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This Supplementary Information is organized as follows.  

1. Modelling of the probe and dressed nanotube density of states and fit of the 

conductance   

a. Usadel equations used to characterize the superconducting contacts 

b. Effect of a S’ type probe 

2. Additional data on the main device (with the magnetic texture):  

a. Large scale device layout, 

b. Gate dependence of SGSs, 

c. Additional conductance maps, 

d. Control experiments on the zero-bias peak. 

3. Additional data on control devices (without the magnetic texture). 

4. Magnetic characterization of the Co/Pt multilayer. 

5. Estimation of the synthetic spin-orbit energy from the SGSs oscillations 

6. Analytical theory of the oscillations of Subgap states with magnetic field 

7. Numerical study of the synthetic spin-orbit: oscillations of subgap states and 

emergence of Majorana zero energy modes: 

a. Illustrations of the different scenarios of figure 3c 

b. Implementation of a realistic model for the stray fields (from the MFM data 

shown in figure 1e and micro-magnetic simulations) showing the robustness 

of our observations with respect to a disordered magnetic texture. 

c. Simulation of Majorana bound states in our geometry with a magnetic texture 

and superconductivity induced from the side of the wire. This simulation 

shows similar features to the observed zero-bias peak.  

  



 

1.  Modelling of the probe and dressed nanotube density of states and fit of the 

conductance 

This section describes the modeling of the superconducting contacts introduced in Fig. 1. The 

fit is described in details, and Figure S2d shows its good agreement with the experiment. We 

also comment on the effect of a S’ probe, and notably the fact that the differential conductance 

does not directly corresponds to the density of states. 

 

a. Usadel equations used to model the superconducting contacts 

 

We present in this section the theory which allows us to account well for the shape of the full 

conductance curves based on the quasiclassical theory of superconductivity in the diffusive 

regime (Usadel equations). We use a superconducting bilayer of Nb(40nm)/Pd(4nm) to make a 

superconducting contact on the nanotube. The density of states in these bilayers are in general 

non BCS because of interface resistance between the superconducting slab and the normal slab 

and inverse proximity effect. In addition, in our case, the dipolar cycloidal-like field can induce 

a pair-breaking which can be taken into account via an Abrikosov-Gorkov general term. The 

Usadel equations gives the evolution of the pairing amplitude in the Pd layer with the distance 

to the superconductor’s interface, z. It reads: 

ℏ𝐷

2
𝜕𝑧

2𝜗(𝑧) − (−𝑖𝐸 + 𝛾)𝑠𝑖𝑛𝜗(𝑧) − 2Γ𝐴𝐺𝑠𝑖𝑛𝜗(𝑧)𝑐𝑜𝑠𝜗(𝑧) + Δ(𝑧)𝑐𝑜𝑠𝜗(𝑧) = 0 

where 𝐸 is the energy, 𝐷 is the diffusion constant, Γ𝐴𝐺is the Abrikosov-Gorkov pair-breaking 

parameter, 𝛾 is the “Dynes” parameter and Δ(𝑧) is the gap function. The pairing angle 𝜗(𝑧) is 

related to the normal and anomalous Green’s functions in the Pd contact, G and F respectively, 



via the relation: 𝐺(𝑧) = 𝑐𝑜𝑠𝜗(𝑧) and 𝐹(𝑧) = 𝑠𝑖𝑛𝜗(𝑧). The density of states is 𝑁(𝑧, 𝐸) =

𝑅𝑒(𝑐𝑜𝑠𝜗(𝑧)).  

An important energy scale controlling the physics of proximity effect in the bilayer is the 

Thouless energy 𝐸𝑇ℎ =
ℏ𝐷

𝑑2
, where d is the thickness of the normal (Pd) slab. In our case, this 

energy is much larger than the superconducting gap Δ of the homogeneous superconductor, and 

the interface is not too opaque (as shown by the large induced gap). Neglecting the self-

consistency of the superconducting gap, one may approximate the pairing angle by the 

homogeneous solution which obeys the following implicit equation:  

𝑡𝑎𝑛𝜗0 =
Δ

−𝑖𝐸 + 𝛾 + 2Γ𝐴𝐺𝑐𝑜𝑠𝜗0
 

The above equation may be solved numerically and the gap appearing in it has the meaning of 

an effective gap in the normal slab. The normalized density of states in each of the Pd buffer 

contacting our nanotube is therefore 𝑁(Δ, 𝛾, Γ𝐴𝐺 , 𝐸) = 𝑅𝑒(𝑐𝑜𝑠𝜗0). 

In order to compute the current I flowing through our device and the corresponding conductance 

G=dI/dVsd, one may use the above density of states. As explained in the main text, one of the 

two contact is a tunnel probe and the nanotube is only in good contact with the other. One can 

therefore approximate the density of states of the latter by that of the Nb/Pd bilayer which 

induces the superconducting correlation in it and a sum of two lorentzians describing the subgap 

states: 

𝑁𝑁𝑇(𝐸) ≈ 𝑁(Δ, 𝛾, Γ𝐴𝐺 , 𝐸) + 𝛽 ∑
𝜂

(𝐸 − 𝑖 × 𝐸𝑆𝐺𝑆)2 + (𝜂/2)2

𝑖=+/−

 

This equation is an approximation since it neglects the transfer of spectral weight from the 

density of states of the slab to the subgap states and is only valid as long as 
4𝛽

𝜂
< 1. The tunnel 

current can be expressed using the usual tunnel spectroscopy formula:  



𝐼 =
𝐺𝑁

𝑒
∫ 𝑑𝐸

+∞

−∞

𝑁𝑁𝑇(𝐸)𝑁(Δ, 𝛾2, Γ𝐴𝐺,2, 𝐸 + 𝑒𝑉𝑠𝑑)[𝑓(𝐸) − 𝑓(𝐸 + 𝑒𝑉𝑠𝑑)] 

where 𝑓(𝐸) is the Fermi function and 𝐺𝑁is the normal state conductance. Deriving with respect 

to 𝑉𝑠𝑑, we obtain the conductance 

𝐺 = 𝐺𝑁 ∫ 𝑑𝐸

+∞

−∞

𝑁𝑁𝑇(𝐸)𝑁(Δ, 𝛾2, Γ𝐴𝐺,2, 𝐸 + 𝑒𝑉𝑠𝑑) (−
𝜕𝑓

𝜕𝐸
)

𝐸+𝑒𝑉𝑠𝑑

+ 𝐺𝑁 ∫ 𝑑𝐸

+∞

−∞

𝜕𝑁

𝜕𝐸
(Δ, 𝛾2, Γ𝐴𝐺,2𝐸 + 𝑒𝑉𝑠𝑑)𝑁𝑁𝑇(𝐸)[𝑓(𝐸) − 𝑓(𝐸 + 𝑒𝑉𝑠𝑑)] 

The above formula is the one used to fit the cut in Fig. 1c to extract the DOS shown in Fig. 1d. 

We allow the Abrikosov-Gorkov Γ𝐴𝐺 and the Dynes parameter 𝛾 to be different for the left and 

the right tunnel contact. 

The fit presented in Fig 1d and in more details in Supplementary Fig. 2d was obtained with 

𝐸𝑆𝐺𝑆 = 210 µ𝑒𝑉, 𝜂 = 79 µ𝑒𝑉, Δ = 716 µ𝑒𝑉, Γ𝐴𝐺 = 51 µ𝑒𝑉, Γ𝐴𝐺,2 = 318 µ𝑒𝑉, 𝛾1 = 16µ𝑒𝑉, 

𝛾2 = 82 µ𝑒𝑉, 
4𝛽

𝜂
= 0.74, T=150mK and 𝐺𝑁 = 0.61 

𝑒2

ℎ
. This leads to two density of states 𝑁𝑁𝑇 

(contact 1) and 𝑁 (contact 2), plotted in Fig. 1d.  

 

b. Effect of a S’ type probe 

From the fit, contact 2 has a large residual density of states at the Fermi energy (which we call 

later on a S’ contact). Since its density of states 𝑁 is non constant in energy, the second term in 

the above conductance equation is non-zero. 

 As a consequence, the heigth of the SGSs conductance peaks is not directly linked to their 

spectral weight (as it would for a normal tunnel probe).  This effect explains why the oscillations 

of the SGS energies leads to the variation of the SGSs conductance height seen in Fig. 2b. 

Importantly, this also shows that the very low value of conductance associated to the two 

Subgap states does not imply low spectral weights in 𝑁𝑁𝑇(𝐸𝑆𝐺𝑆). This is best seen on Fig. 1d 



where the peak height of the two Subgap peaks amounts to about 0.74 of the normal state 

density in the nanotube. Similarly, the zero bias peak has a spectral weight much larger than its 

height in conductance. From the comparison with the height of the Subgap states which are 

roughly twice as large, we can estimate that the actual peak height of the zero bias peak is about 

0.35 of the normal state density of states in the nanotube.  

This fit finally shows that we can safely remove that background from the bare curves shown 

in Supplementary Fig. 3 to plot those of Fig. 4c in the main text. 

 

 

2. Additional data on the main device (with the magnetic texture): 

We present in this section several additional measurements on the magnetic texture device. We 

first in figure S1 give a larger image of the device, where the gates G and G’ are visible as well 

as the RF input lines used for Fig. S5. Figure S2 shows the evolution of conductance as a 

function of gate G’, not used in the main text, for two values of gate G. It shows Fabry-Pérot-

like patterns, from which we extract the level spacing δ. Figure S3 shows the conductance map 

of figure 4a without removing the background conductance signal, showing that the both the 

ZBP and the SGSs peaks are still clearly visible. Figure S4 shows the conductance map at 

larger values of the magnetic field, where the closing of the superconducting gap is visible. 

Figure S5 and S6 present control experiments, where the conductance is studied as a function 

of a RF tone and temperature. Figure S7 present additional data on the hysteretic behavior at 

low magnetic field. It shows that the hysteresis is present only when the ZBP is present. Figure 

S8 present the evolution of conductance as a function of gate G over a larger bias window, 

showing that the coherence peak do not move. 

a. Large scale device layout and microwave environment. The large scale device layout 

and microwave environment is shown in Supplementary Fig. 1. The whole device is 



embedded into a microwave cavity which has a fundamental resonance frequency of about 7.5 

GHz. For the device presented in the main text, this particular mode was not coupled to the 

device but other modes of the electromagnetic environment were coupled. We use here these 

modes to couple our device with a distant gate Gate G (with gate voltage 𝑉𝑔) which is the one 

used in the main text. The device is also coupled via the bottom gate to Gate G’ with gate 

voltage 𝑉𝑔′.  

These two gates have different effects on the device. Gate G’ has a larger capacitance to the 

bottom gate than Gate G, thus sets mainly the potential of the bottom gate. The effect of Vg' 

is to tune the energy levels in the NT, as shown by figure S2. Vg affects neither the subgap 

states, nor the gap and only controls the appearance of the ZBP in the conductance, which 

goes along with an increase of the conductance background. This could be linked to a more 

specific effect of gate G that would locally change the wavefunction in the NT, finely tuning 

the overlap of the ZPB wavefunction to the contact electrodes. 

Although the specific resonant mode of the cavity was not coupled to our device, the coplanar 

waveguide resonator could be used to convey a microwave signal in the GHz range to study its 

dynamical response (see below).   

 



Supplementary Figure 1 | Microwave environment of the device. The whole device is 

embedded in a microwave cavity with a resonance frequency of about 7.5 GHz. 

Gate map of subgap states. We present the gate map of the Subgap states when Gate G is 

kept at 0V and Gate G’ (which is directly coupled to the bottom gate as shown in 

Supplementary Fig. 1) is swept from 0.2V to 1V in Supplementary Fig. 2. The Subgap states 

remain visible essentially in all the map. A parity crossing is observed at 𝑉𝑔′~0.7V. 

Importantly, the high bias conductance, close to e2/h displays only weak features. In 

particular, no Coulomb blockade diamond is observed which signals that our experiment is in 

the Fabry-Pérot regime. From the smooth chessboard pattern, one can extract an estimate of 

the level spacing 𝛿 ~1.5 meV.  

 



Supplementary Figure 2 | Gate map of the Subgap states. a,b. Conductance as a function 

of bias Vsd and Gate G’ (𝑉𝑔′) showing the evolution of the Subgap states as a function of 𝑉𝑔′ 

for two values of Gate G, Vg=0V (panel a) and -3V (panel b) such that the Zero Bias Peak is 

present. In panel a, the shape of the Fabry-Pérot modulations of the conductance is 

highlighted by the dotted black lines, and N and N+1 indicates the equilibrium charge on the 

dot. The level spacing 𝛿 for our quantum dot can be roughly estimated, as shown by the black 

arrow. In panel b, the edge of the superconducting gap and the position of the different peaks 

studied are outlined.  The values of Gate G’ for the different figures of the article are shown 

by the blue lines. c. Corresponding superconducting gap in log scale, at  𝑉𝑔 = 0𝑉 (bottom) 



and -3V (top). d. Comparison between the conductance measurement as a function of bias 

(blue line) and the corresponding fit using the Usadel equations (red dashes). 

 

 

c. Conductance maps with background and gap closure at high magnetic field. We 

present in this section two conductance maps corresponding to those of the main text. In 

Supplementary Fig. 3, we present the raw data corresponding to Fig. 4a. In this map, one can 

see that there is a strong depression of the conductance as a consequence of the 

superconducting gap. After fitting the above curves with the theory presented above, one can 

extract the contribution arising only from the Subgap states which allows one to observe more 

clearly the magnetic field dependence of these states. Nevertheless, as one can see in 

Supplementary Fig. 3, all the features presented in the main text are visible in the raw data. 

Supplementary Figure 3 | Conductance map with background. Raw data of the 

conductance as a function of bias 𝑉𝑠𝑑 and the external magnetic field 𝐵𝑒𝑥𝑡 at 𝑉𝑔  =  −3𝑉. As 

shown in the map and the cuts corresponding to those of the main text, the Subgap resonances 

as well as the zero bias peak are clearly visible also in the raw data. The background 

originates from the peculiar shape of the density of states in the proximized Pd/Nb bilayer. 

 



Finally, it is interesting to study the magnetic field map of the conductance up to large fields 

where the superconducting gap of the electrodes starts to weaken substantially. In 

Supplementary Fig. 4, we present such a map where the magnetic field is swept from 0T to 2T 

and back to 0T. As expected, we observe a gradual “square root like” decrease of the gap edge 

(the coherence peaks are not visible in this bias window).    

Supplementary Figure 4 | Gap closure at high magnetic field. Conductance map in the 

Vsd-Bext plane from 0T to 2T and back showing the gradual decrease of the superconducting 

gap. The map is taken at Vg=3V. 

 

d. Control experiments: Microwave power and temperature dependence of Subgap states 

and zero bias peak. In this section, we present two control experiments. In the first, we apply 

a large microwave power to the input port of the microwave cavity in order to test whether the 

zero bias peak may arise from a weak Josephson effect. In the adiabatic limit where the 

frequency of the applied tone to the cavity 𝑓𝑟𝑓 = 5,6 GHz is much smaller than the relevant 

relaxation rates of the states in the device, the conductance G is modulated by the cavity photons 

as: 



𝐺(𝑡) = 𝐺(𝑉𝑠𝑑 + 𝑉𝐴𝐶cos (2𝜋𝑓𝑟𝑓𝑡))              

The conductance can be fit by 3 lorentzians centered around each of the peak energies as 

shown in the section devoted to the finite bias conductance. The phenomenology of the above 

equation is simply a splitting of each conductance peaks if 𝑉𝐴𝐶 bias larger than their width. As 

shown in Supplementary Fig. 5, the two finite energy Subgap states as well as the central peak 

split at the same power and in the same way showing that they all correspond to electronic 

states characterized by a lorentzian like spectral density. In particular, these measurements are 

not consistent with the zero bias peak being a well-developed Josephson supercurrent branch 

which would display Shapiro steps. The case of a weak Josephson branch which does not 

display Shapiro steps would be very quickly washed out by temperature (at the temperature 

scale given by the Josephson energy, ie a supercurrent of 1nA corresponds to 140mK ) and is 

not consistent with the temperature dependence of the zero bias peak which is described 

below.  

 

Supplementary Figure 5 | Microwave power dependence of Subgap states and zero bias 

peak. Evolution of the Subgap peaks as a function of the microwave power applied at the 

input of the cavity. 

 



Finally, we present in Supplementary Fig. 6 the temperature dependence of our measurements 

which is fully consistent with a gradual filling of the gap which starts to be effective only at 

about 1K. In particular, as one can see in panel a of Supplementary Fig. 6, we observe that the 

zero bias peak and the Subgap states disappear at the same temperature (about 1K). Therefore, 

we can exclude a thermal occupation origin for the zero bias peak that would be indicated by a 

continuous increase of the zero bias peak as a function of temperature. 

 

Supplementary Figure 6 | Temperature dependence of Subgap states and zero bias peak. 

a. Evolution of the Subgap peaks as a function of the temperature from 20 mK to 1.7K for 

Vg=-0.6V. We interpret the higher peak for T=700mK as a small gate switch because the gate 

setting is close to the transition at which the zero bias peak emerges. Such a switch is absent 

in panel b which is for a gate setting further into the gate region where the zero bias peak 

appears. b. Evolution of the Subgap peaks as a function of the temperature from 50 mK to 

800mK for Vg=2.5V.  

 

 



Magneto-resistance and hysteresis at different gate voltages Vg. Supplementary Fig. 7 

displays a panel of the conductance maps 𝑉𝑠𝑑 − Bext  for different gate voltages between 0 and 

-3V. We observe that the SGSs are insensitive to small magnetic fields, whereas the zero bias 

peak and the background shows a magneto-resistance provided the zero bias peak is present. 

These two different behaviours are also observed in the Gate G dependence that leaves the 

SGSs unchanged. However we cannot match this magnetoresistance with a shift in gate voltage. 

We also present the emergence of the hysteresis of the zero bias peak with the gate voltage 

which is directly linked to the emergence of the peak.   

Supplementary Figure 7 | Hysteresis of the zero bias peak. a-e. Conductance map Bext-Vsd 

at small magnetic field for different gate voltages. The presence of the vertical stripe 

corresponding to the magnetoresistance is correlated to the emergence of the zero bias peak. f. 

Difference in conductance between upward and downward field sweeps at zero bias showing 

the gate voltage dependence of the hysteresis. 

Evolution of the conductance as a function of Vg over a large Vsd range Supplementary 

Fig. 8 displays a panel of the conductance maps 𝑉𝑠𝑑 − Vg  with no magnetic field applied. We 



observe that the coherence peaks do not move although the background conductance slightly 

changes. As a comparison, two conductance cuts are shown at B=0T and B=600mT, where 

the start of the closing of the superconducting gap is visible. 

 

Supplementary Figure 8 | 𝑉𝑠𝑑 − Vg maps with a large bias window. a. Conductance map 

𝑉𝑠𝑑 − Vg. b. Two cuts at positions represented by the blue lines in panel a. c. Evolution of the 

conductance at different bias voltages, corresponding to the ZBP, the SGS peak at Vsd<0 and 

the coherence peak, as represented by the colored lines in panel b. We see that only the ZBP 

conductance increases when the gate voltage decreases. d. Evolution of the conductance over 

the same bias window for two values of Bext, 0 and 600mT. We see a clear evolution of the 

coherence peak position. 

 

3. Additional data on the control devices.  

In this section we describe conductance measurements as a function of gate voltage, bias and 

magnetic field for three supplementary S/QD/S devices with no Co/Pt magnetic texture. 

Of these three devices, two clearly display Coulomb blockade diamonds of a S/QD/N-like 

system, and one present a superconducting gap with Andreev Bound States visible between 

𝑒𝑉𝑠𝑑  =  ∆ and 2∆. These measurements illustrate that in our experiment we systematically 

observe a S/QD/S’ behaviour, where one probe has a residual density of states at the Fermi 



energy. We do not observe oscillations of SGSs as a function of magnetic field in these devices. 

In this section, we also give the details of the equations yielding the fit for the conductance data 

as a function of Bext of the control device shown in Fig. 3. 

 

Supplementary Fig. 9 and 10 show additional characterizations of the control device presented 

in Fig. 3 of the main text, as well as transport measurements on two additional control devices.   

These devices consist in S/QD/S circuits with no Co/Pt magnetic texture, and were fabricated 

in order to understand further the specificity of our observations. 

Supplementary Fig. 9 shows the 𝑉𝑔  −  𝑉𝑠𝑑 conductance map for three different devices at two 

values of magnetic field, while Supplementary Fig. 10 shows the evolution of these transport 

peaks as a function of an in-plane external magnetic field B for devices a and b. 

We observe two regimes: either ABS are visible, in device A, or only peaks corresponding to 

quasiparticle transport in devices B and C.  

First, the conductance of device A is illustrative of transport through ABS below the 

superconducting gap, between 𝑒𝑉𝑠𝑑  =  ∆ and 2∆. In Supplementary Fig. 10(a-c) we show that 

in this device, away from the charge degeneracy points, the subgap states are fixed at 𝑒𝑉𝑠𝑑  =

 ∆. Looking at their evolution in magnetic field, we only observe the closing of the 

superconducting gap. Indeed, in this device we have a zero or weak constant spin-orbit 

interaction. From the scenarii A and B of section 6a, ABS should display crossing oscillations 

with a period 𝐵̃𝑒𝑥𝑡 of the order of 𝛿/𝑔𝜇𝐵 = 5T for our parameters, which explains why they 

stay pinned to the superconducting gap until it closes. We observe two square-root-like decrease 

of the gap for both a peak at 𝑒𝑉𝑠𝑑  =  ∆ and 𝑒𝑉𝑠𝑑  =  2∆, expected for a S/QD/S’ device with a 

S’ contact with a residual density of states at the Fermi energy. At higher bias, we observe 

Coulomb diamond, indicating an important charging energy in the system. 

 



Secondly, in the devices presented in Supplementary Fig. 9b and c (devices B and C), we 

observe clear Coulomb diamonds, shifted by an energy gap ∆. Although the two contact 

electrodes are made of superconductors, the conductance maps can be interpreted as transport 

signatures through a S/QD/N system (see e.g. ref36), with the superconducting gap of the S 

electrode shifting the Coulomb diamonds, as in the case with a magnetic texture device. This 

shows that one of the S contact has often a large depairing parameter which yields a smoothly 

varying density of states dubbed S’ (mimicking a N contact with a reduced density of states 

around the Fermi energy). There is also a residual density of states in the superconducting 

contact S, which gives rise to a weak quasiparticle peak below the superconducting gap.  

 

Device B is the control device presented in figure 3 of the main text. The control device displays 

clear Coulomb diamonds as shown in Supplementary Fig. S9b, at 0T and 1.7T.  

Supplementary Fig. S10 e show the evolution of the transport peaks in magnetic field, from 

which the peaks positions of Fig. 3b are extracted. We observe the closing of the 

superconducting gap with B. Contrarily to subgap states, the quasiparticle resonance simply 

splits linearly. 

The superconducting critical field for the control device B is lower than the one of the magnetic 

texture device due to the change in the Nb electrode thickness (150nm instead of 40nm). 

 

We use a constant interaction model to obtain the stability diagram equations for a S/QD/N 

system, used in the fit of Fig. 3b (blue and red dashed lines). The quasiparticle peaks positions 

is given by 𝑒𝑉𝑠𝑑   =  
𝜖(𝐵)

𝛼
 and 𝑒𝑉𝑠𝑑   =  − 

𝜖(𝐵)

1−𝛼
 , where α is the contact asymmetry and 𝜖(𝐵) =

(𝜖0    −
1

2
 𝑔 𝜇𝐵 𝐵)  is the chemical potential of the dot (for a spin down electron, in agreement 

with the diamond shifting to the left with magnetic field as seen in Supplementary Fig. 9b). 



The superconducting gap coherence peaks positions are given by 𝑒𝑉𝑠𝑑   =  (𝛥(𝐵)  −

𝜖(𝐵))/(1 − 𝛼2) (at positive bias) and 𝑒𝑉𝑠𝑑   =  −
𝛥(𝐵)+𝜖(𝐵)

1−𝛼
 (at negative bias) where  𝛥(𝐵)  =

𝛥 √1 − (
𝐵

𝐵𝑐
 )

2

 . Here we used different contact asymmetries between positive (𝛼2) and 

negative (𝛼) bias to fit the data, as one can see in Supplementary Fig. 9b that the slope does 

change.   

One can note that since the diamonds shifts in energy, the lower gap evolution should be 

piecewise-defined. However the critical field is reached before this is needed. 

The fit values are the following: Δ = 0.68  meV; 𝐵𝑐  = 0.6  T;  𝜖0  = -0.02 meV; g = 3.8; α= 

0.31; 𝛼2  = 0.47. 

 



Supplementary Figure 9 | Characterization of the control devices. The three control 

devices are S/QD/S’ circuits). The superconducting contacts are represented in green, the gate 

Vg in brown. a. Control device A. False-color SEM image and Vg-Vsd conductance map for 

an Al/QD/Al device with a bottom Ni/AlOx gate, made with the stamping technique, at 0 and 

80 mT (where the Al gap closes b. Control device B. False-color SEM image and Vg-Vsd 

conductance map for a Nb/QD/Nb device with a bottom NbOx gate, at 0 and 1.7 T 

(corresponding to the closing of the Nb gap). The dashed line indicates a reference gate 

voltage, to illustrate the shift in the Coulomb peaks due to Zeeman effect. c. Control device C. 

False-color SEM image and Vg-Vsd conductance map for a Nb/QD/Nb device with a bottom 

AlOx gate, at 0 and 0.88 T. The markers indicate the correspondence between the Coulomb 

diamond in the two maps. 

 

 



Supplementary Figure 10 | Magnetic field dependence of the control devices a and b. a, 

b, c. Transport characteristics of control device a: a. Zoom-in on the conductance map Vg-Vsd 

of the control device a (after a gate jump), at Bext=0. c. Conductance map Bext -Vsd at a gate 

voltage corresponding to the dashed line in b. d, e. Transport characteristics of control device 

b: d. Conductance map Vg-Vsd at Bext=0. e. Conductance map Bext -Vsd at a gate voltage 

corresponding to the dashed line in d. We observe the QP peak splitting and the closing of the 

superconducting gap reported in figure 3b. 

 

4. Magnetic characterization of the CoPt multilayer.  

In this section, we present several magnetic measures and simulations of the Co/Pt multilayered 

structure used in the magnetic device presented in the main text. 

 

We present in Supplementary Fig. S11 and Supplementary Fig. S12 magnetic characterization 

of our CoPt multilayers. Our multilayers are characterized by SQUID magnetometry with an 

in- plane magnetic field, both on a plain substrate deposition (panel a) and on a chip covered of 

650 nm x 30 𝜇m stripes, processed exactly as the ones used for our bottom gates and thus 

expected to have the same amount of disorder (panel b). After a sharp increase for low magnetic 

field, the magnetization displays a slow saturation. Although the hysteresis span stays about 20 

mT, the nanostructuration increases the  magnetic field range for the hysteresis from 100mT to 

200mT (see insets) and the saturation field from 1.5T to  2.5 T. The magnetization values at 

saturation differ between the two measurements due the uncertainties in the value for the 

volume of Co. Whatever the orientation of the applied magnetic field or the magnetic history, 

a low remanence is found indicating that the sample spontaneously demagnetizes. The presence 

of magnetic textures at zero field is doubtless in the demagnetized state, as further confirmed 



by magnetic force microscopy (see Fig. 1c). When approaching the saturation, the nature of the 

magnetic state has to be understood.  

To further understand the magnetization processes in the sample, we have performed 

micromagnetic simulations, using the MuMax3 code30. As the magnetic parameters are not 

exactly known, the purpose is not to reproduce exactly the sample under study, but to 

understand qualitatively the processes, and in particular explain the field strength needed to 

saturate magnetization in the samples. The saturation magnetization used (1.2x106 A/m) has 

been extracted from SQUID data (panel a) and the exchange (10 pJ/m²) is the one of bulk cobalt. 

As the magnetic anisotropy could not be measured, we explored two hypotheses: zero effective 

magnetic anisotropy [exact compensation between shape (-
1

2
𝜇0𝑀𝑠

2 = 0.905 × 106J/𝑚3) and 

interface induced anisotropies (
𝐾𝑠

t
= 0.905 × 106J/𝑚3  with t the Co layer thickness)] and a 

small negative effective anisotropy (
𝐾𝑠

t
= 0.7 × 106J/𝑚3) thus favoring in-plane 

magnetization orientation for homogeneous magnetized states with an effective anisotropy 

𝐾𝑒𝑓𝑓 =
𝐾𝑠

t
−

1

2
𝜇0𝑀𝑠

2 = −205 × 106J/𝑚3. These hypotheses are in agreement with litterature 

for the interface anisotropy at the Co/Pt interface31. For both cases, whatever the magnetic 

history is, the ground state corresponds to a demagnetized state with periodic stripes32 (~ 100 

nm period). Upon applying a magnetic field, the stripes first reorient progressively with a 

propagation vector orthogonal to the magnetic field to minimize the Zeeman energy in the 

domain walls (the domain walls being Bloch-type, their magnetization lies in the wall plane). 

For larger fields, the magnetization in the domains progressively rotates toward the applied 

magnetic field direction and saturates at about 1T. Note that textures are still observed up to the 

saturation. The saturation field value is to be compared to the anisotropy field 𝜇0𝐻𝐾 = 2
𝐾𝑒𝑓𝑓

𝑀𝑠
, 

which is close to zero. In usual magnetic system with a low demagnetizing strength (low 

magnetization systems or low thickness), this would cause a saturation at field values close to 



𝐻𝐾. Here, the large magnetization and the ten repetitions, both favoring stripe phases, make the 

saturation much more difficult and therefore result in a saturation field which scales with the 

magnetization value. Comparing the calculated and the experimental loops we note that the 

saturation is much slower in the sample than in the calculation. We attribute this effect to the 

disorder in the sample. Indeed, due to the fabrication process the quality of the substrate could 

not be optimized, which results in a significant roughness. While typical roughness in good 

magnetic samples is about 2-5%, here larger values could be expected. We have calculated the 

magnetic loop with increasing roughness up to 15% thickness variation, using the roughness 

model successfully developed in previous studies33,34. While the loops are not much changed at 

small field, we note that due to the disorder, saturation occurs at much larger magnetic fields 

and the images show that magnetic textures may survive up to 2T. This validates our 

assumption of a smooth decrease of the synthetic spin orbit interaction used to account 

quantitatively for the transport data.  

Additional MFM measurement under an external magnetic field were obtained, between 0 and 

1.2T. Since the MFM signal is proportional to 
𝑑2𝐵𝑧

𝑑𝑧2  , it can only give a qualitative image of the 

magnetic texture and as such these measures are not reproduced here. However we notice that 

the magnetic domains persist up to 800 mT, in rough agreement with the saturation field 𝐵𝑠 of 

the observed transport oscillations (introduced below). We also noted that for the 

nanostructured SQUID device, the domains disappeared at lower magnetic field, illustrating the 

influence of disorder in our system. As a consequence, the SQUID data, even for the 

nanostructured device, is not perfectly representative of our device. 



 

Supplementary Figure 11 | Magnetic characterization of CoPt multilayer. a. SQUID 

measurement at 4K of a 5mm x 5mm chip covered with the CoPt multilayer (as sketched 

above). The magnetization saturates at about 1.5T. Inset: Zoom on the SQUID measurement 

showing the opening of a hysteresis at about +/-50mT, of width 20 mT. b. SQUID 

measurement at 4K of a 5mm x 5mm chip covered with an array of the nanoscale Co/Pt 

stripes (such as the ones used in the transport experiment, see the layout above). The 

magnetization saturates only at about 2.5T. Inset: Zoom on the SQUID measurement showing 

the opening of a hysteresis at about +/- 100 mT, of width 20 mT. c. Magnetization texture for 

zero effective anisotropy and 15% roughness. The white and black pixels correspond 

respectively to up and down magnetization, the colored pixels represent the in-plane 

magnetization, colored according to a color wheel to represent their different orientation (red 

correspond to the applied field direction, see the arrow). The bottom image, numbered 1, 

corresponds to a virgin demagnetized state; the following are successive images from 0.25 T 

to 1 T (numbered 2 to 4). Images are 768 nm x 2304 nm, similar to the experimental Co/Pt 

gate dimensions. d. Calculated hysteresis loops for in-plane magnetic field, for two anisotropy 



hypotheses and two magnitude of roughness. e. Cuts of the magnetic field along the dashed 

line in c, obtained from the same magnetic simulation. The 𝐵𝑥 (resp.  𝐵𝑧) field is represented 

in blue (resp. red), at a height x=10nm. 

 

MFM characterization of another multilayered structure. We present in Supplementary 

Fig. S12 the AFM (height) and MFM (phase contrast) image of a trenched Co/Pt multilayered 

structure identical to the one of the magnetic texture device, in a more controlled environment 

since there was no additional processing after the deposition. 

 

Supplementary Figure 12 | MFM image of the same Co/Pt structure in another device. 

Topography and phase contrast of a Co/Pt structure identical to the one of the magnetic 

texture device, evaporated in a trench and imaged afterwards, without any additional process 

as opposed to the main device. Here the MFM signal is much more regular. 

 

5. Estimation of the synthetic spin-orbit energy from the SGSs oscillations 

We here describe in more details the estimate for the spin-orbit energy from the conductance 

oscillations of Fig. 2. 



 

According to the picture of Fig. 2a and b, we understand the conductance oscillations of Fig. 2 

as a change in the interference condition when the number of domains 𝑁𝑑𝑜𝑚(𝐵) changes.  

The variation 𝐸𝑠𝑜
𝐵𝑚𝑎𝑥 

− 𝐸𝑠𝑜
𝐵=0 of the synthetic spin-orbit energy induced by  𝑁𝑑𝑜𝑚(𝐵 = 0) →

𝑁𝑑𝑜𝑚(𝐵max) can be related to 𝑁, the number of the SGSs oscillations by the simple formula: 

𝐸𝑠𝑜
𝐵𝑚𝑎𝑥 

− 𝐸𝑠𝑜
𝐵=0 = 𝛿𝑁/2, where 𝛿 is the level spacing in the nanotube. This formula can be 

derived by first considering the interference condition setting the energies of the SGS, as we 

show below. 

We model our system by a 1D conductor of length L with at one end an opaque barrier and at 

the other end a s-wave superconductor. The conductor has a dispersion 𝐸(𝐾) with K, the 

electronic wavevector.  

The Andreev bound states can be derived as electronic interferences between left-moving 

electrons, right-moving holes, both having a wavevector K−, right-moving electrons and left-

moving holes, with wavevector K+. The full interference process implies : one electron moving 

from the superconductor on the left, reflected on the opaque barrier as an electron moving back 

to the superconductor, reflected as a hole onto the superconductor, which is reflected again on 

the barrier. The interference condition is hence defined by the equation (2𝐾+(𝐸) −

2𝐾−(𝐸))𝐿 = 2𝜋𝑛. In the main text, we define Δ𝐾 =  𝐾+ − 𝐾−. This condition omits the spin 

degree of freedom. In absence of any polarization and spin-orbit, 𝐾− =  −𝐾+ and the two spin 

sectors are independent from one another. If the central conductor has a non-trivial dispersion 

with the spin, as is the case in figure 2a, several interferences processes can happen as shown 

by the orange, blue and yellow-green arrows, provided the right-mover and left-mover’s spins 

are non-orthogonal. The latter process is the one responsible for the observed SGSs energy 

oscillations. 



Changing the domains with the magnetic field implies that the dispersion E(K) is modified, as 

shown in figure 2a. The motion of the domains shifts the wave-vectors from Δ𝐾𝐵=0  to Δ𝐾𝐵𝑚𝑎𝑥 . 

For large K, away from the helical gap, the non-orthogonal spin condition imposes that 

Δ𝐾𝐵𝑚𝑎𝑥 − Δ𝐾𝐵=0 = 0. Near the helical gap, the spin states are not orthogonal anymore 

between different branches and Δ𝐾𝐵𝑚𝑎𝑥 − Δ𝐾𝐵=0 = 2𝑘 (yellow and green arrow), where k is 

the wave-vector induced by the changes in the domains. 

If N oscillations of the SGS energies are detected, it means that  Δ𝐾𝐵𝑚𝑎𝑥 − Δ𝐾𝐵=0 =  𝜋𝑁/𝐿, 

ie that k= 𝜋𝑁/2𝐿. For a linear dispersion, a monotonic variation of the number of domains  

implies that 𝐸𝑠𝑜
𝐵𝑚𝑎𝑥 

− 𝐸𝑠𝑜
𝐵=0 = ℏ𝑣𝑓𝑘 =

ℎ𝑣𝑓

4𝐿𝑁
=

𝛿𝑁

2
.  This sets a lower bound for the synthetic orbit 

energy  𝐸𝑠𝑜 ≳ 𝛿N/2. 

 

Comparing with the formula given by the unitary transformation 𝐸𝑠𝑜 =
ℎ𝑣𝐹

2𝜆
=

𝛿𝐿

𝜆
, N oscillations 

of the SGSs correspond to a change in the number of domains 𝑁𝑑𝑜𝑚 =
𝐿

𝜆
  of 𝑁𝑑𝑜𝑚 = 𝑁/2. This 

is in qualitative agreement with the numerical results both with the scattering and the tight-

binding formalism. 

 

6. Analytical theory of the oscillations of Subgap states with magnetic field.  

We present in this section the non-interacting theory accounting for the oscillations of the 

subgap states as a function of the magnetic field.  

The hamiltonian of the system in the normal state can be written as: 

𝐻̂ = −(
ℏ2𝜕𝑧

2

2𝑚
− 𝜇(𝑧)) +

1

2
𝑔𝜇𝐵𝐵𝑜𝑠𝑐

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑧). 𝜎         (1) 

where 𝜎  is the spin operator of electrons and 𝐵⃗ (𝑧) is the rotating magnetic field acting on the 

electron spin. The above hamiltonian can be “integrated” in order to calculate the transfer 



matrix 𝒯 of a section of 1D system of length L subject to the rotating field. We note  𝜃(𝑧) the 

angle between 𝐵𝑜𝑠𝑐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑧) and the x axis as shown in Supplementary Fig.12. In the case of a regular 

cycloidal field which rotates at a constant speed : 
𝜕𝜃

𝜕𝑧
= 𝑘𝑠𝑜, we can write the transfer matrix 𝒯 

as: 

𝒯 = 𝑒𝑥𝑝{𝑖(𝐾̂ + 𝑘𝑠𝑜𝒜̂)𝐿} 

The matrices 𝐾̂ and 𝒜̂ take the following expressions:  

𝐾̂ = [

𝑘↑ 0 0 0
0 𝑘↓ 0 0
0 0 −𝑘↑ 0
0 0 0 −𝑘↓

] and 𝒜̂ =
1

4√𝑘↑𝑘↓
[

0 𝑘↑ + 𝑘↓ 0 𝑘↑ − 𝑘↓

−(𝑘↑ + 𝑘↓) 0 𝑘↑ − 𝑘↓ 0
0 𝑘↑ − 𝑘↓ 0 𝑘↑ + 𝑘↓

𝑘↑ − 𝑘↓ 0 −(𝑘↑ + 𝑘↓) 0

] 

with 𝑘𝜎 = √
2𝑚

ℏ2 (𝐸 + 𝜇 +
1

2
𝜎𝑔𝜇𝐵𝐵𝑜𝑠𝑐), 𝜇 being the chemical potential of the wire, 𝐸 the energy 

of the electron and 𝐵𝑜𝑠𝑐 the amplitude of the oscillating magnetic field. Interestingly, the 

eigenmodes of the matrix 𝐾̂ + 𝑘𝑠𝑜𝒜̂ allow us to define “energy bands” even in the finite size 

system. We find two eigenmodes 𝑘± which allows us to find the two bands:  

𝐸±(𝑘) = −𝜇 +
𝐸𝑆𝑂

4
+

ℏ2𝑘2

2𝑚
± √

ℏ2𝑘2

2𝑚
𝐸𝑆𝑂 + (

𝑔𝜇𝐵𝐵𝑜𝑠𝑐

2
)

2

 

with 𝐸𝑆𝑂 = 
ℏ2𝑘𝑠𝑜

2

4𝑚
 . This is exactly the same bands than with a Rashba spin orbit interaction with 

a spin-orbit wavevector 2𝑘𝑠𝑜 and an external magnetic field suitable for the emergence of 

Majorana zero modes. The corresponding energy bands and how they vary as a function of the 

spin orbit energy are depicted in Fig. 2 of the main text. 

Note that close to the helical gap, 𝑘𝐹 ∼ 𝑘𝑠𝑜 = 2𝜋/𝜆 (ref 8 of the main text) and we recover the 

expression from Ref 11 of the main text, 𝐸𝑆𝑂 =
ℎ𝑣𝐹

2𝜆
  with 𝜆 the spatial period of the oscillations. 

In order to refine the model and take into account the two end sections with homogeneous stray 

field as measured from the MFM, we allow two sections of lengths 𝐿𝐿 and 𝐿𝑅 before and after 

the oscillating field region with chemical potential 𝜇𝐿 and 𝜇𝑅 to be partially polarized by a 



magnetic field 𝐵𝑝𝑜𝑙. The full transfer matrix of the 1D system depicted in Supplementary Fig. 

12 now reads: 

𝒯𝑡𝑜𝑡

= 𝑅(0, 𝜇𝐿 , 𝐸)−1𝑅(𝐵𝑝𝑜𝑙 , 𝜇𝐿 , 𝐸)𝑒𝑥𝑝{𝑖𝐾̂𝐿𝐿𝐿}𝑅(𝐵𝑝𝑜𝑙 , 𝜇𝐿 , 𝐸)
−1

𝑅(𝐵𝑜𝑠𝑐, 𝜇, 𝐸)𝑒𝑥𝑝{𝑖(𝐾̂

+ 𝑘𝑠𝑜𝒜̂)𝐿}𝑅(𝐵𝑜𝑠𝑐 , 𝜇, 𝐸)−1𝑅(−𝐵𝑝𝑜𝑙, 𝜇𝑅 , 𝐸)𝑒𝑥𝑝{𝑖𝐾̂𝑅𝐿𝑅}𝑅(−𝐵𝑝𝑜𝑙, 𝜇𝑅 , 𝐸)−1𝑅(0, 𝜇𝑅 , 𝐸) 

 

 where 𝑅(𝐵, 𝜇, 𝐸) is the transfer matrix of each interface represented in Supplementary Fig. 12.  

𝑅(𝐵, 𝜇, 𝐸) =

[
 
 
 
 
 
 
 

1

√𝑘↑

0
1

√𝑘↑

0

0
1

√𝑘↓

0
1

√𝑘↓

√𝑘↑ 0 −√𝑘↑ 0

0 √𝑘↓ 0 −√𝑘↓]
 
 
 
 
 
 
 

 

In this modeling, we assume that we have two sections around the cycloidal region in which 

the electrons propagate under a homogeneous magnetic field. In accordance with the magnetic 

simulations which shows two opposite magnetic charges at the end of the cycloidal section (due 

to the contribution of the inter-domains regions), we take these fields to be of the same 

magnitude but opposite.  

The transfer matrix 𝒯𝑡𝑜𝑡 allows us to determine the scattering matrix 𝑆𝑅(𝐸) of the 1D section 

in the absence of superconductivity and terminated by a wall (see Supplementary Fig. 12). In 

the presence of a superconducting reservoir, the Subgap states energies 𝐸𝑆𝐺𝑆 may then be found 

using the following identity35 stemming from the secular equation of the system: 

𝐷𝑒𝑡{𝟏 − 𝛾2𝑆𝑅(𝐸)𝜎̂𝑦𝑆𝑅(−𝐸)𝜎̂𝑦} = 0                        (2) 

 

where 𝛾 = 𝑒−𝑖 𝑎𝑟𝑐𝑐𝑜𝑠(𝐸/∆) is the Andreev reflection amplitude and 𝜎̂𝑦 is the y axis Pauli matrix.  



Supplementary Fig. 13 shows a colorscale map of the Subgap states energies obtained from the 

secular equation (2) as a function of 𝜃(𝐿), the total rotation of the magnetization: N domains 

correspond to a total rotation of 𝜃(𝐿) = 𝑁𝑑𝑜𝑚𝜋.  We are able to reproduce the observed 

oscillations of the Subgap states with reasonable physical parameters using the model described 

above and depicted in Supplementary Fig. 13. The parameters used are the following (assuming 

a Landé factor of g=3.5, a similar value as the one of the control device):  

𝐵𝑜𝑠𝑐 = 0.47 𝑇, 𝐵𝑝𝑜𝑙 = 1.5 𝐵𝑜𝑠𝑐, Δ = 600 𝜇𝑒𝑉,

𝛿 =
ℏ2

2𝑚𝐿2
= 0.6 𝑚𝑒𝑉 ,  𝐿𝐿 = 𝐿𝑅 =  𝐿 ,  𝜇 = 0.4 Δ, 𝜇𝐿 = 𝜇𝑅 = 0.5 Δ. 

With this model, we find that the number of oscillations of the SGSs directly corresponds to 

the variation in the number of domains of the magnetic texture, in agreement with the tight-

binding simulations that will be presented in section 7. 

 

Supplementary Figure 13 | Analysis of the Subgap states oscillations. a. Schematic of the 

scattering representation of the device. The magnetic texture is modeled by a cycloidal field 



over a length 𝐿1, and is surrounded by two short segments of length 𝐿2 with a uniform 

magnetic field. It is connected to a superconductor on one side. b. Energy levels of the system 

as given by equation (2), as a function of energy and number of field oscillations, which is 

directly linked to the spin-orbit energy Eso. With parameters coherent with our experiments, 

we are able to reproduce several oscillations of the SGSs emergent in this device. c. 

Convolution of the density of state of a device with 2 pairs of SGSs (with energies 

corresponding to  0.3 Δ and 0.7 Δ, a spacing that can be obtained with a slightly higher 𝐵𝑜𝑠𝑐) 

and a degraded superconducting density of state (as schematized in Fig. 1). One pair of SGSs 

is hidden in the slope of the conductance as a function of applied bias. 

 

 

Parameters used for the fit for the Fig. 3a. The oscillations in Supplementary Fig. 12 are well 

fitted by a simple sinusoidal function. As a consequence, we fit our oscillation data (figure 3a, 

grey points) with the following heuristic formula derived from the fact that they stem from 

interference effect and considering that the number of domains decreases linearly with the 

applied magnetic field (and correspondingly the spin-orbit interaction) up to a saturation 

value 𝐵𝑠: 

 𝑒𝑉𝑠𝑑 = ±𝐸𝑆𝐺𝑆,0(1 + 𝑎 cos[ 2Δ𝑘(𝐵)𝐿]) = ±𝐸0 (1 + 𝑎 cos (
2𝜋𝐵

𝐵̃𝑒𝑥𝑡
+ 𝜙0)) for 𝐵 < 𝐵𝑠 

The fitting parameters are 𝐵𝑠= 0.9T; 𝐵̃𝑒𝑥𝑡 = 0.56 T; 𝑎 = 0.018 meV; 𝐸0= 0.195 meV ; 𝜙0= 

0.04  where 𝑎 and 𝜙0 are the amplitude and initial phase of the oscillations; it yields the purple 

full line in figure 3a. 

We also include in the fit the closing of the superconducting gap (red line in figure 3a):  



𝑒𝑉𝑠𝑑 = Δedge √1 – (
𝐵

𝐵𝑐
)
2

 with Δedge =  0.45 meV  and  𝐵𝑐 =  1.92 T. 

It is measured from the edge of the coherence peak due to the small bias windows of the 

measurement. 

Large doping limit without spin orbit (Zeeman induced oscillations). In the large doping 

regime which allows us to linearize the dispersion relation: 𝑘𝜎
𝑒 ≈ 𝑘0 +

𝐸

ℏ𝑣𝐹
− 𝜎

𝑔𝜇𝐵𝐵𝑜𝑠𝑐

2ℏ𝑣𝐹
 for the 

electrons and 𝑘𝜎
ℎ ≈ 𝑘0 −

𝐸

ℏ𝑣𝐹
+ 𝜎

𝑔𝜇𝐵𝐵𝑜𝑠𝑐

2ℏ𝑣𝐹
, where 𝑘0 is the Fermi wave vector. In this limiting 

case, equation (2) becomes, for each spin 𝜎: 

1 = 𝛾2𝑒2𝑖(𝑘𝜎
𝑒−𝑘𝜎

ℎ)𝐿 

Specifically, this equation yields the following implicit equation:  

𝐸𝑆𝐺𝑆 = ±Δ 𝑐𝑜𝑠 {2𝜋 (
𝐸𝑆𝐺𝑆

𝛿
+ 𝜎

1

2

𝑔𝜇𝐵𝐵𝑜𝑠𝑐

𝛿
)} 

In the limit of large level spacing 𝛿 ≫ Δ, the above equation simply becomes:  

𝐸𝑆𝐺𝑆 = ±Δ 𝑐𝑜𝑠 {𝜋
𝑔𝜇𝐵𝐵𝑜𝑠𝑐

𝛿
} 

In case the subgap states are only subject to an external magnetic field 𝐵𝑒𝑥𝑡 (pure Zeeman 

effect), their evolution is obtained by making the substitution 𝐵𝑒𝑥𝑡 = 𝐵𝑜𝑠𝑐. The subgap states 

oscillate as a function of the external magnetic field and cross at zero energy when 𝑔𝜇𝐵𝐵𝑒𝑥𝑡 =

𝛿

2
+ 𝑛𝛿, 𝑛𝜖𝕫. In our case, one oscillation would require a field of 5T, an order of magnitude 

larger than the observed period of 600 mT. 

 

7. Numerical study of the synthetic spin-orbit: oscillations of subgap states and emergence 

of Majorana zero energy modes.  

 

In this section, we describe three studies done with the help of tight-binding simulations. 



We first describe three different scenario for the evolution of SGSs as a function of an external 

magnetic field, which are presented in Fig. 3. Only an evolution of the magnetic domains is 

compatible with the oscillations observed in Fig 2. 

We then study the influence of disorder in an oscillating magnetic field on conductance 

oscillations of SGSs. We see that the oscillations are robust to disorder, with two modeling, 

either relying on the MFM signal or on the magnetic simulations. 

We finally investigate the emergence of MZM in our specific device geometry, where 

superconductivity is induced on the side. We show how two localized states at zero energy can 

emerge when increasing the number of oscillations of the magnetic field, as well as their 

evolution under local changes in the amplitude of the oscillating magnetic field. 

 

a. Scenario of figure 3 

In order to investigate numerically the evolution of subgap states with respect to different 

scenarii, we consider the discretized version of the hamiltonian (1) :  

𝐻 = ∑ 𝑑𝑛
†(−𝜇𝜎̂0 + 𝐵𝑜𝑠𝑐,𝑧(𝑛)𝜎̂𝑧 + 𝐵𝑜𝑠𝑐,𝑥(n)𝜎̂𝑥 + 𝐵𝑜𝑠𝑐,𝑦(n)𝜎̂𝑦)

𝑛∈[1,𝑁1]

𝑑𝑛 − 𝑡(𝑑𝑛
†𝑑𝑛+1

+ 𝑑𝑛
†𝑑𝑛−1)𝜎̂0 + ∑ 𝑡𝑘𝑛𝑑𝑛

†𝑐𝑘𝜎̂0 + ℎ. 𝑐.

𝑛∈[𝑁2,𝑁𝑡𝑜𝑡],𝑘

+ 𝐻𝑆 

where 𝑑𝑛
† = {𝑑𝑛↑

† , 𝑑𝑛↓
† } and  𝑑𝑛𝜎

†
 is the creation operator of an electron at site n and 𝑐𝑘

† =

{𝑐𝑘↑
† , 𝑐𝑘↓

† } , the creation operator of an electron in the superconductor with momentum k, and 𝐻𝑆 

the hamiltonian of the superconductor. The chain with sites label by n is along the z-axis. The 

superconductor is coupled to the chain only between sites N2 and Ntot. For the sake of simplicity, 

we take 𝑡𝑘𝑛 = 𝑡𝑆. A normal part between sites 1 and N1 is subject to a magnetic field 

𝐵𝑜𝑠𝑐,𝑥,𝑦,𝑧(𝑛). We calculate from this hamiltonian the retarded Green’s function in the Nambu x 

Spin space at each site which allows us to obtain the conductance through the system through 



a Meir-Wingreen formula and the pairing function through the anomalous propagators (see for 

example36). 

Supplementary Fig. 14 displays three different scenari : 

A. The oscillating field is set to zero, 𝐵𝑜𝑠𝑐(𝑛) = 0 and we look at the evolution of the 

density of states at the first site as a function of an homogeneous field 𝐵𝑒𝑥𝑡 applied in 

the whole chain. The Andreev bound states display crossings at zero energy, with a 

period set by the energy level spacing 𝛿. The level spacing is obtained by looking at the 

conductance with respect to the chemical potential 𝜇, in the absence of the 

superconductor, N1 = Ntot. 

We show a simulation for Ntot = 60, N1  = 30, N2 = 30, t=100, Δ = 1, 𝑡𝑠 = 100, Γ𝑁 =

0, 𝛾𝑛 = 0.1, 𝜇 =  0.  

B. In scenario B, we look at the evolution of the Subgap states with respect to an external 

magnetic field but with a finite spin-orbit energy in the chain, modeled in the discrete 

Hamiltonian by an additional term : ∑ Λ𝑑𝑛
†𝜎̂𝑦𝑑𝑛+1𝑛∈[1,𝑁𝑡𝑜𝑡] + ℎ. 𝑐. The Subgap States 

display anti-crossing at small magnetic field on a period which is bigger than the energy 

level spacing 𝛿. We show a simulation for Ntot = 60, N1  = 40, N2 = 20, t=100, Λ = 20,

Δ = 1, 𝑡𝑠 = 1, Γ𝑁 = 0, 𝛾𝑛 = 0.1, 𝜇 =  −0.99 ∗ 2𝑡.  

C. We then consider the scenario where the external magnetic field shifts the number of 

oscillations of a cycloidal field in the normal part: 𝐵𝑜𝑠𝑐,𝑥(𝑛) = 𝐵𝑜𝑠𝑐 ∗ cos (2𝜋𝑛𝛼) and 

𝐵𝑜𝑠𝑐,𝑧(𝑛) = 𝐵𝑜𝑠𝑐 ∗ sin (2𝜋𝑛𝛼). We take into account the stray field out of the magnetic 

texture by implementing a homogeneous field in the superconducting part with 

amplitude 0.5 𝐵𝑜𝑠𝑐. The SGS show similar oscillations as observed in the experiment 

for which an external magnetic field is applied on the magnetic texture. We show a 

simulation for Ntot = 60, N1  = 40, N2 = 20, t = 100, Δ = 1, 𝑡𝑠 = 1, Γ𝑁 = 0, 𝛾𝑛 = 0.1, 𝜇 =

 −0.85 ∗ 2𝑡, 𝐵𝑜𝑠𝑐 = 1 . 



 

Supplementary Figure 14 | Oscillations of the Subgap states in the various situations 

mentioned in the table of the main text. The colorscale map displays the density of 

states (DOS) as a function of the energy 𝐸/Δ . Panel a (resp b) displays the evolution 

of Andreev Bound states as a function of a homogeneous magnetic field 𝐵𝑒𝑥𝑡 without 

(resp with) a spin-orbit interaction in the chain. Panel c displays the evolution of SGSs 

with respect to the number of oscillations of  a cycloidal field in the normal part. The 

density of states in c shows non-crossing oscillations as a function of the number of 

oscillations. 

 

b. Implementation of a realistic model for the stray fields 

We now investigate the effect of disorder in the oscillating magnetic field, using the tight-

binding model introduced above. We take two models for the disorder. Supplementary Fig. 15 

illustrates the result of this study. 

First, we consider a field that evolves in space in the same fashion as the MFM cut of Fig. 1. 

This signal contains various frequencies, as shown by the discrete Fourier transform given in 

Supplementary Fig. 7b. We construct a cycloidal magnetic field from the Fourier coefficients 

𝑎𝑓 associated with the spatial frequency f of the MFM signal in the following way:  

 𝐵𝑜𝑠𝑐,𝑧(𝑖) = 𝐵𝑜𝑠𝑐 ∑ 𝑎𝑓 sin(2𝜋𝑓𝑖) , 𝐵𝑜𝑠𝑐,𝑥(𝑖) =  ∑ af cos(2𝜋𝑓𝑖)𝑓 ) 𝑓 .  

We then model its evolution under an external magnetic field by a simple shift of the 

frequency of each coefficient of the Fourier transform. The effect of 𝐵𝑒𝑥𝑡  is: 



𝑎𝑓(𝐵𝑒𝑥𝑡) = 𝑎𝑓+𝛿𝑓(𝐵𝑒𝑥𝑡)(3)  

With 𝛿𝑓(𝐵𝑒𝑥𝑡) ∝ 𝐵𝑒𝑥𝑡.  

We use as the parameters for the discrete Hamiltonian: Ntot = 60, N1  = 40, N2 = 20, t=100, 

Δ = 1, 𝑡𝑠 = 1, Γ𝑁 = 0.2, 𝛾𝑛 = 0.15, 𝜇 = −0.82 ∗ 2𝑡. The amplitude of the oscillating field 

𝐵𝑜𝑠𝑐 is normalized at each 𝐵𝑒𝑥𝑡 such that the maximal amplitude is 1 (in units of the 

superconduct ). We then plot the density of states at the first site of the chain, as a 

function of energy and 𝐵𝑒𝑥𝑡. If we consider a situation where there is only one oscillation 

frequency, we obtain a very similar result, namely oscillations of a pair of SGSs. We conclude 

that disorder in the magnetic field does not strongly affect the oscillations of the SGSs 

predicted for a periodic magnetic field, and observed in the experiment. 

As an alternative approach, we use the magnetic simulations of section 4 from which we can 

directly extract the magnetic field in all three directions above the Co/Pt structure, and its 

evolution as a function of the external magnetic field. This is shown in Supplementary Fig. 

15f. We use as the parameters for the discrete Hamiltonian: Ntot = 60, N1  = 40, N2 = 20, 

t=100, Δ = 1, 𝑡𝑠 = 1, Γ𝑁 = 0, 𝛾𝑛 = 0.15, 𝜇 = −0.85 ∗ 2𝑡. The amplitude of the oscillating 

field is taken as: 

𝐵𝑜𝑠𝑐 (units of Δ) = 2 𝐵𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠(T)  

in order to have a qualitative agreement with the measured oscillations, for this set of 

parameters. 

The micro-magnetic simulations give the spatial evolution of the field vector 𝐵𝑜𝑠𝑐 for seven 

values of 𝐵𝑒𝑥𝑡 : 0, 0.2, 0.4, 0.6, 0.8, 1 and 1.2T. We interpolate linearly the evolution of each 

component of the field in between these seven values. We plot the density of states at the first 

site as a function of energy and 𝐵𝑒𝑥𝑡, and observe oscillations of the SGSs energies, under this 

more realistic evolution of the magnetic texture. The simulations reproduce qualitatively the 

evolution of 𝐵𝑜𝑠𝑐 in the three direction of space, at different elevations above the texture, 



when a magnetic field is applied to the magnetic texture. At different cut positions we can 

obtain different realizations for 𝐵𝑜𝑠𝑐. The simulated fields used for this study may not 

perfectly fit our sample’s stray field; notably it seems to contain more domains than what the 

MFM signal indicates.  

To conclude, this show that the analysis of the oscillations of the SGSs is robust considering 

more realistic models of our system, build either from a realistic stray field profile extracted 

from the MFM data, or from micro-magnetic simulations.  



 

Supplementary Figure 15 | Effect of disorder in the oscillating magnetic field. a. Cut of 

the MFM image along the CNT as represented in Fig. 1 of the Main Text (in blue), and 

reconstructed signal containing the N=40 top-most frequencies of the discrete Fourier 

transform of the raw data (orange). b. Modulus of the Fourier coefficients of the MFM signal 

of a. A given discrete frequency can be thought of as the number of up and down domains in 

the magnetic texture. To mimic the effect of the external magnetic field, we shift the 



coefficients’ frequency as shown in equation (3). For example, the coefficient corresponding 

to 5 oscillations at the beginning will, at 𝛿𝑓 = 2, correspond to 7 oscillations. c. Density of 

states of a one-dimensional wire as a function of the energy showing Subgap States (SGSs). 

The oscillating field is given by the orange curve of panel a and evolves under a shift of it 

Fourier coefficients. The x axis corresponds to shifting frequencies. d. The oscillating 

magnetic field is now taken from the magnetic simulations, in all three directions of space. e. 

Similar plot, with only one coefficient in the discrete Fourier transform. f. Oscillating 

magnetic field in all three directions of space, extracted from the magnetic simulations, along 

the dashed line in Supplementary Fig. 7d. It is given for different external magnetic fields, at 

a height x=0nm.  

 

c. Simulation of Majorana bound states in our geometry 

We now turn to the situation where Majorana zero modes can potentially emerge in our setup. 

Our setup is different from the ones which are a priori used in semiconducting systems. We 

show in Supplementary Fig. 16 the relevant figures. We study the variations of the density of 

states (DOS), the singlet pairing and the triplet pairing as a function of the number of 

magnetic domains (which are tuned by the external magnetic field in the experiment). The 

parameters of the model are given below  

Ntot = 20, N1 = 16, N2 = 15, t=12, Δ = 1, 𝑡𝑠 = 12, Γ𝑁 = 0.1, 𝛾𝑛 = 0.05, 𝜇 = −0.33 ∗ 2𝑡, 𝐵𝑜𝑠𝑐 =

8. 

The density of states shown in Supplementary Fig. 16a displays oscillations of Subgap states at 

non zero energy but more importantly a zero bias peak emerging when the number of domains 

increases. In order to characterize the Subgap states, it is instructive to plot the singlet and triplet 

pairing amplitudes (in panel b and c) for the same parameters. Interestingly, before the 

emergence of the zero bias peak, one sees both singlet and triplet pairing amplitudes as expected 



for superconductivity in the presence of homogeneous spin polarization. However, the 

emerging zero bias peak is solely made out of triplet correlations, as required for a Majorana 

zero mode. The singlet pairing amplitude is defined as 
|𝐺𝑅(𝑑↑

†
,𝑑↓

†
)−𝐺𝑅(𝑑↓

†
,𝑑↑

†
)|

√2
, where G is the 

retarded Green’s function, and e (resp. h) refers to electrons (resp. holes). The triplet pairing 

amplitude is defined as √
1

2
|𝐺𝑅(𝑑↑

†, 𝑑↓
†) + 𝐺𝑅(𝑑↓

†, 𝑑↑
†)|

2
+ |𝐺𝑅(𝑑↑

†, 𝑑↑
†)|

2
+ |𝐺𝑅(𝑑↓

†, 𝑑↓
†)|

2
.  

We now show another important feature of this zero mode: its spatial localization and 

sensitivity to the local configuration of the magnetic field, as illustrated in panels e, f and g. 

These colormaps show the density of state as a function of the position in the chain and energy, 

for a system with the same parameters as panel a and with 7 magnetic field oscillations (14 

domains). As expected, we see that the zero bias peak corresponds to two localized states 

located at the interface between the magnetic texture and the superconductor and the magnetic 

texture and the left hard wall. On the contrary, the non-zero energy Subgap States are fully 

delocalized on the entire wire length. Importantly a change in the magnetic texture has barely 

any effect on the later irrespectively of the position of this change (Supplementary Fig. 16h and 

i). This is completely different from the case of the Majorana zero mode which is insensitive to 

a local reconfiguration of the magnetic texture if this reconfiguration occurs in the middle of 

the wire (Supplementary Fig. S16h) whereas it splits, with a decrease of the ZBP conductance, 

if the reconfiguration occurs close to the superconducting/wire interface where its wave 

function is non-zero (Supplementary Fig. S16i). The localized states at zero bias have a larger 

weight for the spin triplet amplitude than for the spin singlet amplitude as shown in panels e 

and f of figure S16. 



 
 

Supplementary Figure 16 | Emergence of Majorana excitations in our experimental 

setup. a. Density of states (DOS) at the first site of the chain (site 0), computed using a 

discretized tight-binding Hamiltonian, showing the emergence of a zero-bias peak for a large 

number of up and down domains. b-c. shows the singlet and triplet pairing amplitude for the 

same parameters. Singlet and triplet pairing amplitude are defined in the text of this 

supplementary. d. The spatial dependence of the DOS shows two localized states at zero 

biais, with a larger weight for the spin triplet amplitude (colormap f) than for the spin singlet 

amplitude (colormap e). The numerical simulation is realized by considering a normal part 



with a cycloidal field, as illustrated in g for the component along the axis of the chain (z-axis), 

plotted in black and labelled reference field. The field is not perfectly sinusoidal because of 

the high ratio between the number of oscillations (7) and the number of sites (16) for the 

cycloid. A superconductor is connected to the chain from sites 15 to 20. Two scenarii for a 

local reconfiguration of the field are shown in red and blue.  d, h and i display the spatial 

dependence of the density of states for the three different configurations of the field (black, 

red and blue). The dotted line shows the separation between the normal part and the 

superconducting part. 

 

All these features reproduce qualitatively our experimental findings and show that localized 

Majorana zero modes can emerge when superconductivity is induced from the side of the wire, 

in a different manner than the initial proposals for engineering Majorana bound states in a one 

dimensional conductor. 

In summary, our numerical study confirms the robustness to disorder of the oscillations of the 

SGSs at non-zero energy and substantiate the Majorana zero mode interpretation of the 

observed zero bias peak. 
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