for V L(R)

ac = 0 (see Fig. 3,
black dotted lines in the three lowest panels). To understand
this dependence, one must keep in mind the fact that the tunnel
rate transitions from the states |V1〉 and |V2〉 to the ensemble
of the singly occupied states are 2v2

1�N and 2v2
2�N , as already

discussed in Sec. VI A. For δ well below 2�r , v2
1 tends to

zero. As a result, the CPS cannot escape easily from the state
|V1〉, whose probability tends to 1. This is because in this
limit, the state |V1〉 is almost equal to the empty state |0,0〉,
which makes the emission of an electron towards the normal
leads very difficult. On opposite, for δ well above 2�r , it is
the probability of the state |V2〉 that tends to one because |V2〉
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FIG. 3. (Color online) Coefficients v2
1(2) and probabilities PV1 ,

PV2 , and PT− of the CPS states |V1〉, |V2〉, and |T−〉 as a function
of δ. We have used teh/�so = 1/3, �K/K ′/�so = 3, 2πh̄�N/�so =
1.37 10−3, evL

ac/�so = 1/15, evR
ac/�so = 8/15, αL = αR = 3.10−4,

κL = κR = 10−2, and ωRF = 3teh.

tends to |0,0〉. In the absence of a microwave irradiation, the
probability of state |T−〉 remains equal to zero since transitions
towards these state are not possible.

Let us now discuss the case vL(R)
ac finite (see Fig. 3, red full

lines in the three lowest panels). The term H
g

RF excites the
|V1〉 ↔ |V2〉 transition, which causes peaks or dips in PV1 and
PV2 for ωRF = ωV1V2 , i.e., δ = δ±

V1↔V2
with

δ±
V1↔V2

= 2�r ±
√

ω2
RF − 8t2

eh. (30)

The term H so
RF excites the |V1〉 ↔ |T−〉 and |T−〉 ↔ |V2〉

transitions, which causes peaks in PT− for ωRF = ωV1T− and
ωRF = ωT−V2 , i.e., δ = δV1↔T− and δ = δT−↔V2 , respectively,
with

δV1↔T− = 2�r − ωRF + (
2t2

eh

/
ωRF

)
(31)

and

δT−↔V2 = 2�r + ωRF − (
2t2

eh

/
ωRF

)
. (32)

The term H so
RF also causes peaks or dips in PV1 and PV2 , but

they are hardly visible due to the scale used in Fig. 3. The
decoherence rates �V1T− , �T−V2 and �V1V2 have similar order
of magnitudes (between �N and 2�N ). However, the width of
the peaks or dips caused by H

g

RF seems much larger than the
width of the peaks caused by H so

RF. This is due to the limit
αL(R) � κL(R) considered here. As long as the different types

of resonances are well separated in frequency, the resonance
|V1〉 ↔ |V2〉 gives probabilities PV1 and PV2 , which tend to the
value 1/4 for rV1V2 sufficiently large. In principle, the |V1〉 ↔
|T−〉 and |T−〉 ↔ |V2〉 resonances give state probabilities Pi

that saturate at more complicated values which depend on v2
1(2)

when rV1T− and rT−V2 become sufficiently large. In the regime
αL(R) � κL(R) considered here, the |V1〉 ↔ |V2〉 resonance is
saturated, while the |V1〉 ↔ |T−〉 and |T−〉 ↔ |V2〉 resonances
are only weakly excited. This explains that the width of the
peaks or dips related to the |V1〉 ↔ |V2〉 resonance are much
larger.

C. Average current at the input of the CPS

It is useful to discuss first the value I0 of the current I at the
input of the CPS in the absence of the microwave excitations.
The current I0 can be obtained from Eq. (29) with vL(R)

ac = 0.
From Fig. 4(a), I0 shows a maximum for δ = 2�r , where the
two states |V1〉 and |V2〉 both correspond to equally weighted
superpositions of |0,0〉 and |S〉. For δ well below or well above
2�r , the current I0 vanishes because the CPS is blocked in the
states |V1〉 or |V2〉, respectively (see Sec. V).

Figure 4(b) shows the difference between the current I for
a finite microwave irradiation and I0, as a function of ωRF and
δ. The |V1〉 ↔ |V2〉 transitions yield a broad resonance along
the curve ωRF = ωV1V2 =

√
8t2

eh + (δ − 2�r )2/h̄, which has a
frequency minimum ωRF = 2

√
2teh/h̄ at δ − 2�r . However,

this resonance vanishes close to δ = 2�r because at this
point, the tunnel escape rates 2v2

1�N and 2v2
2�N of the CPS

from |V1〉 and |V2〉 are equal since v1 = v2 and, therefore,
the microwave-induced transitions between the states |V1〉
and |V2〉 cannot be seen anymore through a measurement of
I . The |V1〉 ↔ |T−〉 and |T−〉 ↔ |V2〉 resonances yield two
thinner resonances which cross at the point O corresponding
to δ = 2� and h̄ωRF = √

2teh. For ωRF tending to zero, the
|V1〉 ↔ |T−〉(|T−〉 ↔ |V2〉) resonance progressively vanishes
from I because this corresponds to a regime where the state
|V1〉 (|V2〉) is not populated anymore. Note that the calculation
of the current I very close to the point O is in principle not
valid using the rotating wave approximation on independent
resonances since ωV1T− = ωT−V2 at this point. However, this
represents only an extremely small area of Fig. 4(a) (of order
�N × �N ). Discussing the behavior of the CPS near point O

goes beyond the scope of this paper.
Figures 4(c) and 4(d) show I − I0 as a function of δ for two

different values of ωRF. In Fig. 4(c), only the |V1〉 ↔ |T−〉 and
|T−〉 ↔ |V2〉 resonances are visible because ωRF < 2

√
2teh/h̄.

In Fig. 4(d), the |V1〉 ↔ |V2〉 resonances are also visible. The
|V1〉 ↔ |T−〉 and |T−〉 ↔ |V2〉 resonances appear as much
thinner an smaller peaks. At the |V1〉 ↔ |V2〉 resonances, for
the parameters used in Fig. 4(d), I reaches the saturation value
�N expected for rV1V2 large and well separated resonances.
This value can be obtained from Eq. (29), using Pstat =t

[1/4,1/4,0,1/2].

D. Dependence of the CPS input current on the amplitude
of the microwave irradiation

This section discusses how the minus sign in Eq. (16)
can be seen experimentally. One can note �I±

V1↔V2
=

I (δ = δ±
V1↔V2

) − I0, �IV1↔T− = I (δ = δV1↔T− ) − I0, and
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FIG. 4. (Color online) (a) Current I0 in the absence of any
microwave irradiation as a function of δ. (b) Difference between
the current I for a finite microwave irradiation and the current I0,
as a function of ωRF and δ. (c) and (d) Current difference I − I0

as a function of δ for h̄ωRF = 1.6teh and h̄ωRF = 3teh. The other
parameters used are the same as in Fig. 2.

�IT−↔V2 = I (δ = δT−↔V2 ) − I0 the amplitudes of the
microwave-induced current peaks appearing for ωRF = ωV1V2 ,
ωRF = ωV1T− , and ωRF = ωT−V2 . Due to the symmetries of the
model around the point δ = 2�r , one has �I±

V1↔V2
= �IV1↔V2

and �IV1↔T− = �IT−↔V2
. The top and bottom panels of Fig. 5

show the variations of �IV1↔T− and �IV1↔V2 with vR
ac for a

constant value of vL
ac. Due to the plus sign in Eq. (18), �IV1↔V2

increases monotonically with vL
ac. In Fig. 5, this variation

is very small because the |V1〉 ↔ |V2〉 resonance is already
saturated at vR

ac = 0 due to the value used for vL
ac. In contrast,

due to the minus sign in Eq. (16), �IV1↔T− shows a minimum
for vL

ac = vR
ac. Note that if the electrons pairs injected in the

FIG. 5. (Color online) Amplitude of the current peaks �IV1↔T−
(top panel) and �IV1↔V2 (bottom panel) as a function of vR

ac for
a constant value of vL

ac, i.e., evL
ac/�so = 2/3. The other parameters

used are the same as in Fig. 2.

CPS were not in an entangled state but in a product state,
such a nonmonotonic behavior would not be possible. For the
parameters considered in Fig. 5, top panel, �IV1↔T− vanishes
at vL

ac = vR
ac because the effects of the |V1〉 ↔ |V2〉 resonance

can be disregarded. This should not be true anymore in the
case where the different types of resonances are not well
separated, which can happen, e.g., if teh is too small with
respect to the width of the resonances. However, in this case,
one can still expect �IV1↔T− to show a strongly nonmonotonic
behavior with a minimum at vL

ac = vR
ac, provided the couplings

αL(R) are sufficiently strong. Treating this case requires to go
beyond the rotating frame approximation with independent
resonances used in this work.

E. Experimental parameters

This section discusses the parameters used in the Figures
and the order of magnitude of the signals which can be
expected in practice. In Figs. 3 to 5, the ratio of parameters
used correspond for instance to realistic values teh = 50 μeV
(see Refs. 7–11), �so = 0.15 meV, �K/K ′ = 0.45 meV, and
�N = 50 MHz (see Refs. 27–29). Note that �N = 50 MHz
corresponds to 6.5 mK, therefore the sequential tunneling
approximation used in this work is valid using for instance
T = 65 mK. In this case, using λ = 5, the condition (7)
to have electrons flowing only from the dot to the leads
and not the reverse gives Vb > 1.05 mV (see Sec. II). This
is compatible with the condition Vb < � for having no
quasiparticle transport between the superconducting lead and
the dots, by using for instance a Nb contact for which
� 
 1.4 meV or a NbN contact for which � 
 3 meV.
Using the above parameters, the ratio vL(R)

ac /�so used in
Figs. 3 and 4 corresponds to realistic microwave amplitudes
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vL
ac = 10 μV and vR

ac = 80 μV. Besides, the maximum fre-
quency ωRF = 4teh considered in this work [see Fig. 4(b)]
corresponds to 48.5 GHz, and the frequency at point O
corresponds to 17 GHz, which is accessible with current
microwave technologies.43 Using the above parameters, the
amplitude of the current peaks �IV1↔V2 and �IV1↔T− shown in
Fig. 3(d) are �IV1↔V2 = 884 fA and �IV1↔T− = 207 fA over a
background I0 of 7.1 and 4.8 pA, respectively. The maximum
current difference �IV1↔T− in Fig. 5, top panel, corresponds
to 129 fA for a background of 8 pA. Therefore the features
described in this article seem measurable experimentally.

VII. DISCUSSION ON THE SPECTROSCOPIC
ENTANGLEMENT DETECTION SCHEME

The present section presents further examination and
modifications of the model used above, in order to put the
results of Sec. VI into perspective.

A. Use of a more general spin/orbit coupling term

The H so
RF coupling term of Eq. (5) accounts for the coupling

between the CPS and microwave excitations mediated by spin-
orbit coupling. The above sections have used the particular
form αiτσ = iσαi with αi ∈ R, obtained from a microscopic
description of spin-orbit coupling in a zigzag nanotube
quantum dot.32 This section discusses the generalization of
the results to a more general coupling αiτσ . Since H so

RF must
be Hermitian, one can use αiτ↑ = αiτ and αiτ↓ = α∗

iτ without
any loss of generality. The parameter

|�α|eiϕα = (αLK + αLK ′ )vL
ac − (αRK + αRK ′ )vR

ac (33)

with ϕα ∈]−π,π ] plays a crucial role in this case. It is
convenient to redefine the states |T+〉 and |T−〉 more generally
as

|T+〉 = isgn(ϕα)(e−iϕα |T̃↑〉 + eiϕα |T̃↓〉)/
√

2 (34)

and

|T−〉 = isgn(ϕα)(e−iϕα |T̃↑〉 − eiϕα |T̃↓〉)/
√

2 (35)

with

|T̃σ 〉 = 1

2

(
σ

�so

�r

− 1

)
|Kσ,Kσ 〉 − 1

2

(
1 + σ

�so

�r

)
|K ′σ,K ′σ 〉

+ �K/K ′

2�r

(|Kσ,K ′σ 〉 + |K ′σ,Kσ 〉). (36)

Note that |T+〉 and |T−〉 are still eigenstates of the Hamiltonian
H eff

DQD, with energy δ − 2�r , corresponding to generalized
spin-triplet states. The definitions of the other states |V1(2)〉
and |T0〉 remain unchanged. Using expressions (34) and (35),
one obtains

〈T+|H so
RF|V1(2)〉 = 0 (37)

and

〈T−|H so
RF|Vj 〉 = −ievj

�K↔K ′

2�r

|�α|sgn(ϕα) cos(ωRFt) (38)

for j ∈ {1,2}. In Secs. II to VI, one uses αiτ = iαi thus
ϕα = sgn(αL − αR)π/2 and |T±〉 = (|T̃↑〉 ∓ |T̃↓〉)/√2 which
is in agreement with Eqs. (9) and (10). In this limit, Eq. (38)

agrees with Eq. (16). Equations (38) and (33) show that
even with a more general coupling term H so

RF, the matrix
elements 〈T−|H so

RF|V1(2)〉 still present a subradiant form. Hence,
the entanglement detection scheme discussed in this article
appears to be quite general. Using a more general H so

RF will
modify only quantitatively the predictions of Sec. VI.

B. Role of �K↔K ′ �= 0

Remarkably, the subradiant matrix elements (16) and (38)
vanish for �K↔K ′ = 0. The aim of the present section is
to show that using a finite �K↔K ′ does not represent a
fundamental constraint to have the subradiance effect. Indeed,
|V1(2)〉 can still be coupled to other triplet states outside of the
subspace E when �K↔K ′ = 0. This fact is illustrated below,
using αiτ = iαi for simplicity. In this case, |V1(2)〉 is coupled
to a single triplet eigenstate |Tb〉 of H eff

DQD outside the subspace
E , defined by

|Tb〉 = α−(|T̃1↑〉 − |T̃2↓〉)√
2(α2− + α2+)

− α+(|T̃2↑〉 − |T̃1↓〉)√
2(α2− + α2+)

(39)

with

|T̃1σ 〉 = �K/K ′

2�̃r

(|K ′σ,K ′σ 〉−|Kσ,Kσ 〉) + σ
�so

�̃r

|K ′σ,Kσ 〉,
(40)

|T̃2σ 〉 = �K/K ′

2�̃r

(|K ′σ,K ′σ 〉 − |Kσ,Kσ 〉) + σ
�so

�̃r

|Kσ,K ′σ 〉
(41)

α± = α̃L − α̃R ± �so

�r

(α̃L + α̃R), (42)

and

α̃L(R) = αL(R)v
L(R)
ac , (43)

such that

H eff
DQD |Tb〉 = δ |Tb〉 . (44)

One can check that

〈Tb|hso|V1(2)〉 = iev1(2)
�2

so

�r

(
α̃2

R − α̃2
L

)
cos(ωRFt)

×
√

�2
so

(
α̃2

L + α̃2
R

) + �2
K/K ′

2
(α̃L − α̃R)2.

(45)

For �K↔K ′ → 0, one finds

〈Tb|hso|V1(2)〉 = ie
v1(2)

(
α̃2

L − α̃2
R

)
√

α̃2
L + α̃2

R

cos(ωRFt). (46)

The coupling between |V1(2)〉 and |Tb〉 is subradiant since it
vanishes for αRvR

ac = αLvL
ac. Nevertheless, for realistic param-

eters and, in particular, �r � teh, the transition frequencies
ωTbV1 and ωTbV1 correspond approximately to 2�r/h̄, which
is too high for current microwave technology. This is why
this paper focuses on microwave-induced transitions inside
the subspace E .
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C. Microwave-induced transitions inside the singly
occupied charge sector

The different eigenstates of H eff
DQD in the singly occupied

charge sector can be defined as

|b1σ 〉 = 1

2

√
1 − σ

�so

�r

(|Kσ,0〉 − |0,Kσ 〉)

+ �K/K ′

2�r

√
1 − σ �so

�r

(|0,K ′σ 〉 − |K ′σ,0〉), (47)

|a1σ 〉 = −1

2

√
1 − σ

�so

�r

(|Kσ,0〉 + |0,Kσ 〉)

+ �K/K ′

2�r

√
1 − σ �so

�r

(|0,K ′σ 〉 + |K ′σ,0〉), (48)

|b2σ 〉 = −1

2

√
1 + σ

�so

�r

(|Kσ,0〉 − |0,Kσ 〉)

+ �K/K ′

2�r

√
1 + σ �so

�r

(|0,K ′σ 〉 − |K ′σ,0〉), (49)

and

|a2σ 〉 = 1

2

√
1 + σ

�so

�r

(|Kσ,0〉 + |0,Kσ 〉)

+ �K/K ′

2�r

√
1 + σ �so

�r

(|0,K ′σ 〉 + |K ′σ,0〉) (50)

for σ ∈ {↑,↓}. These states have eigenenergies εb
1 , εa

1 , εb
2 , and

εa
2 , respectively, with

εb
i = ε − tee + (−1)i�r (51)

and

εa
i = ε + tee + (−1)i�r (52)

for i ∈ {1,2}. The states |b1σ 〉 and |b2σ 〉 can be seen as
generalized bonding states and |a1σ 〉 and |a2σ 〉 as generalized
antibonding states. This section uses αiτ = iαi for simplicity.
The term H so

RF couples |biσ 〉 and |aiσ 〉 to |biσ 〉 and |aiσ 〉 only,
for i ∈ {1,2}. Only the transitions |aiσ 〉 ↔ |biσ 〉 correspond to
a finite frequency, i.e., ωaiσ biσ

= 2tee/h̄. One can check that

〈biσ |H so
RF|aiσ 〉 = −ie

(
αLvL

ac − αRvR
ac

)
cos(ωRFt)/2, (53)

whereas

〈biσ |H so
RF|biσ 〉 = 〈aiσ |H so

RF|aiσ 〉
= ie

(
αLvL

ac + αRvR
ac

)
cos(ωRFt)/2. (54)

Importantly, the matrix element of Eq. (53) has a subradiant
structure. This property is due to the fact that the states |biσ 〉
and |aiσ 〉 are entangled states with different symmetries, i.e.,
|biσ 〉 is an antibonding state that contains some |τσ ,0〉 +
|0,τσ 〉 components, whereas |aiσ 〉 is a bonding state that
contains |τσ,0〉 − |0,τσ 〉 components. This is analogous to
the fact that the elements 〈T−|H so

RF|Vj 〉 couple a state |Vj 〉 with
a spin-singlet component to a spin-triplet state |T−〉. In contrast,
the matrix elements of Eq. (54) are not subradiant because they
couple two entangled states with similar symmetries, i.e., two
bonding or two antibonding states.

Due to the subradiant form of Eq. (53), the transitions
|aiσ 〉 ↔ |biσ 〉 can lead to a non-monotonic variation of the
CPS input current as a function of, e.g., vL

ac, due to another
type of entanglement than the one discussed in Sec. VI.
Therefore, in the context of the characterization of split
Cooper pairs entanglement, one needs to find a way to
discriminate possible current resonances corresponding to the
transitions |aiσ 〉 ↔ |biσ 〉 and |V1(2)〉 ↔ 〈T−|. In practice, this
should be feasible by studying how the different resonance
frequencies vary with the DC gate voltages of the two
dots. Indeed, ωaiσ biσ

does not depend on the parameter δ,
contrarily to ωV1T− and ωT−V2 . Therefore possible current
resonances due to |aiσ 〉 ↔ |biσ 〉 transitions should appear as
horizontal lines in Fig. 4(b). This effect was nevertheless
disregarded in Sec. VI, assuming that ωaiσ biσ

is too large
to be accessible experimentally. Studying quantitatively the
possibility to observe the resonances |aiσ 〉 ↔ |biσ 〉 requires to
go beyond the approximation of an electronic tunnel rate �N

to the normal leads which is independent from the dot orbital
and spin indices.44

D. Simplified model without the K/K ′ degeneracy

It is interesting to discuss a model without the K/K ′ degree
of freedom to show simply how the subradiance property
arises.

1. Case of coherent Cooper pair injection

Let us assume that each of the two CPS dots has a single
orbital. One can note |σ,σ ′〉 a CPS doubly occupied state with
a spin σ (σ ′) on dot L(R). In the case of coherent Cooper pair
injection, the double quantum dot effective Hamiltonian can
be written31

H eff
DQD = ε(nLσ + nRσ )

+ (teh/
√

2)(d†
L↑d

†
R↓− d

†
L↓d

†
R↑ + H.c.) + Hint, (55)

where Hint still forbids the double occupation of each dot. One
uses above niσ = d

†
iσ diσ with d

†
iσ the creation operator for

an electron with spin σ in dot i ∈ {L,R}. Let us furthermore
assume that there also exists a spin-flip coupling term to the
microwave signal with the form

H
sf

RF = −
∑

i

αievac cos(ωRFt)(d
†
i↑di↓ + d

†
i↓di↑)

=
∑

i

λi(d
†
i↑di↓ + d

†
i↓di↑). (56)

Such a spin-flip coupling can be due for instance to the
magnetic field associated with the microwave irradiation. In
practice, this term should have a very weak amplitude, but it
is nevertheless discussed here for fundamental purposes.

The term in teh hybridizes the CPS empty state |0,0〉 with the
singlet state |S̃〉 = (|↑,↓〉 − |↓,↑〉)/√2, so that an anticrossing
appears again in the spectrum of the CPS even-charged states.
For simplicity, it is asssumed below that the double occupation
energy δ = 2ε of the CPS is degenerate with the energy of
|0,0〉, i.e., δ = 0. In this case, one can use the orthonormalized
basis A = {Ṽ1,Ṽ2,|T̃a〉,|T̃b〉,|T̃0〉} of eigenstates of Eq. (55) in
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the even charge sector with

|Ṽ1(2)〉 = (|0,0〉 ± |S̃〉)/
√

2, (57)

|T̃a(b)〉 = (|↑,↑〉 ± |↓,↓〉)/
√

2, (58)

and

|T̃0〉 = (|↑,↓〉 + |↓,↑〉)/
√

2. (59)

The states |Ṽ1〉 and |Ṽ2〉 have energies Ẽ1 and Ẽ2 given
by Ẽ1(2) = ±teh. They play the role of the states |V1〉 and
|V2〉 of Sec. VI. It is convenient to define |T̃a〉 and |T̃b〉 as
superpositions of triplet states with equal spins. The states
|T̃0〉, |T̃a〉, and |T̃b〉 have an energy δ = 0. One can check
straigthforwardly that

H
sf

RF|S̃〉 = (λR − λL)|T̃b〉, (60)

thus

〈T̃b|Hsf

RF|Ṽ1(2)〉 = ±(λR − λL)/
√

2, (60)

whereas 〈T̃a(0)|Hsf

RF|Ṽ1(2)〉 = 0 and 〈Ṽ2|Hsf

RF|Ṽ1〉 = 0. The
states Ṽ1(2) are thus coupled by H

sf

RF to a single state |T̃b〉, with a
subradiant matrix element (60). This illustrates the universality
of the mechanism discussed in Sec. VI.

2. Case of incoherent singlet injection

One can model naively the incoherent injection of Cooper
pairs inside the CPS by assuming that up spins are always
injected inside the left dot and right spins inside the right dot.
This requires to replace the Hamiltonian (55) by

H eff
DQD = ε(nLσ + nRσ ) + teh(d†

L↑d
†
R↓ + dR↓dL↑) + Hint. (61)

One can use again δ = 2ε = 0 for simplicity. In this
case, one can define an orthonormalized basis B =
{W1,W2,|T̃c〉,|T̃d〉,|T̃e〉} of eigenstates of Eq. (61) in the even
charge sector, with

|W1(2)〉 = (|0,0〉 ± |↑,↓〉)/
√

2, (62)

|T̃c〉 = (λR|↑,↑〉 + λL|↓,↓〉)/
√

λ2
L + λ2

R, (63)

|T̃d〉 = (λL|↑,↑〉 − λR|↓,↓〉)/
√

λ2
L + λ2

R, (64)

and |T̃e〉 = |↓,↑〉. The role of the states |V1〉 and |V2〉 of Sec. VI
is now played by |W1〉 and |W2〉. The states |W1〉 and |W2〉
have again energies Ẽ1 and Ẽ2 defined in the previous section,
whereas the states |T̃c〉, |T̃d〉, and |T̃e〉 have an energy δ = 0.
The states |T̃a〉 and |T̃b〉 of the previous section are still CPS
eigenstates, but it is more convenient to use the eigenstates
|T̃c〉 and |T̃d〉 to study the effect of H

sf

RF. Due to the term in
teh, the states |W1〉 and |W2〉 still form an anticrossing in the
energy spectrum of the CPS. Hence, such an anticrossing is
not characteristic from the injection of entangled Cooper pairs.
The only state of B connected to |W1(2)〉 by H

sf

RF is |T̃c〉, with
a matrix element

〈T̃c|Hsf

RF|W1(2)〉 = ±
√

2
(
λ2

L + λ2
R

)
, (65)

which is not subradiant, but increases monotonically with
λR and λL. Therefore the subradiance property is lost when

Cooper pairs are injected inside the CPS in a product state
instead of an entangled state. Similar results are expected
for a model including the K/K ′ degree of freedom. This
illustrates that the subradiance property is a good indication of
the injection of entangled Cooper pairs inside the CPS. More
sophisticated descriptions of incoherent injection of Cooper
pairs into the CPS are beyond the scope of this article.

E. Case of a CPS made from an InAs nanowire

This article mainly discusses the case of a carbon-nanotube
based CPS, in which quantum dots present a twofold orbital
degeneracy. However, semiconducting nanowires can also
be used to fabricate a CPS. In particular, Refs. 7–9 and 12
have used InAS nanowires. Quantum dots fabricated in InAS
nanowires do not present an orbital degeneracy. Therefore, in
proper biasing conditions, one can consider that, for each dot of
the CPS, only a single orbital participates to current transport.
If there is no magnetic field, no spin-orbit coupling and no
contacts, one can consider that each dot has two eigenstates:
the spin-up and the spin-down states, which are degenerate and
form a Kramers doublet. Now, if a finite spin-orbit coupling
exists, the Kramers doublet remains degenerate in the absence
of a magnetic field, because spin-orbit coupling alone cannot
lift time reversal symmetry. This implies that the two spin
states remain uncoupled. It is necessary to use a finite magnetic
field to obtain an electric-field controlled coupling of the spins
states mediated by the spin-orbit interaction, as explained in
Ref. 45. Following Ref. 45, the amplitude of this coupling
is set by a constant that has the same order of magnitude
as the coefficients αL(R) introduced in Sec. II. Therefore, in
principle, singlet/triplet resonances similar to those studied
in this article could occur with an InAs-nanowire-based CPS.
In order to study quantitatively such an effect with a minimal
single orbital model, one can generalize straightforwardly the
single-orbital model of Sec. VII D to the case of a lifted spin
degeneracy. This will not be discussed here.

VIII. COMPARISON WITH AN ALTERNATIVE SETUP:
THE CPS EMBEDDED IN A MICROWAVE CAVITY

This section compares the experimental scheme proposed
in Ref. 23 to the scheme discussed in the present article.
Reference 23 suggests to insert the CPS inside a coplanar
microwave cavity. In this case, the electromagnetic field
coupled to the CPS can be quantized in terms of the cavity
photons. Nevertheless, the CPS state transitions considered
in Ref. 23 and in the present work are described by similar
matrix elements. When a microwave cavity is used, the minus
sign in Eq. (16) can be observed through a lasing effect
involving the |V1〉 → |T−〉 transition. This minus sign leads
to a nonmonotonic dependence of the number of photons
in the cavity as a function of the coefficients αL and αR ,
which mediate a coupling between the CPS and the electric
field conveyed by the cavity. Since this electric field can be
considered as constant over the whole CPS area, it is necessary
to be able to vary αL independently from αR to observe a non-
monotonic variation of the number of photons. This can require
to complexify the CPS design, for instance. In the present
scheme, such a control on αL and αR is not necessary since
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it is sufficient to vary independently the amplitudes vL
ac and

vR
ac. This can be naturally achieved by using two independent

microwave supplies for the two gates. The advantage of the
scheme presented in Ref. 23 is that the signal to be measured
is a large photon number that can be obtained by measuring
the power spectrum emitted by the cavity. In other words,
the scheme of Ref. 23 exploits the fact that the lasing effect
provides an intrinsic amplification process for the |V1〉 → |T−〉
transitions. In the present scheme, the measurement seems a bit
more difficult since the current peaks to be measured are very
small. Nevertheless, such current amplitudes are measurable,
in principle.43 Therefore the scheme presented in this reference
could be an interesting alternative approach to demonstrate the
coherent injection of singlet Cooper pairs inside a CPS. This
scheme, furthermore, allows one to study also the |V2〉 ↔ 〈T−|
transition, which is not possible with the scheme of Ref. 23.
Indeed, the lasing effect requires the CPS to lose the energy
necessary for the creation of cavity photons. The |V2〉 ↔ 〈T−|
transition cannot be involved in a lasing effect because 〈T−|
has a higher energy than the state |V2〉 initially populated
due to the injection of Cooper pairs. More generally, the
spectroscopic method considered in the present work allows
one to probe a wider range of singlet/triplet transitions because
the microwave excitation can trigger absorption as well as
emission processes.

IX. CONCLUSION

The dc current response of a double-quantum-dot based
CPS to a microwave gate irradiation is a very rich source
of information on Cooper pair splitting. In particular, it can
reveal the entanglement of spin-singlet Cooper pairs injected
inside the CPS. This article illustrates this property for a
double quantum dot formed inside a carbon nanotube with
typical parameters. If they are spin-entangled, the injected

pairs are coupled to other CPS states through some subradiant
microwave transitions mediated by spin-orbit coupling. This
property can be revealed by applying to the two CPS quantum
dots two on-phase microwave gate voltages. The spin-orbit
mediated microwave transitions cause dc current resonances
at the input of the CPS. The subradiance property manifests in
a strongly nonmonotonic variation of these current resonances
with the amplitude of the microwave signal applied to one of
the two CPS dots. This behavior does not depend on details of
the model like the exact form of the spin-orbit interaction term.
Similarly, the presence of atomic disorder in the nanotube has
to be assumed only for quantitative reasons. More generally,
the entanglement detection scheme discussed in this work
could be generalized to other types of quantum dots with
spin-orbit coupling like, e.g., InAs nanowire based quantum
dots, in principle. For simplicity, this article discusses the limit
where the intradot charging energies are very strong, so that
there cannot be two electrons at the same time on the same
dot. For smaller charging energies, the efficiency of Cooper
pair splitting should be decreased. Nevertheless, if the CPS
produces entangled split Cooper pairs with a sufficient rate, the
resulting subradiant current peaks should still be observable.
Interestingly, the bonding or antibonding single particle states
delocalized on the two dots of the CPS can also cause a
subradiant current resonance, because they present another
type of entanglement. However, in principle, this resonance
can easily be discriminated from the subradiant resonances
caused by split Cooper pairs, because of a different dependence
on the CPS dc gate voltages.
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