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Theory of interactions between cavity photons induced by a mesoscopic circuit
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We use a quantum path-integral approach to describe the behavior of a microwave cavity coupled to a
dissipative mesoscopic circuit. We integrate out the mesoscopic electronic degrees of freedom to obtain a cavity
effective action at fourth order in the light/matter coupling. By studying the structure of this action, we establish
sufficient conditions in which the cavity dynamics can be described with a Lindblad equation. This equation
depends on effective parameters set by electronic correlation functions. It reveals that the mesoscopic circuit
induces an effective Kerr interaction and two-photon dissipative processes. We use our method to study the
effective dynamics of a cavity coupled to a double quantum dot with normal metal reservoirs. If the cavity is
driven at twice its frequency, the double-dot circuit generates photonic squeezing and nonclassicalities visible
in the cavity Wigner function. In particular, we find a counterintuitive situation where mesoscopic dissipation
enables the production of photonic Schrödinger cats. These effects can occur for realistic circuit parameters. Our
method can be generalized straightforwardly to more complex circuit geometries with, for instance, multiple
quantum dots and other types of fermionic reservoirs such as superconductors and ferromagnets.
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I. INTRODUCTION

Embedding nonlinear Josephson circuits into microwave
cavities has enabled impressive progress in the quantum
control of microwave light [1]. Indeed, the field of circuit
quantum electrodynamics (QED) offers many functionalities.
For instance, squeezed photonic states, where the uncertainty
of one quadrature is reduced below the zero-point level, can
be obtained by embedding a nonlinear circuit such as a super-
conducting quantum interference device (SQUID) array into a
microwave cavity [2]. A classical cavity state can evolve into
a quantum superposition of coherent states due to an effective
Kerr interaction provided by a superconducting quantum bit
[3]. One can also generate arbitrary quantum superpositions
of Fock states by using the time-dependent coupling of a
superconducting qubit to a microwave resonator [4,5]. For
most quantum protocols implemented so far, cavity damping
is a spurious effect. However, it has been demonstrated exper-
imentally that in a nonlinear circuit QED setup driven with
microwaves, photon-number dependent losses can be used to
prepare photonic Schrödinger cat states [6,7] and stabilize
autonomously Fock states [8]. This result contributes to a
research field called “reservoir engineering,” which promotes
the idea that, contrary to common belief, dissipation is not
always harmful for the quantumness of a system [9–12].
Thanks to this rich phenomenology, nonlinear microwave cav-
ities offer many possibilities of applications, from sensing
to quantum information and communication. For example,
squeezed states of light offer a powerful resource for quantum-
enhanced sensing [13,14]. More recently, quantum computing
schemes have been suggested, where quantum information
would be encoded in a manifold of cavity states stabilized

autonomously by two-photon dissipation [15]. In this context,
the photonic Wigner function is a widely measured quantity to
characterize the joint statistics of the cavity field quadratures
[16]. It is obtained experimentally by performing the cavity
tomography [5].

In standard circuit QED experiments, the Josephson cir-
cuits coupled to microwave cavities are exclusively made of
superconducting metals and Josephson junctions. However,
due to the versatility of microwave fabrication techniques,
the connection between circuit QED and mesoscopic physics
is naturally growing [17,18]. Recently, circuits enclosing a
single [19] or a double [20] quantum dot and normal [19,20],
ferromagnetic [21,22], or superconducting reservoirs [23,24]
have been coupled to microwave cavities. In the experi-
ments performed so far, microwave cavities have appeared
as a powerful means to characterize the electronic spectrum
and dynamics of mesoscopic circuits. However, the scope of
mesoscopic QED could go far beyond. Indeed, mesoscopic
circuits are intrinsically nonlinear due to their anharmonic
energy spectrum. Besides, fermionic reservoirs represent a
specific source of dissipation which involves electrically
controlled quantum transport. It is therefore appealing to in-
vestigate the potentialities of mesoscopic QED for producing
quantum cavity states. In this direction, entangled light/matter
states due to a strong charge/photon [24–26] or spin/photon
[22,27–29] coupling have been obtained in recent experi-
ments, using double quantum dot circuits. However, many
more situations remain to be explored.

On the theory side, the effect of dissipative fermionic
reservoirs in mesoscopic QED setups has been mostly in-
vestigated in the semiclassical regime where the number of
cavity photons is so large that quantum fluctuations in the
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photon number can be disregarded [23,30–33]. Otherwise,
a sequential tunneling description of quantum transport has
been used, which is valid only for very small tunnel rates
[34–39]. A general quantum description of mesoscopic QED
is lacking. One needs to develop a theory which describes
the cavity quantum dynamics in the presence of dissipative
mesoscopic transport. This description must apply to com-
plex circuit configurations with arbitrary tunnel couplings to
voltage-biased fermionic reservoirs. It is also important to
take into account the nonlinear photonic effects inherited from
the light/matter interactions, which have not been included
so far in the theory of mesoscopic QED and which offer a
vast field of investigation. This requires to work beyond the
second-order treatment of the light/matter coupling.

In this work, we fill these gaps by employing a quantum
path-integral technique along the Keldysh contour, which is
particularly convenient to integrate out electronic degrees of
freedom and obtain an effective description of the cavity non-
linear behavior [40]. We consider a cavity with frequency ω0

coupled to a mesoscopic circuit and excited with a microwave
tone at frequency 2ω0 with a moderate amplitude εp (i.e., εp

can be treated to first order). We note g is the order of mag-
nitude of the light/matter coupling in the mesoscopic QED
device. We expand the effective quantum action of the cavity
up to fourth order in the light/matter coupling. The expansion
parameter is described in Appendix H, and for conciseness, is
hereafter referred to as g. The cavity effective action depends
on electronic correlation functions of the mesoscopic circuit,
which we express in terms of Keldysh Green’s functions. It
reveals that the cavity is subject to photon-photon interactions
mediated by the mesoscopic circuit. We establish sufficient
conditions on mesoscopic correlators for having a description
of the cavity dynamics with a Lindblad equation. In this
case, the 2ω0 drive produces, at third order in g, a coherent
two-photon drive [41] and a less usual dissipative squeezing
process [42,43]. Additionally, the mesoscopic circuit induces,
at fourth order in g, Kerr photon-photon interaction as well
as stochastic two-photon losses and gains. Importantly, our
results are valid for tunnel couplings rates to the reservoirs
of the mesoscopic circuit smaller as well as larger than the
electronic temperature since no sequential tunneling hypoth-
esis is required. We make the realistic assumption that the
cavity has a large quality factor and a dressed linewidth much
smaller than the mesoscopic resonances linewidth. We finally
disregard Coulomb interactions in the mesoscopic circuit.

We use our method to study the quantum dynamics of a
microwave cavity coupled to a noninteracting double quantum
dot (DQD) with normal metal contacts biased with a voltage
Vb (see Fig. 1). We identify two situations where the effective
dynamics of the cavity is described by a Lindblad equation,
which includes nonlinear light/matter interaction effects. The
first situation is the limit of a low light/matter coupling (g ≈
0.01ω0). In this case, we derive an effective Lindblad equation
description of the cavity behavior to third order in g, from
which we obtain an analytic expression of the cavity Wigner
function in stationary conditions. The 2ω0 drive produces a
coherent injection and/or withdrawal of photon pairs in the
cavity [41] and a less usual squeezing dissipative process
[42,43]. This leads to a squeezing of the cavity vacuum, which
depends nontrivially on the system parameters [44–46]. The

FIG. 1. Example of mesoscopic QED device. (a) Microwave cav-
ity ac driven at twice the cavity frequency ω0. The nanocircuit (in
gray) is coupled capacitively to the cavity central conductor at an
electric field node. (b) Double quantum dot coupled to normal metal
reservoirs N with a tunnel rate �. The dots are tunnel coupled with a
hopping strength tLR. The normal metal reservoirs have a voltage bias
Vb. (c) Schematic representation of the cavity Wigner function as a
function of the field quadratures, measured by performing the cavity
tomography.

second Lindbladian situation is when the double dot is reso-
nant with 2ω0 and has moderate interdot hopping and tunnel
couplings to its reservoirs, and the light/matter coupling is
moderate (g ≈ 0.1ω0). In this case, a description to fourth
order in g is necessary to describe the cavity dynamics. In this
limit, we find that, in the absence of a cavity drive (εp = 0),
dissipative transport in the double dot circuit can enable the
stochastic absorption and/or emission of photon pairs in the
cavity, depending on the value of Vb. When the cavity is ac
driven (εp �= 0) with Vb = 0, we show, with numerical simula-
tions of the photonic Lindblad equation, that the DQD circuit
can be used to produce photonic Schrödinger cat states. This
effect is expected for realistic circuit parameters. It is due to a
combination of the two-photon drive in εpg3/ω3

0 and the pho-
ton pair damping in g4/ω3

0. Hence, counterintuitively, meso-
scopic dissipation enables the generation of a quantum super-
position of cavity states. In the same vein, recent experiments
with Josephson circuits have shown that the combination of
a two-photon drive with a Kerr photon-photon interaction
[47–49] or two-photon losses [6,50] can be used to prepare
autonomously Schrödinger cat states and protect these against
some types of decoherence. This represents an important re-
search direction in the context of the development of a bosonic
encoding of quantum information with autonomous quantum
error correction. Our work suggests that mesoscopic QED
devices could offer interesting possibilities in this context.

Thanks to its generality, our approach could be used to
explore many more circuit geometries and protocols. One
can consider circuits with single [19] or multiple quantum
dots [20]. One can also consider extended nanoconductors
such as nanowires with a strong-orbit coupling, which raise
a lot of attention in the search for Majorana quasiparticles
[51–56] and which have been recently coupled to microwave
cavities [57]. For this purpose, the nanoconductor can be
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discretized into various internal sites by using a Hubbard
model [31,33,58–60]. Finally, different types of fermionic
reservoirs can be considered, such as normal metals [19,20],
ferromagnets [21,22], or superconductors [23,24]. These
mesoscopic QED devices could find applications in quantum
information science, with, for instance, spin quantum bits
[22,27–29] and Cooper pair splitters [61–63]; in quantum
optics, with, for instance, lasing generated by mesoscopic
circuits [34,64,65]; and also in condensed matter science,
with the simulation of the Kondo effect in quantum dots [66]
and the simulation of Anderson-Holstein problem [67]. Our
approach could be instrumental for the study of these many
configurations in the nonlinear quantum regime.

This article is organized as follows. Section II introduces
the mesoscopic QED Hamiltonian and discusses a direct den-
sity matrix description of mesoscopic QED and its drawbacks.
Section III presents the general description of mesoscopic
QED with the path-integral approach. It also explains how the
cavity effective action leads to a Lindblad description, at third
order in g for any parameters, or at fourth order in g provided
some mesoscopic correlation functions fulfill a Lindbladian
condition. Section IV applies the results of Sec. III to the
example of a microwave cavity coupled to a double quantum
dot with normal metal contacts. In particular, it shows how
the double dot can be used to squeeze the cavity vacuum or
to produce photonic Schrödinger cats. Section V puts ours
results in perspective with other recent works and Sec. VI
concludes. Appendix A gives details on the derivation of the
cavity effective action at fourth order in g. Appendix B 1 gives
a direct calculation of the possible semiclassical values of the
cavity photonic amplitude at fourth order in g (without using
the path-integral approach). This enables a semiclassical inter-
pretation of some of the parameters which occur in the cavity
effective action. Appendix B 2 shows an alternative way to
determine the possible semiclassical values of the cavity pho-
tonic amplitude, by considering the saddle points of the cavity
action. The agreement between the results of Appendixes B 1
and B 2 at fourth order in g provides an important sanity
check for our approach. Appendix C explains how to derive
the action associated to a Lindblad equation. Appendix D
establishes a quantitative equivalence at order 2 in g between
the Lindblad equation arising from a direct density matrix
approach and the Lindblad equation arising from the path-
integral approach. Appendix E gives details on the calculation
of the cavity Wigner function. Appendix F gives details on the
dependence of the photonic squeezing effect on the double dot
parameters. Appendix G gives a simple analytical expression
of the linear charge susceptibility of a mesoscopic circuit
(i.e., to second order in g) in the sequential tunneling limit to
illustrate the regularization of our description by dissipative
tunneling. Finally, Appendix H shows the calculation of the
generalized charge susceptibilities of the mesoscopic circuit
up to eighth order in g. This serves as a basis for discussing
the regime of validity of our approach at fourth order in g. One
needs sufficiently large tunneling rates to the fermionic reser-
voirs of the circuit on top of a small enough coupling g and
cavity drive εp. It is difficult to give a simple analytic criterion
for delimiting this regime. However, the evaluation of higher
order charge susceptibilities given in Appendix H represents a
suitable numerical check for the validity of our development.

II. DESCRIPTION OF MESOSCOPIC QED WITH A
DIRECT DENSITY MATRIX APPROACH

A. System Hamiltonian

We consider a cavity with bare frequency ω0 excited by a
microwave drive εac(t ) and coupled to a mesoscopic circuit.
This circuit contains N discrete orbitals with index d , coupled
to fermionic reservoirs with a continuum of states with index
k. The mesoscopic circuit can be, for instance, a quantum dot
circuit, in which case the orbitals d are located in the dots
[18–20]. Each orbital d is coupled to the electric quadrature
of the cavity field with a constant gd (see Ref. [68] for a
first-principles description of this effect and a microscopic
expression of gd ). The resulting mesoscopic QED device can
be described with the Hamiltonian

Ĥtot = ω0â†â + εac(t )(â† + â) + ĥb

+ Ĥmeso +
∑

d

gd (â† + â)ĉ†
d ĉd (1)

with

Ĥmeso =
∑

d

ωd ĉ†
d ĉd +

∑
d<d ′

(td ′,d ĉ†
d ′ ĉd + H.c.)

+
∑
k,d

(
tk,d ĉ†

k ĉd + H.c.
)+∑

k

ωk ĉ†
k ĉk . (2)

Above, â† is the cavity photon creation operator, ĉ†
d is the

electron creation operator in the discrete orbital d ∈ [1, N],
and ĉ†

k is an electron creation operator in a level k of one of
the fermionic reservoirs. In the general case, the indices k and
d include the spin degree of freedom. We do not specify the
exact mesoscopic circuit geometry for the moment. The tunnel
hopping strength between two orbitals d and d ′[k] located in
neighboring sites of the circuit is noted td ′[k],d . We use h̄ = 1.
Intrinsic cavity damping is described by the Hamiltonian ĥb,
which we do not specify here. In most cases, the orbital energy
ωd of site d can be finely tuned with an electrostatic gate,
and bias voltages can be applied to the fermionic reservoirs
to induce electronic transport. Note that we disregard the
coupling between the cavity field and the reservoirs levels k.
This is relevant for most mesoscopic QED experiments where
the coupling between discrete internal levels d and the cavity
field is dominant due to the use of ac gates which connect
levels d to the cavity central conductor. In the following, we
assume that an ac drive

εac(t ) = (εpe−i2ω0t + ε∗
pei2ω0t )/2 (3)

is applied to the cavity. We will see that both components in
e−i2ω0t and ei2ω0t contribute to the the cavity response through
higher order processes (effect in g3 at least). For simplicity, we
do not describe explicitly the microwave inputs and outputs of
the cavity but this can be added straightforwardly by using the
input/output theory [30,41,69].

B. Direct density matrix approach and its drawbacks

The most commonly used description of circuit QED is the
density matrix approach, which consists in expressing directly
the time evolution of the system density matrix. Here we will
shortly discuss this approach to point out its weaknesses and
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the interest of the path-integral approach in the context of
nonlinear mesoscopic QED.

We assume that the light/matter interaction term is a per-
turbation in the system Hamiltonian, in comparison with the
cavity contribution in ω0 and mesoscopic contribution Ĥmeso.
For simplicity, in this section, we also assume that there is
no cavity drive (εp = 0) and no cavity intrinsic dissipation
(i.e., ĥb is negligible). In these conditions, it is convenient to
use the interaction picture, where the density matrix ρI (t ) =
eiω0 â†ât+iĤmesotρ(t )e−iω0 â†ât−iĤmesot of the full mesoscopic QED
device (cavity + mesoscopic circuit) has an evolution
equation

∂ρI (t )

∂t
= −i[V̂ (t ), ρI (t )] (4)

with

V̂ (t ) = N̂ (t )(âe−iω0t + â†eiω0t ), (5)

N̂ (t ) =
∑

d

gd n̂d (t ), (6)

and

n̂d (t ) = eiĤmesot ĉ†
d ĉd e−iĤmesot . (7)

Note that Ĥmeso and ĉ†
d ĉd do not commute due to dot-dot and

dot-reservoir tunneling. Hence, from Eqs. (6) and (7), N̂ (t )
depends on time.

We now discuss the expression of the cavity dynamics at
second order in g. The integration of Eq. (4) gives

ρI (t ) = ρI (t0) − i
∫ t

t0

dt1[V (t1), ρI (t1)] (8)

with t0 a reference time far in the past. Inserting this equation
back in Eq. (4) gives

∂ρI (t )

∂t
= −i[V̂ (t ), ρI (t0)] −

∫ t

t0

dt1[V̂ (t ), [V (t1), ρI (t1)]].

(9)

In the limit where the mesoscopic system has a correlation
time τ which is much shorter than the cavity characteristic
timescale of evolution T , only the times t1 such that t − t1 � τ

will contribute in the above integral [70]. Accordingly, one
can assume that the mesoscopic system is constantly at equi-
librium, i.e.,

ρI (t1) = ρ0
meso ⊗ ρI

cav(t1), (10)

with ρ0
meso being the equilibrium density matrix of the meso-

scopic circuit for gd = 0. Finally, since τ � T , one can use
ρI (t1) = ρ0

meso ⊗ ρI
cav(t ) in the above integral. Performing the

trace Tr
k,d

on the mesoscopic degrees of freedom, one finally

gets

∂ρI
cav(t )

∂t
= − iTr

k,d

[[
V (t ), ρ0

meso ⊗ ρI
cav(t0)

]]
−
∫ t

t0

dt1 Tr
k,d

[[
V (t ),

[
V (t1), ρ0

meso ⊗ ρI
cav(t )

]]]
.

(11)

If we keep only resonant terms and consider a stationary
situation, a reorganization of Eq. (11) gives

∂ρI
cav(t )

∂t
= − 2 Im[χB(ω0)]Dâ

(
ρI

cav(t )
)

− 2 Im[χA(ω0)]Dâ†

(
ρI

cav(t )
)

− i Re[χB(ω0) − χA(ω0)]
[
â†â, ρI

cav(t )
]+ o(ǧ2).

(12)

Above,

DL̂ j

(
ρI

cav

) = L̂ jρ
I
cavL̂†

j − 1
2

{
L̂†

j L̂ j, ρ
I
cav

}
(13)

is the Lindblad superoperator associated to the jump operator
L̂ j . We have disregarded the first-order term in g which is
nonresonant with the cavity. The mesoscopic correlators

χA(t ) = −iθ (t )〈N̂ (0)N̂ (t )〉 (14)

and

χB(t ) = −iθ (t )〈N̂ (t )N̂ (0)〉 (15)

whose Fourier transforms χA[B](ω) = ∫ dtχA[B](t )eiωt appear
in Eq. (12) have to be evaluated to second order in the
light/matter interaction. More precisely, from Eq. (6), one can
use 〈N̂ (t ′)N̂ (t )〉 =∑d,d ′ gd gd ′Ad ′,d (t ′, t ) and Ad ′,d (t ′, t ) =
〈ĉ†

d ′ (t ′)ĉd ′ (t ′)ĉ†
d (t )ĉd (t )〉0, where 〈〉0 denotes a statistical av-

erage calculated for gd = 0 for any d , i.e., Ad ′,d (t ′, t ) =
Tr[ρ0

mesoĉ†
d ′ (t ′)ĉd ′ (t ′)ĉ†

d (t )ĉd (t )]. In the absence of Coulomb
interactions, the evaluation of Ad,d ′ can be done straight-
forwardly by using the Wick theorem (see, for instance,
Ref. [71]).

To describe the dynamics of ρI
cav beyond the second order

in g, one straightforward idea is to start with Eq. (9) and iterate
the substitution of ρI (t ) by the right member of Eq. (8). This
gives

∂ρI
cav(t )

∂t

= −iTr
k,d

[[V (t ), ρI (t0)]] −
∫ t

t0

dt1 Tr
k,d

[[V (t ), [V (t1), ρI (t0)]]]

+ i
∫∫ t,t1

t0,t0

dt1dt2 Tr
k,d

[[V (t ), [V (t1), [V (t2), ρI (t0)]]]]

+
∫∫∫ t,t1,t2

t0,t0,t0

dt1dt2dt3 Tr
k,d

[[V (t ),

× [V (t1), [V (t2), [V (t3), ρI (t3)]]]]]. (16)

At this stage, conceptual difficulties as well as calculation
heaviness make the generalization of Eq. (12) nontrivial. First,
a backaction of the cavity on the mesoscopic density matrix
should be taken into account. This means that expression (10)
cannot be used to express ρI (t0) and ρI (t3) in Eq. (16). Hence,
it will be more difficult to introduce independently defined
mesoscopic correlators in the expression of ∂ρI

cav(t )/∂t . Be-
sides, the dynamics of the system is not anymore Markovian
in the general case, so that ρI

cav(t ) does not appear naturally
in the right member of Eq. (16). Finally, even in a case
where a generalization of the Markovian Eq. (12) would be
possible, due to the iterative structure of Eq. (16), the number
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FIG. 2. Synoptic table of the theoretical approach introduced in
Sec. III.

of mesoscopic correlators to define would explode, and the
explicit calculation of these correlators from the mesoscopic
circuit Hamiltonian would be a lengthy task. In fact, all these
difficulties stem from the fact that the trace on the mesoscopic
degrees of freedom is performed after the time evolution of
ρI (t ) is expressed. It is thus crucial to use a calculation method
where the electronic degrees of freedom are integrated earlier,
i.e., at the level of the device Hamiltonian. This is why we
will develop an efficient quantum path-integral description of
mesoscopic QED in the next section.

III. GENERAL DESCRIPTION OF MESOSCOPIC QED
WITH THE QUANTUM PATH-INTEGRAL FORMALISM

This section describes a general method based on the
quantum path-integral description to describe the effective be-
havior of a microwave cavity coupled to a mesoscopic circuit.
From the mesoscopic QED Hamiltonian of Eq. (1), we express
the global quantum action of the system (see Sec. III A). The
fermionic degrees of freedom in this action can be integrated
out to obtain the cavity effective action (see Sec. III B). We
compare this action to the action given by a generic Lindblad
description of a cavity dynamics (see Sec. III C). This enables
us to establish a criterion to have a cavity Lindblad dynam-
ics at fourth order in the light/matter coupling. When this
criterion is fulfilled, we can finally write the cavity effective
Lindblad equation. This approach is summarized in the syn-
optic table of Fig. 2.

A. Quantum action of the whole mesoscopic QED device

A generic description of mesoscopic QED can be built
by expressing the Schwinger-Keldysh partition function of
the system with a quantum path integral along the Keldysh
contour [40]. To this end, we define, along the forward
and backward branches of the Keldysh contour, the fields
ϕ±(t ), ϕ̄±(t ), ψ±,d (t ), and ψ̄±,d (t ), which correspond to a

possible “realization” of the operators â, â†, ĉd , and ĉ†
d over

time [72]. It is convenient to define the average and relative
field components ϕcl/q(t ) = [ϕ+(t ) ± ϕ−(t )]/

√
2, ϕ̄cl/q(t ) =

[ϕ̄+(t ) ± ϕ̄−(t )]/
√

2, ψ0/1,d (t ) = [ψ+,d (t ) ± ψ−,d (t )]/
√

2,
and ψ̄0/1,d (t ) = [ψ̄+,d (t ) ∓ ψ̄−,d (t )]/

√
2. These quantities

can be grouped into vectorial fields ϕ(t ) = t {ϕcl (t ), ϕq(t )},
ϕ̄(t ) = {ϕ̄cl (t ), ϕ̄q(t )}, ψ (t ) = t {ψ0(t ), ψ1(t )}, and ψ̄ (t ) =
{ψ̄0(t ), ψ̄1(t )}. Note that in the case of a mesoscopic circuit
with several discrete orbitals, the fields ψ0(t ) and ψ1(t ) have
an orbital structure ψm(t ) = t {ψm,d1 (t ), . . . , ψm,dN (t )} with
m ∈ {0/1}. In the main text of this article, all the fields have
a time argument t , which is omitted for brevity, except when
two times t and t ′ are involved in an equation. The global
Schwinger-Keldysh partition function Z of the mesoscopic
QED device and the corresponding quantum action Stot can
be obtained directly from Hamiltonian (1) by considering the
elementary evolution of the system along the Keldysh contour
[40]. This gives

Z =
∫

d[ϕ̄, ϕ, ψ̄, ψ]eiStot (ϕ̄,ϕ,ψ̄,ψ ) (17)

with

Stot (ϕ̄, ϕ, ψ̄, ψ ) = S0
cav(ϕ̄, ϕ) + S0

meso(ψ̄, ψ )

+ �Sac(ϕ̄, ϕ) + �Sinter (ϕ̄, ϕ, ψ̄, ψ ).
(18)

Above, d[ϕ̄, ϕ, ψ̄, ψ] is the differential element associated to
the fields ϕ̄, ϕ, ψ̄ , and ψ . The term

S0
cav(ϕ̄, ϕ) =

∫
t
[ϕ̄cl ϕ̄q]

[
0 Dt − i0

2
Dt + i0

2 i0(1 + 2nB)

][
ϕcl

ϕq

]
(19)

is the bare cavity action, with Dt = i∂t − ω0, nB =
1/(eω0/kBT − 1), and 0, a damping rate due to the cavity
bath treated in the Markovian approximation [73]. For com-
pactness, we note

∫ +∞
−∞ dt = ∫t . The cavity drive brings a

contribution

�Sac(ϕ̄, ϕ) = −
√

2
∫

t
(ϕ̄q + ϕq)εac(t ). (20)

The bare action from the mesoscopic circuit is

S0
meso(ψ̄, ψ ) =

∫
t,t ′

ψ̄ (t )Ǧ−1(t, t ′)ψ (t ′) (21)

with Ǧ being the mesoscopic circuit Green’s function in the
absence of light/matter coupling. The contribution from the
light/matter coupling is

�Sinter (ϕ̄, ϕ, ψ̄, ψ ) = −
∫

t,t ′
ψ̄ (t )[v̌(ϕ̄, ϕ, t )δ(t − t ′)]ψ (t ′)

(22)

with
∫∫ +∞

−∞ dt dt ′ = ∫t,t ′ and v̌ being a light/matter coupling

function. Both Ǧ and v̌ are defined below.
The unperturbed mesoscopic circuit Green’s function

which appears in Eq. (21) has the structure Ǧ(t, t ′) =
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∫
ω Ǧ(ω)eiω(t ′−t ) with [40]

Ǧ(ω) =
[

G̃r (ω) G̃K (ω)
0̃ G̃a(ω)

]
(23)

in the 2 × 2 mesoscopic Keldysh space. Above, 0̃ is a matrix
full of zeros in the N × N the mesoscopic orbitals space. The
retarded, advanced, and Keldysh components G̃r/a/K (ω) of Ǧ
also have a N × N structure in the mesoscopic orbital space.
In the absence of superconducting correlations in a circuit, the
elements of G̃r , G̃a, and G̃K in the line d and column d ′ can
be defined as

Gd,d ′
r (t, t ′) = −iθ (t )〈{ĉd (t ), ĉ†

d ′ (t ′)}〉, (24)

Gd,d ′
a (t, t ′) = iθ (−t )〈{ĉd (t ), ĉ†

d ′ (t ′)}〉, (25)

and

Gd,d ′
K (t, t ′) = −i〈[ĉd (t ), ĉ†

d ′ (t ′)]〉, (26)

respectively. We also use the stationary relations
G̃r/a/K (t, t ′) = ∫ω G̃r/a/K (ω)eiω(t ′−t ). Importantly, the index
d ∈ [1, N] in the above Green’s functions runs only on the set
of confined discrete orbitals of the mesoscopic circuit (like,
for instance, quantum dot orbitals) which remain after the
leads’ orbital continua have been integrated out. The leads
contribute to Ǧ through self-energy terms which depend on
the tunnel rates between the mesoscopic orbitals d and the
leads. At this stage, we do not give a more explicit expression
for Ǧ because we consider a generic mesoscopic circuit. An
example of expression for Ǧ will be given in Sec. IV for a
noninteracting double dot [see Eqs. (72)–(74)].

The light matter coupling occurs in Eq. (22) through the
term

v̌(ϕ̄, ϕ, t ) = ǧ
[ϕ̄cl (t ) + ϕcl (t )]σ̌0 + [ϕ̄q(t ) + ϕq(t )]σ̌1√

2
. (27)

Above, we use matrices σ̌0[1] = σ̊0[1] ⊗ 1̃, where σ̊0 and σ̊1

correspond to the identity and the first Pauli matrix in the
Keldysh subspace of the mesoscopic circuit (index 0/1) and
1̃ is the identity in the mesoscopic orbitals subspace. We
also note ǧ = σ̊0 ⊗ g̃ with g̃ = diag[g1, . . . , gN ], a diagonal
matrix in the mesoscopic orbitals subspace. More generally,
the superscripts ◦ and ∼ decorate a matrix in the 2 × 2 meso-
scopic Keldysh subspace and the N × N mesoscopic orbital
subspace, respectively. The superscript ∨ decorates a matrix
in the tensor product of these two spaces. The notation g used
previously corresponds to g = maxd [gd ].

B. Effective cavity action to fourth order in g

In order to obtain an effective description of the cavity
dynamics solely, one must integrate out the electronic degrees
of freedom in Eq. (17). For simplicity, we will disregard
Coulomb interactions in the mesoscopic circuit. In this case,
the mesoscopic QED action is quadratic with respect the
electronic fields ψ and ψ̄ , and one can thus perform a straight-
forward Gaussian integration of Eq. (17) on these fields (in
the interacting case, it is possible to use more elaborate inte-
gration procedures [40]). The resulting effective cavity action
Seff

cav(ϕ̄, ϕ) can be simplified after a systematic expansion with

respect to the light/matter coupling matrix ǧ (see Appendix
A for details). We work to fourth order in g in order to cap-
ture essential nonlinear electron/photon interaction effects. In
order to simplify the final expression of Seff

cav, we assume that
the dressed cavity linewidth is much smaller than ω0 and the
width of the mesoscopic resonances linewidth. This criterion
is largely satisfied in experiments as well as for the parameters
used in this paper. We finally obtain the expression

Seff
cav(ϕ̄, ϕ) = S0

cav(ϕ̄, ϕ) +
∑

i∈{2,3,4}
�S(i)

g (ϕ̄, ϕ) + o(ǧ4). (28)

Above, �S(i)
g is the mesoscopic circuit contribution to Seff

cav

to ith order in g. The first order contribution in g can be
disregarded because it is not resonant with the cavity [see
Eqs. (A13) and (A14) of Appendix A].

The second-order contribution

�S(2)
g (ϕ̄, ϕ) = −

∫
t
[ϕ̄cl ϕ̄q].

[ 0 χ∗
2

χ2 λ2

]
.
[
ϕcl

ϕq

]
(29)

involves the semiclassical charge susceptibility

χ2 = − i

2

∫
ω

Tr
d

[G̃K (ω)g̃(G̃a(ω − ω0) + G̃r (ω + ω0))g̃]

(30)

of the mesoscopic circuit at frequency ω0 and the correlation
function

λ2 = − i

2

∫
ω

Tr
d

[G̃K (ω)g̃G̃K (ω + ω0)g̃

+ G̃a(ω)g̃G̃r (ω + ω0)g̃ + G̃r (ω)g̃G̃a(ω + ω0)g̃]. (31)

We note
∫
ω

= ∫ +∞
−∞

dω
2π

, and Tr
d

is the trace operator on the

mesoscopic orbital index d . Note that χ2 has already been
introduced in other works [23,30–33,39,74], essentially for
studying the semiclassical behavior of a mesoscopic QED
device to second order in g. A cavity frequency shift is
caused by Re[χ2], whereas Im[χ2] renormalizes the bare cav-
ity linewidth 0 of Eq. (19). The parameter λ2 is necessary
to describe the quantum regime of mesoscopic QED, but it
has been disregarded so far. From Eq. (31) with G̃K (ω) =
−G̃K (ω)† and G̃a(ω) = G̃r (ω)†, one can check that λ2 is
purely imaginary.

For εp �= 0, we obtain a third-order term S(3)
g (t ) in g which

can be expressed as

�S(3)
g (ϕ̄, ϕ)

= −i
∫

t
e−2iω0t [ϕ̄cl ϕ̄q].

[
0 Ucl/2

Ucl/2 Uq

]
.
[
ϕ̄cl

ϕ̄q

]
− i
∫

t
e2iω0t [ϕcl ϕq].

[ 0 −U ∗
cl/2

−U ∗
cl/2 U ∗

q

]
.
[
ϕcl

ϕq

]
(32)

with

Ucl = − βp

2

∫
ω

(Tr
k,d

[σ̌1ǧǦ(ω)ǧǦ(ω + ω0)ǧǦ(ω − ω0)]

+ Tr
k,d

[Ǧ(ω)σ̌1ǧǦ(ω + ω0)ǧǦ(ω − ω0)ǧ]), (33)

Uq = −βp

2

∫
ω

Tr
k,d

[σ̌1ǧǦ(ω)σ̌1ǧǦ(ω + ω0)ǧǦ(ω − ω0)] (34)
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and

βp = εpt0/2. (35)

Above, we note Tr
k,d

as the trace operator on both the meso-

scopic orbital index d and the Keldysh index k. The prefactor

t0 = Gr
0(2ω0) + Ga

0 (−2ω0) (36)

takes into account how the mesoscopic circuit feels the ac
drive through the cavity, with

Gr/a
0 (ω) =

(
ω − ω0 ± i

0

2

)−1

(37)

being the bare cavity retarded/advanced Green’s function [see
Eq. (B3) for a semiclassical picture of this effect]. Subse-
quently, the reaction of the mesoscopic circuit to the ac drive
affects the cavity effective behavior, as described by the terms
in Uq and Ucl . Importantly, these terms can be significant
because the smallness of t0 can be compensated by the use of
a sufficiently large drive amplitude βp. Interestingly, the coef-
ficient Ucl corresponds to the semiclassical joint response of
the mesoscopic charge to the cavity field in â and to the drive
in βp [see Appendix B 1, Eq. (B7)].

Finally, we find a fourth-order contribution in g, which
occurs even for βp = 0, i.e.,

�S(4)
g (ϕ̄, ϕ) = −

∫
t
[ϕ̄cl ϕ̄cl ϕ̄cl ϕ̄q ϕ̄qϕ̄q] · A ·

[
ϕclϕcl

ϕclϕq

ϕqϕq

]
(38)

with

A =
[ 0 χ∗

4 −U ∗
4

χ4 λ4 V ∗
4

U4 V4 W4

]
, (39)

χ4 = i(Nq,cl,cl,cl + Ncl,q,cl,cl ), (40)

λ4 = i(Ncl,q,cl,q + Ncl,q,q,cl + Nq,cl,cl,q + Nq,cl,q,cl ), (41)

V4 = i(Nq,q,cl,q + Nq,q,q,cl ), (42)

U4(ω0) = iNq,q,cl,cl , (43)

W4(ω0) = iNq,q,q,q, (44)

N f , f ′,l,l ′ = −
∫

ω

Tr
k,d

[
1

8
Ǧ(ω)σ̂ f ǧǦ+σ̂l ǧǦ(ω)σ̂ f ′ ǧǦ+σ̂l ′ ǧ

+ 1

4
Ǧ(ω)σ̂ f ǧǦ+σ̂ f ′ ǧǦ(ω + 2ω0)σ̂l ǧǦ+σ̂l ′ ǧ

]
,

(45)

and Ǧ+ = Ǧ(ω + ω0). Note that λ4 and W4 are purely imag-
inary due to G̃K (ω) = −G̃K (ω)† and G̃a(ω) = G̃r (ω)†. The
coefficient χ4 corresponds to the second-order semiclassical
response function of the quantum dot to the cavity electric
field [see Appendix B 1, Eq. (B7)]. The other coefficients λ4,
U4, V4, and W4 are necessary to describe quantum fluctuations

of the cavity field. In summary, Eqs. (28)–(45) describe the
effective action of a microwave cavity in a generic mesoscopic
QED device to fourth order in the light/matter coupling. This
requires us to introduce types of quantum dot correlators other
than the known χ2. We will discuss the physical effect of the
correlators λ2, Ucl , Uq, χ4, λ4, U4, V4, and W4 in the next
sections. Importantly, one has to choose an appropriate tech-
nique to obtain an explicit description of the cavity dynamics
out of the cavity effective action. In the following, we will
consider situations such that an effective Lindblad equation
on the cavity density matrix can be used.

C. Correspondence between the cavity effective action and a
photonic Lindblad equation

The most popular description of circuit QED is the Lind-
blad equation which describes the evolution of the cavity
density matrix. Below, we come back to this description,
already illustrated by our Eq. (12), to clarify the physi-
cal meaning of the different terms in the cavity action of
Sec. III B.

1. Cavity effective Lindblad equation up to third order in g

In the limit of low couplings gd and limited cavity drive
βp, the cavity field remains small so that one can truncate the
cavity effective action to third order in g. In this case, we
show below that it is always possible to establish a Lindblad
equation on the cavity density matrix. Thereby, we clarify the
physical meaning of the terms in Ucl and Uq.

When a cavity follows a Lindblad description, the time
derivative of its density matrix ρcav(t ) can be expressed
as [16]

∂ρcav(t )

∂t
= −i

[
H eff

cav, ρcav(t )
]+∑

j

γ jDL̂ j
(ρcav(t )) (46)

with H eff
cav being the effective cavity Hamiltonian, γ j being

the rate of a dissipative process corresponding to the jump
operator L̂ j , and DL̂ j

(ρcav) being defined in Eq. (13). Let us
assume that the effective Hamiltonian has the generic form

H eff
cav = (ω0 + �ω0)â†â + iρpe−i2ω0t â†2 − iρ∗

pei2ω0t â2 (47)

and the dissipative processes are characterized by (γ j, L̂ j ) ∈
P with

P = {(γloss, â), (γgain, â†), (γp, â + eiϕpe−i2ω0t â†)}. (48)

The above real parameters �ω0, ρp, γloss, γgain, γp, and ϕp

are unspecified for the moment. The action corresponding
to the master Eq. (46) can be expressed as (see details in
Appendix C)

SMark(t ) =
∫

t
[ϕ̄cl ϕ̄q].

[
0 Ft − i γ−

2
Ft + i γ−

2 iγ+

]
.
[
ϕcl

ϕq

]
+
∫

t
e−i2ω0t [ϕ̄cl ϕ̄q].

[
0 −iρp

−iρp iγpeiϕp

]
.
[
ϕ̄cl

ϕ̄q

]
+
∫

t
ei2ω0t [ϕcl ϕq].

[
0 iρ∗

p
iρ∗

p iγpe−iϕp

]
.
[
ϕcl

ϕq

]
(49)
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with

γ− = γloss − γgain, (50)

γ+ = γloss + γgain + 2γp, (51)

and Ft = i∂t − ω0 − �ω0. It is possible to perform an exact
identification between the action of Eq. (49) and the cavity
effective action to third order in g [i.e., Eqs. (29) + (32)] by
using parameters �ω0, ρp, γloss, γgain, γp, and ϕp given by the
relations:

�ω0 = Re[χ2], (52)

ρp = Ucl/2, (53)

γpeiϕp = −Uq, (54)

γloss = γ 0
loss − γp, (55)

and

γgain = γ 0
gain − γp (56)

with

γ 0
loss = 0(1 + nB) − Im

[
χ2 + λ2

2

]
, (57)

γ 0
gain = 0nB + Im

[
χ2 − λ2

2

]
, (58)

and γp > 0 by definition.
We now comment on the physical effect of the compo-

nents (52)–(58). As found previously [23,30–33,39,74], the
cavity frequency shift �ω0 is directly set by the real part of
χ2. A comparison between Eqs. (19) and (49) indicates that
the cavity intrinsic linewidth 0 is also shifted by �0 =
−2 Im[χ2]. The dissipative processes with rates γloss and γgain

correspond to standard single-photon emission and absorption
which are widely considered in circuit QED. One can see
from Eqs. (55)–(58) that Im[χ2] contributes to the asymmetry
between the photon loss and gain rates γloss and γgain whereas
Im[λ2] contributes equally to γloss and γgain. The coefficients
ρp and γp account for the effect of the ac drive since they
are nonzero only for βp �= 0. From Eq. (53), Ucl generates
the two-photon coherent drive in ρp of Eq. (47). Such a term
can be obtained with a degenerate parametric amplifier (see,
for instance, Sec. 5.1.1 of Ref. [41]). It was also obtained in
Ref. [6] by using a complex configuration with two microwave
cavities coupled nonlinearly and subject to two off-resonant
drives. Finally, the dissipative process with a rate γp generated
by Uq is less usual. Its jump operator Lp = â + eiϕpe−i2ω0t â†

corresponds to a time-dependent coherent superposition of
photon absorption and emission operators. From Eqs. (55) and
(56), one could believe that γp decreases the single-photon
loss and gain rates, but this is not effective because the rates γ+
and γ− through which γloss and γgain occur in the cavity action
do not depend on γp. Indeed, from Eqs. (50), (51), (55), and
(56), one has γ− = γ 0

loss − γ 0
gain and γ+ = γ 0

loss + γ 0
gain. There

remains a term in γp which occurs through the second and
third lines of Eq. (49) on the same footing as ρp. We will
illustrate the effect of this peculiar term in Sec. IV D 2 for the
case of a double quantum dot and check that it corresponds to
a “squeezing dissipation.” In fact, such an effect can also be

obtained by using a broadband squeezed bath input [43] or a
cavity damping modulation [42]. It leads to the relaxation of
the cavity to a squeezed state. In these references, squeezing
superoperators are used to describe this effect, instead of the
jump operator Lp, but one can check that there is a formal
equivalence between the two descriptions [75]. Importantly,
in our work, we have used a range of γp such that one has
γloss > 0 and γgain > 0, as required by the definition of the
Lindblad Eq. (46). When the drive amplitude βp becomes so
large that γloss < 0 and/or γgain < 0, we expect that higher or-
der terms in βp become relevant, which introduces new terms
in the cavity action which are not necessarily Markovian. In
this case, the Lindblad Eq. (46) is not relevant anymore. This
limit is beyond the scope of this article.

2. Cavity effective Lindblad equation to fourth order in g

We now investigate the possibility to identify the path-
integral approach of Sec. III with a Lindblad description up
to fourth order in g. We expect an extra contribution

H eff,4
cav = Kâ†2â2 (59)

to the effective Hamiltonian (47), which corresponds to a Kerr
photonic interaction. We also expect dissipative processes
with rates and jump operators (γ j, L̂ j ) ∈ P4 with

P4 = {(Kloss, â2), (Kgain, â†2), (D, â†â)}. (60)

The three processes in the above ensemble correspond
respectively to two-photon loss, two-photon gain, and pure de-
phasing. This leads to an action contribution (see
Appendix A)

S(4)
Mark = −

∫
t
[ϕ̄cl ϕ̄cl ϕ̄cl ϕ̄q ϕ̄qϕ̄q] · AM ·

[
ϕclϕcl

ϕclϕq

ϕqϕq

]
(61)

with

AM =

⎡⎢⎢⎣
0 i K−

2 + K − iD
2

−i K−
2 + K −i(D + 2K+) −i K−

2 + K

− iD
2 i K−

2 + K 0

⎤⎥⎥⎦ (62)

and K− = Kloss − Kgain, K+ = Kloss + Kgain. To establish a
mapping with the path-integral description, we now have to
compare the above matrix AM with the matrix A of Eq. (39),
which occurs in the effective action of the mesoscopic QED
device to fourth order in g. Strikingly, AM and A cannot be
mapped in all situations. This is possible when the condition

CLdb = {(W4 = 0) and (Re[U4] = 0) and (V4 = χ∗
4 )} (63)

is fulfilled. Equation (63) represents a sufficient condition to
have a description of the cavity dynamics in terms of a Lind-
blad equation to fourth order in g. For a given mesoscopic
circuit, one can test this condition by evaluating numerically
the different fourth-order mesoscopic correlators. When con-
dition (63) is valid, one has

K = Re[χ4], (64)

Kloss/gain = ∓ Im[χ4] + Im[U4]

2
− Im[λ4]

4
, (65)
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and

D = −2 Im[U4]. (66)

Hence, Re[χ4] generates the effective Kerr interaction (59).
Remarkably, there exists an analogy between the expressions
of the rates for the single- and two-photon stochastic pro-
cesses, Eqs. (65) and Eqs. (57) and (58). Indeed, Im[χ4]
provides an opposite contribution to two-photon loss and
gain, like Im[χ2] does for single-photon processes. In con-
trast, Im[λ4] − 2 Im[U4] provides the same contribution to
two-photon loss and gain, like Im[λ2] does for single-photon
processes. The term in Im[U4] also contributes to photonic
dephasing (term in D). This last effect does not have any
analog to second order in g.

We could not find other contributions to the Hamiltonian
(59) and the jump operator ensemble P4 of Eq. (60) to ex-
tend the mapping between the path-integral approach and
the Lindblad description beyond the regime of validity of
Eq. (63). It would be interesting to find a systematic method
to derive a cavity evolution equation from the cavity action,
in order to establish the necessary conditions for having the
Lindblad description. Importantly, to fourth order in g, a
systematic mapping cannot be expected since the dynamics
of the cavity is not necessarily Markovian. For instance, there
can be “memory” effects due to a coherent exchange of energy
between the cavity and the mesoscopic circuit. This will be
illustrated in the case of a noninteracting double quantum dot
in Sec. IV E.

3. Summary: Total photonic Lindblad equation up to fourth order
in g in the interaction picture

In practice, it is convenient to study the cavity dynamics
in an interaction picture by considering the time evolution of
the cavity density operator ρI

cav(t ) = eiω0 â†âtρcav(t )e−iω0 â†ât . In
this picture, Eqs. (46)–(48), (59), and (60) lead to

∂ρI
cav(t )

∂t
= −i

[
H eff,I

cav , ρI
cav

]+∑
j

γ jDL̂ j

(
ρI

cav

)
(67)

with

H eff,I
cav = �ω0â†

I âI + iρpâ†2
I − iρ∗

pâ2
I + Kâ†2

I â2
I (68)

and dissipative processes (γ j, L̂ j ) ∈ PI with

PI = {(γloss, âI ), (γgain, â†
I ), (γp, âI + eiϕp â†

I ),(
Kloss, â2

I

)
,
(
Kgain, â†2

I

)
, (D, â†

I âI )
}

(69)

with âI = e−iω0t â.
Interestingly, Eq. (67) appears as a generalization to fourth

order in g of Eq. (12) obtained with the direct density matrix
approach. Indeed, one can check that these two equations
agree to second order in g, provided the assumption 0 = 0 of
Sec. II B is used. For this purpose, one must use the equalities

χ2 = χB(ω0) − χA(ω0) (70)

and

λ2|ω0 �=0 = 2i Im[χA(ω0) + χB(ω0)], (71)

which are derived in Appendix D.

IV. THE CASE OF A DOUBLE QUANTUM
DOT IN A CAVITY

A. Circuit description

We now apply the results of Sec. III to the case of a
spin-degenerate double quantum dot coupled to a microwave
cavity, represented schematically in Figs. 1(a) and 1(b). This
circuit encloses two quantum dots L and R with a tunnel cou-
pling tLR such that Ĥmeso includes a term tLRĉ†

LĉR + t∗
LRĉ†

RĉL.
The dot L(R) is contacted to a normal metal reservoir with a
tunnel rate �L(R). Equation (1) gives �d = 2π�k∈C |tk,d |2 for
d ∈ L(R). The rate �d can be considered as energy indepen-
dent in the framework of a wide-band approximation for the
reservoirs with |tk,d |2 independent of k. In the following, we
consider the case �L = �R = �. A bias voltage V is applied
between the two normal metal contacts. The orbital energy
ωL(R) of dot L(R) can be finely tuned with an electrostatic
gate. In principle, ωL(R) can also be shifted by a fraction of eV,
which depends on the ratio of the junctions capacitances. Here
we will assume that this shift is negligible [76]. We will also
disregard Coulomb interactions in the double dot. This basic
case presents essential ingredients of mesoscopic QED: The
cavity electric field can couple to both the internal transition
between the L and R orbitals of the double dot and to tunnel
transitions between the dots and the continuum of states of the
normal metal reservoirs.

B. Unperturbed mesoscopic Green’s function of the double dot

The unperturbed mesoscopic circuit Green’s function Ǧ of
the double dot, whose inverse appears in Eq. (21), must be
calculated in the absence of light/matter coupling (i.e., gL = 0
and gR = 0). It can be obtained by performing the inversion

Ǧ(ω) =
[

G̃−1
r (ω) M̃K

0̃ G̃−1
a (ω)

]−1

(72)

with [77,78]

G̃−1
r(a)(ω) =

[
ω − ωL ± i �

2 −tLR

−t∗
LR ω − ωR ± i �

2

]
(73)

and

M̃K =
[i�(1 − 2nF,L(ω)) 0

0 i�(1 − 2nF,R(ω))

]
. (74)

Equations (73) and (74) stem from the explicit definitions
(24)–(26) of the Green’s functions G̃r/a/K (ω) in terms of
fermionic operators and the expression of the double dot
circuit Hamiltonian [see Eq. (2) with gL(R) = 0]. Since we
consider a spin-degenerate situation with noninteracting quan-
tum dots, the spin degree of freedom is omitted in the above
orbital subspace structure. We will restore it later in numerical
evaluations by taking into account an implicit multiplication
by a factor 2 in the traces operator over the orbital index d .
The Fermi occupation function nF,L(R)(ω) = {1 + exp[(ω ∓
(eVb/2))/kBT ]}−1 of the L(R) contact is affected by the bias
voltage Vb. For later use, we also define the lesser self-energy
of the double dot [77]

�̃<(ω) =
[i�nF,L(ω) 0

0 i�nF,R(ω)

]
(75)
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and the light/matter coupling matrix

ǧ = diag[gL, gR, gL, gR]. (76)

C. Choice of parameters

For simplicity, we will use a nonzero gL and gR = 0,
which corresponds to DQD experiments realized so far, where
a very asymmetric microwave coupling to the two dots is
engineered. In experiments realized with standard coplanar
microwave resonators, the light matter coupling is typically
gL ≈ 0.001ω0 [18]. In a more recent design based on high ki-
netic inductance superconducting nanowire resonators, gL ≈
0.03ω0 was reached [28]. However, since the rms voltage of
these resonators is [79] Vrms = 20 μV � 4.9 GHz for ω0 ≈
4 GHz, one can reach gL ∼ ω0, in principle, by using a gal-
vanic coupling between one of the dots and the cavity. In
this work, we consider the regime 0 � � explored experi-
mentally, with � � 0.005ω0. We also use gL/ω0 � 0.125 and
βpg3

L/ω3
0 � 0.001.

Since we develop the cavity action with respect to gL

and βp, the amplitude of these two parameters must not be
too large. Besides, having � �= 0 is crucial for ensuring the
validity of our perturbation scheme. Indeed, in the absence of
dissipation, the correlators χ2 and χ4 are expected to diverge
at ωDQD = ω0 and/or ωDQD = 2ω0 [80]. However, giving a
simple analytic criterion for the regime of validity of our
development is very complex because of the many parameters
involved in the problem and because these parameters occur
in the system description through complicated functional de-
pendences (see the expressions of χ2, λ2, Ucl , Uq, χ4, λ4, U4,
V4, and W4). Alternatively, one can check that the next-order
mesoscopic correlators in g6 and g8 are negligible. This is
discussed in detail in Appendix H. We have checked that
we remain on the safe side with the parameters used in the
present work.

D. The low coupling limit: Squeezed photonic vacuum induced
by a double quantum dot

1. Evaluation of the Lindblad equation coefficients
to third order in gL

We have seen above that Ucl corresponds to a coherent
two-photon drive whereas Uq corresponds to an unusual form
of squeezing dissipation. In this section, we evaluate these
coefficients in the double dot case. Figure 3 shows |Ucl | and
|Uq| versus the dot orbital energies ωL and ωR, for moder-
ate tunnel rates � = 0.1ω0 and a moderate interdot hopping
tLR = 0.1ω0. We use a zero bias voltage in Figs. 3(a) and
3(b) and a nonzero bias voltage Vb = 1.5ω0 in Figs. 3(c) and
3(d). Both Ucl and Uq show strong resonances which appear as
diagonal lines in Fig. 3. These lines correspond to resonances
of the cavity with the double dot internal degree of freedom
[see Fig. 3(e)]. More precisely, the bonding and antibond-
ing states of the double dot, which result from the tunnel
coupling between the left and right orbitals, have energies
ω∓ = (ωL + ωR ∓

√
�ω2

LR + 4t2
LR )/2 with �ωLR = ωL − ωR

being the dots’ orbital detuning. In principle, single-photon
resonances ωDQD = ω0, with ωDQD = ω+ − ω− by definition,
are expected for �ωLR = ±R(ω0) with R(ω0) =

√
ω2

0 − 4t2
LR ,

FIG. 3. [(a)–(d)] Absolute values of the coefficients Ucl and Uq

which account for the effect of the 2ω0 drive of the cavity at order 3
in the photon/dot coupling gL , vs the dot orbital energies ωL and ωR.
Panels (a) and (b) correspond to a bias voltage Vb = 0 and panels
(c) and (d) to eVb = 1.5ω0. The other parameters are � = 0.1ω0,
tLR = 0.7ω0, kBT = 0.275ω0, gR = 0, and 0 = 5.10−5ω0. We use
a normalization factor U0 = g3

Lβp/ω
2
0. Panel (e) indicates the posi-

tions of the two-photon resonances ωDQD = 2ω0 between the dot
internal degree of freedom and the cavity, which are obtained for
�ωLR � ±R(2ω0). [(f), (g)] Examples of coherent and dissipative
processes in g3

L involving the 2ω0 drive, for �ωLR � ±R(2ω0). When
the internal transition of the double dot matches 2ω0, it can absorb
a 2ω0 photon. This enables the emission of two ω0 photons upon
electronic transitions which are internal to the dot (f) or involve the
normal metal contacts (g).

and two-photon resonances ωDQD = 2ω0 are expected for
�ωLR = ±R(2ω0). In Fig. 3, only the two-photon resonances
are visible because we use 2tLR > ω0 and therefore the con-
dition �ωLR = ±R(ω0) can never be satisfied. Figs. 3(f) and
3(g) show some examples of two-photon processes which are
expected to contribute to the resonances at �ωLR = ±R(2ω0).
A photon with frequency 2ω0 can be converted into two
photons with frequency ω0, in tunneling sequences which can
be either purely coherent [Fig. 3(f)] or dissipative [Fig. 3(f)].
Interestingly, the gate voltage area where the two-photon reso-
nances appear is modified when a nonzero bias voltage is used
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[Figs. 3(c) and 3(d)]. This is because the third-order processes
such as the one shown in Figs. 3(f) and 3(g) require that the
double dot bonding and antibonding states are occupied and
empty respectively, and the transport processes induced by
a nonzero Vb modify the occupation of these states. There-
fore, using a nonzero bias voltage can be useful to trigger
two-photon processes, especially in case of weak tunability
of ωL(R), which can happen for some types of quantum dots.
Interestingly, |Uq| also shows broad vertical resonances (for
ωL constant) outside of the gap between the �ωLR = R(2ω0)
and �ωLR = −R(2ω0) resonances [see Figs. 3(b) and 3(d)].
These resonances are due to tunneling between the left dot and
the left reservoir, due to the conditions gL �= 0 and � �= 0. As
expected, these resonances shift with Vb [compare Figs. 3(b)
and 3(d)] and get thinner when � decreases (not shown).
The transition between the right reservoir and the right dot
is not directly coupled to the cavity since gR = 0, but a
broad horizontal resonance also appears in Fig. 3(b) between
the lines �ωLR = R(2ω0) and �ωLR = −R(2ω0) because the
hybridization between the left and right orbitals enables tun-
neling to the right reservoir. Note that the horizontal and
vertical resonances induced by the presence of the normal
metal reservoirs are visible in |Uq| but not in |Ucl |. This can
be explained by the fact that tunneling to the normal metal
reservoirs is a stochastic effect which impacts more directly
the dissipative processes in γp (or Uq) than the coherent drive
in ρp generated by Ucl .

2. Stationary Wigner function of the cavity to third order in gL

To characterize the effects of the terms in Ucl and Uq,
we now calculate analytically the stationary cavity Wigner
function which follows from Eq. (67) to third order in g, i.e.,
assuming that the terms in K , Kloss, Kgain, and D are negligible.
The cavity Wigner function can be defined quite generally as

W (α, α∗, t ) = 1

π2

∫
d2βe(β∗α−α∗β )〈eβâ†

I −β∗
I âI 〉t . (77)

Following the method of Ref. [41], one can show that Eq. (67)
leads to the evolution equation

∂

∂t
W =

(
−i�ω0

[
∂

∂α∗ α∗ − ∂

∂α
α

])
W

+
[

γ+
2

∂

∂α

∂

∂α∗ + γ−
2

(
∂

∂α
α + ∂

∂α∗ α∗
)]

W

−
(

2ρp
∂

∂α
α∗ + 2ρ∗

p

∂

∂α∗ α

)
W

− γp

(
e−iϕp

2

∂2

∂α∗2
+ eiϕp

2

∂2

∂α2

)
W (78)

(see details in Appendix E). The term in γp in Eq. (78) de-
scribes a squeezing dissipation similar to Refs. [42,43]. In the
stationary regime, the solution of this equation is

W (α, α∗, t → +∞) = 1

π
√

A2 − 4|B|2
exp

(
P

A2 − 4|B|2
)

(79)

with

P = A|α|2 + B∗α2 + Bα∗2 (80)

and, to third order in g and first order in εp,

A = −γ+/2γ− (81)

and

B =
(

ρp
γ+
γ−

− γp
eiϕp

2

)/
(γ− + 2i�ω0). (82)

Equation (79) describes a squeezed cavity vacuum. The ma-
jor axis of the squeezed Gaussian is tilted by an angle
θ = arg[B]/2 from the Re[α] axis. The fields quadratures
along the θ and θ + π/2 angles have the variances �X± =√−(A/2) ± |B|. Strinkingly, from Eq. (82), the coherent drive
in ρp and the dissipation processes in γp can both contribute to
cavity squeezing and interfere constructively or destructively
depending on the value of the phase ϕp. Note that expression
(79) is valid for any type of mesoscopic circuit with internal
degrees of freedom coupled to the cavity electric field, as long
as (67) can be treated to third order in g. In Appendix F,
we study in more detail the influence of the double dot pa-
rameters on the photonic squeezing. Note that squeezing has
already been found in various mesoscopic QED configura-
tions [44–46].

E. Photonic Schrödinger cat states produced
by a double quantum dot

Obtaining Schrödinger cat states is useful to study the
quantum behavior of a device on a fundamental level as well
as to develop quantum computers. To obtain such states with
our device, we need to invoke the fourth-order terms in gL of
Eqs. (59) or (60), which will generate multistability in the cav-
ity behavior. For simplicity, we will perform the study of this
situation in the particular case where the system dynamics can
be described by a Lindblad equation. This limit presents the
advantage of remaining formally simple while demonstrating
interesting potentialities of mesoscopic QED.

1. Double dot correlation functions to fourth order in gL

In the double dot case, can the Lindblad description hold
to fourth order in gL, or equivalently, can the condition CLdb

of Eq. (63) be satisfied? To answer this question, we show
in Fig. 4 the dependence of the coefficients χ4, λ4, U4, V4,
and W4 on �ωLR, for a zero bias voltage (Vb = 0) and low
tunnel rates (� = 0.01ω0). Figures 4(a) and 4(c) show that
CLdb is not true when the double dot is resonant with the
cavity [ωDQD = ω0, i.e., �ωLR ∼ R(ω0)]. This is not surpris-
ing, because, in this case, real energy exchanges between the
double dot and the cavity are possible, leading to vacuum
Rabi oscillations in the case of low � and 0. Hence, for
the cavity, the mesoscopic circuit represents a “bath with
memory,” which is incompatible with an effective Markovian
dynamics. Another interesting regime is ωDQD = 2ω0, i.e.,
�ωLR ∼ ±R(2ω0), because the electronic correlation func-
tions in g4

L present resonances in this area, as already seen for
Ucl and Uq to third order in gL. The Lindblad condition (63)
is satisfied for �ωLR ∼ ±R(2ω0) with small values of � and
tLR, and Vb = 0 [see Figs. 4(b) and 3(d)] as well as a nonzero
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FIG. 4. Fourth-order electronic correlation functions vs �ωLR

calculated for ωav = (ωL + ωR )/2 = 0.989ω0, � = 0.01ω0, tLR =
0.15ω0, kBT = 0.3ω0, eVb = 0, gR = 0, βp = 0.35, and 0 =
10−4ω0. Panels (a) and (b) show the real parts of the correlators
and panels (c) and (d) show the imaginary parts. The left panels
show the area �ωLR ∼ R(ω0) (which implies ωDQD ∼ ω0) whereas
the right panels show �ωLR ∼ R(2ω0) (which implies ωDQD ∼ 2ω0).
All correlation functions are normalized by C0 = g4

L/ω
3
0. The full

and empty diamonds correspond to reference points for a comparison
with Fig. 5. The mapping condition (63) is satisfied when the red full
lines and black dashed lines coincide in the top and bottom panels
(χ∗

4 = V4), the green dashed line is close to 0 in both panels (W4 = 0),
and the yellow line is close to zero in the top panel (Re[U4] = 0).
This is true for panels (b) and (d).

Vb [see Figs. 5(a) and 5(b)]. More generally, the Lindblad
condition CLdb is satisfied when the cavity and double dot
are off-resonant (for single-photon exchange) and the dot-lead
and dot-dot couplings weak enough (�, t � ω0 − ωDQD).

One may attribute this result to the fact that, in this regime,
there can only be virtual energy exchanges between the cavity
and the double dot, which occur on a timescale which is
very short in comparison with the typical timescale for the
evolution of the cavity. The condition CLdb is not valid any-
more for higher tunnel rates � > 0.1ω0 [see Figs. 5(b) and
5(d)]. Indeed, in this case the resonances at �ωLR ∼ R(ω0)
and �ωLR ∼ R(2ω0) start overlapping and the distinction be-
tween real and virtual energy exchanges between the cavity
and the double dot becomes less clear. The condition CLdb

is not valid either for �ωLR ∼ R(2ω0) and tLR large (tLR >

0.3ω0) (not shown). This is why, in the rest of this section,
we will focus on the Lindbladian dynamics of the cavity
for �ωLR ∼ R(2ω0), tLR � 0.15ω0, and � � 0.1ω0. Note that
for � → 0, the imaginary part of the electronic correlators
vanishes [see the very left of Fig. 5(d) for the onset of this
effect]. Since we are interested in the effect of a genuinely
dissipative mesoscopic circuit, we will only consider the case
� � 0.005ω0 in the following. In particular, we will consider

FIG. 5. Fourth-order electronic correlation functions vs Vb for
� = 0.01ω0 [(a), (c)] and vs � for Vb = 0 [(b), (d)]. We use ωav =
0.989ω0 and �ωLR = 1.967ω0. The other parameters are the same as
in Fig. 4. The diamonds correspond to reference points identical to
those of Fig. 4.

the working point � � 0.01ω0 where | Im[χ4]| and | Im[λ4]|
have a local maximum [see very left of Fig. 5(d)]. Figure 6
represents some possible photonic processes at fourth order
in gL in this limit [see Figs. 6(a), 6(b1), 6(b2), 6(b3), and
6(c)], for different configurations of dot orbital energies and
bias voltage. It also shows Kloss and Kgain versus �ωLR and
Vb for the parameters of Figs. 4 and 5 with � = 0.01ω0

and �ωLR = R(2ω0). In these conditions, one can check that
for Vb = 0, the two-photon stochastic dissipation rate Kloss is
the dominant stochastic rate in Eq. (69), i.e., Kgain, D, γloss,
and γgain are much weaker. The rate Kloss corresponds to
the type of processes represented in Figs. 6(b1) and 6(b2),
where two photons can be absorbed simultaneously by the
double dot circuit because the double dot is resonant with
2ω0, and this absorption is made irreversible by the presence
of the normal metal reservoirs. The working point ωav = 0
and �ωLR = R(2ω0) corresponds to a maximal Kloss for Vb =
0 [see Fig. 6(b2)]. For comparison, in the configuration of
Fig. 6(b1), Kloss is weaker because the filling of the lower
dot level is less efficient. Remarkably, a nonzero Vb can be
used to obtain a nonzero Kgain and change the relative values
of Kloss and Kgain (see bottom right panel of Fig. 6). For
Vb < 0, Kloss increases because the filling of the lower dot
level and/or the emptying of the upper dot level by the normal
metal reservoirs becomes more efficient and this enhances
the “reset” of the double dot between two-photon pair ab-
sorption processes [Fig. 6(b3)]. For Vb > 0 and sufficiently
large, the filling of the upper dot level and emptying of the
lower dot level are favored, which causes photon pair emission
processes [see Fig. 6(c)] while Kloss vanishes. In this limit,
the emission of photon pairs is obtained without any need
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FIG. 6. Example of processes at fourth order in the light/matter
coupling gL . Panel (a) shows a fully coherent process which involves
only the internal transition of the double dot and can contribute to the
term in K . Panels (b1), (b2), and (b3) show processes which involve
irreversible tunneling to the normal metal reservoirs and contribute
to Kloss for different configurations of dot orbital energies and bias
voltage. Panel (c) shows a process which contributes to Kgain in the
presence of a finite bias voltage. The left bottom plot shows Kloss vs
ωLR for two difference values of ωav , i.e., ωav = R(2ω0)/2 (full red
line) and ωav = 0 (dashed red line). The right bottom plot shows Kloss

(red full line) and Kgain (blue full line) vs Vb for ωav = R(2ω0)/2. The
same parameters as in Figs. 4 and 5 are used.

for an ac cavity excitation (εp = 0) because the mesoscopic
bias in Vb provides the energy for this process. The Kerr
interaction K , which corresponds to the processes of Fig. 6(a),
varies like Re[χ4], which is represented in Figs. 4 and 5.
Strikingly, for Vb = 0, K cancels at �ωLR = R(2ω0), where
Kloss is maximal [see Figs. 4(b) and 4(b)]. Importantly, in all
these plots, the order of magnitude of Kloss, Kgain, and K is
given by the constant C0 = g4

L/ω3
0. Using the typical value

ω0 = 2π × 5 GHz and the ratio gL = 0.125 which is strong
but experimentally feasible, in principle (see Sec. IV C), one
finds C0 = 2π × 1.2 MHz. We will see in next sections that
this is sufficient to obtain sizable nonlinear signatures in the
cavity response.

2. Average photon number

Before studying the full quantum behavior of the cavity
through the Wigner function W , it is useful to study the mean
value of 〈â〉 which can be expressed analytically. This can
reveal a multistable behavior which is expected for driven
nonlinear systems [41] and which will be useful to obtain pho-
tonic Schrödinger cats. From the Lindblad Eq. (46) with the
fourth-order terms (59) and (60) included and 〈â〉 = αave−iω0t ,

one gets

Uclα
∗
av −

(
0 + �0,4

2
+ iχ2 + 2iχ4|αav|2

)
αav = 0 (83)

with

�0,4 = Im[λ4 − 4(χ4 + U4)] (84)

being the renormalization of the cavity linewidth to fourth or-
der in gL. Equation (83) bears similarities with the result given
by semiclassical approaches (see Appendix B), but the term
�0,4 is specific to a full quantum-mechanical treatment.
The solution αav = 0 is obvious. However, in principle,
Eq. (83) can also give nonzero values of αav = α±

av given by

α±
av = 1

|χ4|

√
− Re

[
χ ren

2 χ∗
4

]± √
�

2
(85)

with

� = |χ4|2|Ucl |2 − Im
[
χ ren

2 χ∗
4

]2
(86)

and χ ren
2 = χ2 − i(0 + �0,4)/2. Importantly, αav must be

real. Hence, from Eq. (85) for low amplitudes of βp, the
only possible solution is αav = 0 since � < 0. For a stronger
drive (|Ucl | > | Im [χ ren

2 χ∗
4 ]/χ4|), � becomes positive. Then,

the comparison between
√

� and ± Re[χ∗
4 χ ren

2 ] sets whether
there are 0, 1, or 2 values of αav allowed by Eq. (85). Finally,
two values for αav are possible for each value of ϕav , i.e.,

ϕ±
av = −1

2
arg

[
iχ ren

2 + 2iχ4α
± 2
av

Ucl

]
+ nπ (87)

with n ∈ {0, 1}. In some cases, we find that α+
av and α−

av can be
both solutions to Eq. (83). However, for simplicity, we focus
below on the situation of moderate interdot hopping (tLR =
0.15ω0), moderate tunnel rates (0.005ω0 � � � 0.1ω0), and
a zero bias voltage (Vb = 0), where one has typically a single
nonzero solution α+

av . In particular, for the parameters consid-
ered in Fig. 7, one has |Ucl | � |Uq|, K = Re[χ4] � − Im[χ4],
and Im[χ4] < 0. Therefore, one has α+

av � α+
av,I with

α+
av,I =

√√√√ Im
[
χ ren

2

]+√|Ucl |2 − Re
[
χ ren

2

]2
−2 Im[χ4]

. (88)

This quantity is represented with black crosses in Fig. 7
and is in excellent agreement with the exact α+

av represented
with a cyan line. Equation (88) shows the crucial role of the
two-photon dissipation provided by the term in Im[χ4] for
the creation of nonzero photon states (if one had |χ4| → 0,
α+

av would diverge and thus become physically irrelevant). Of
course, it is also necessary to have a high enough Ucl . A crude
approximation is obtained by using χ ren

2 = 0, which yields

α+
av,II =

√
2|ρp|

Kloss − Kgain
(89)

(see red crosses in Fig. 7). This expression shows well that
the nonzero α+

av results from a balance between two-photon
coherent injection and two-photon dissipation. In contrast,
the effect of the Hamiltonian Kerr term K is negligible in
Fig. 7. The comparison between α+

av,I and α+
av,II shows that the
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FIG. 7. Various characteristics of the cavity response vs the tun-
nel rate to the normal metal reservoirs � in the presence of the cavity
drive in εp treated at fourth order in gL . We use ωav = 0.989ω0,
gL = 0.125ω0, and �ωLR = R(2ω0) � 1.978ω0. The other parame-
ters are the same as in Fig. 4. The full cyan line, the black crosses,
and the red crosses show the semiclassical photon amplitudes α+

av

and its approximations α+
av,I and α+

av,II of Eqs. (85), (88), and (89),
respectively. The green dots show the square root of the average
photon number N in the cavity in stationary conditions, obtained
from Eq. (67). The magenta dots show the maximum negativity of
the Wigner function over time t and over the quadratures α, α∗ for the
protocol discussed in Sec. IV E 3 where the cavity drive is switched
on suddenly.

single-photon processes described by χ ren
2 slightly decrease

the amplitude of α+
av and the range of � for which cavity

bistability is obtained. Note that, in principle, one has to study
the stability of the α±

av solutions to determine their relevance.
We will omit such a study because the cavity Wigner function
calculated in Sec. IV E 3 provides this information for the
regime we are interested in.

3. Cavity Wigner function to fourth order in gL in
nonstationary conditions

So far, we have studied the cavity Wigner function W
in stationary conditions. We now assume that the cavity is
initially in the stationary vacuum state obtained in the absence
of the microwave drive (βp = 0). We want to study the time
evolution of W when we switch on βp at t = 0. However,
since we have derived the terms in βp in Eq. (67) in stationary
conditions [see Eq. (3) and Appendix A], one has to be careful
about the validity of this equation which could be jeopardized
by the sudden rise of βp. In fact, Eq. (67) will still be valid
in the transient regime if we impose two constraints on the
rise time of βp. On the one hand, we will assume that this rise
time is much longer that the correlation time ∼1/� associated
to tunneling to the mesoscopic reservoirs, so that the terms
Ucl and Uq in the cavity effective action can still be defined at
any time from Eqs. (33) and (34) with a prefactor βp which
depends on t . On the other hand, we will assume that the
rise time of βp is much faster than the cavity characteristic
evolution time [visible in Fig. 8(c)]. In these conditions, it is
sufficient to use the Lindblad Eq. (67) with terms (59) and

FIG. 8. [(a), (b)] Wigner function W of the cavity for tunnel rates
� = 0.005ω0 and � = 0.01ω0 and different times t after switching
on the cavity drive in εp (tω0 = 1740, 2990, 6130 from top to bot-
tom). The other parameters are the same as in Fig. 7. (c) Minimum
M(t ) of the Wigner function W over the field quadratures, vs t , for
the same protocol as in panels (a) and (b), and different tunnel rates.
The black and red curves correspond to panels (a) and (b) respec-
tively. (d) Relaxation of M(t ) vs time, starting from the initial state
shown in panel (a) at t = 1740/ω0, for different values of �.

(60) which depend on βp(t ) = βpθ (t ) with θ (t ) being the
Heavidside function.

We compute W (t ) numerically by using the function “me-
solve” from the qutip package to solve Eq. (67) [81]. For
moderate tunnel rates, the cavity evolves toward a coherent
superposition of two coherent states [see Figs. 8(a) and 8(b)].
The nonclassicality of W (t ) is revealed by the red areas where
W (t ) < 0. At large times, there remains only two positive
spots in the Wigner function, which are approximately cen-
tered on the average values α+

aveiϕ+
av and −α+

aveiϕ+
av determined

in Sec. IV E 2. Therefore, these two solutions represent cavity
stable states in stationary conditions. Accordingly, we have
checked that the square root

√
N of the average number

N = 〈â†â〉 of photons in the cavity calculated numerically for
t → +∞ matches α+

av when the tunnel rate � is small (see
green dots in Fig. 7). For higher tunnel rates, this is not the
case anymore because α+

av = 0 whereas W (t ) corresponds to
a squeezed vacuum. From the case �/ω0 = 0.005 [Fig. 8(a)]
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to the case �/ω0 = 0.01 [Fig. 8(b)], the semiclassical min-
ima of the Wigner function W (t ) keep approximately the
same position in the quadratures space, because |ρp| and Kloss

are both approximately divided by two, and because from
Eq. (89) it is the ratio between Kloss and |ρp| which roughly
determines the value of |αav| (one has |ρp| = 7.710−4ω0 and
Kloss = 5.410−4ω0 in the black case, and |ρp| = 3.7 10−4ω0,
Kloss = 2.7 10−4ω0 in the red case, and Kgain is negligible in
both cases).

Figure 8(c) represents the time evolution of the minimum
negativity M(t ) = minα,α∗ [W (t )] of the Wigner function W (t )
over the field quadratures (α, α∗). When � increases, the
minimum of M(t ) over time is reached later. This is be-
cause, from the black curve (�/ω0 = 0.005) to the red curve
(�/ω0 = 0.1), the rate Kloss, which determines the speed at
which the system is attracted to its two semiclassical minima
[6], is divided by two. Looking at Fig. 8(c), one could believe
that the Wigner function negativity relaxes faster in the black
case, but this is an impression which is due to the fact that the
minimum of M(t ) is reached earlier. For a more rigorous com-
parison of relaxation in the different cases, we have plotted, in
Fig. 8(d), M(t ) for different values of � when the cavity is
initialized in all cases in the state corresponding to Fig. 8(a),
upper graph, marked with a pink star, at time t = 1740/ω0.
One can see that the relaxation of M(t ) is similar in all cases,
because this relaxation is set by the value of γ 0

loss (see Ref. [6]),
which varies only weakly from one case to the other (for
instance, one has γ 0

loss = 1.10 10−4ω0 and γ 0
loss = 1.1610−4ω0

in the black and red cases, respectively). The facts mentioned
above that ρp and Kloss vary a lot from the black to the red
case whereas γ 0

loss is approximately unchanged deserves an
explanation. The parameters ρp and Kloss describe two-photon
resonance effects and the system is tuned at the two-photon
resonant point ωDQD = 2ω0 where ρp and Kloss present strong
resonances. They are thus very sensitive to the value of � at
this working point. This is not the case for the parameter γ 0

loss
because it describes a single-photon effect which presents a
resonance only at ωDQD = ω0.

Figure 7 shows with magenta dots the minimum negativity
mint [M(t )] of W (t ) over α, α∗ and the time t , as a function
of �. This quantity decreases more quickly with � than the
amplitude of the semiclassical solution α+

av . However, it is
striking that a genuinely dissipative circuit such as a dou-
ble quantum dot circuit is able to induce nonclassical cavity
states thanks to the two-photon irreversible tunneling pro-
cesses represented by Kloss. Note that in Ref. [6], a two-photon
dissipation term similar to ρp and a two-photon drive term
similar to Kloss were obtained artificially by using an auxiliary
cavity and two microwave tones. Photonic Schrödinger cats
were obtained experimentally due to these effects. In our case,
a single drive at 2ω0 and the inclusion of a double dot in a
single cavity are used to obtain these effects. For a typical
cavity frequency ω0 ≈ 2π × 5 GHz, the required tunnel rates
� ≈ 0.01ω0 correspond to 0.2 μeV, a value which can be
reached in practice [24,83]. With the simple protocol con-
sidered in this section, the photonic quantum superposition
survives for a duration of the order of 8000/ω0 � 0.25 μs
which is much longer than the timescale 1/� = 100/ω0 �
3 ns associated to dissipative tunneling between the dots and
the normal reservoirs.

V. DISCUSSION

In this section, we discuss our results in the light of var-
ious recent references. Interestingly, Ref. [82] has proposed
a method to combine the Lindblad description of a cavity
coupled to a DQD and the Keldysh description of the dissi-
pation provided by a bath of phonons coupled to the DQD.
The aim of Ref. [82] is to study photon emission in the
off-resonant regime ωDQD �= ω0 with the cavity driven at a
frequency ωd ∼ ω0 and the DQD dc voltage biased. Two-
photon processes in K , Kloss, Kgain, and D are disregarded.
Although this situation is physically different from the one
we consider in Sec. IV, it is interesting to draw a technical
comparison with our approach. In Ref. [82], the Keldysh
framework is used to perform a diagrammatic calculation of
the phonon-induced rates in the effective Lindblad equation of
the cavity and DQD. This calculation is perturbative with re-
spect to both the cavity-DQD coupling and the DQD-phonon
bath coupling. Besides, the intrinsic cavity damping and the
damping due to the fermionic leads of the DQD are implicitly
assumed to be very small, so that they do not enter in the
Keldysh diagrammatics and are added in the final Lindblad
equation, as independent terms. Consequently, some of the
phonon-induced rates have a denominator in (ωDQD ± ω0)2,
or (ω2

DQD − ω2
0 )2, and thus diverge at ωDQD = ω0 (see Eq. (22)

and Fig. 4 of Ref. [82]). A regularization of these divergences
by the system baths is missing and would require higher order
perturbation series. In contrast, our approach is perturbative
only in the cavity–double dot coupling. We do not have di-
vergences in our effective rates at ωDQD = ω0 or ωDQD = 2ω0

because these are naturally regularized by the tunneling rate
� to the fermionic leads, which appears in the mesoscopic
Green’s functions (72)–(74). This is essential to depict situa-
tions such as the one considered in Sec. IV.

In Sec. IV E 3, we have considered a system working point
�ωLR = R(2ω0) such that the effective Kerr nonlinearity of
the cavity K vanishes, and the effective two-photon dissipa-
tion Kloss and two-photon drive in ρp generate Schrödinger
cats in a transient regime. Similarly, it has been shown experi-
mentally with Josephson circuits that the combination of Kloss

and ρp enables the autonomous preparation of Schrödinger cat
states [6,7], but also the protection of these cats again certain
types of decoherence [50]. This represents an important re-
search direction in the context of the development of quantum
computing schemes which require to fight calculation errors
caused by decoherence. A cavity coupled to a double quan-
tum dot could represent an alternative way to implement this
“Kloss&ρp” qubit scheme. Interestingly, the preparation and
protection of Schrödinger cat states can also be obtained in
Josephson circuits by combing a Kerr nonlinearity K with
ρp [47–49]. In our device, the required K can be obtained
simultaneously with the two-photon loss Kloss (K �= 0 and
Kloss �= 0) or almost separately (K �= 0, Kloss → 0) by work-
ing slightly away from the �ωLR = R(2ω0) resonance [see
Figs. 4(b) and 4(d) and Eqs. (64) and (65)]. Therefore, it
would also be interesting to investigate the potentialities of the
cavity + double dot device to implement the “K&ρp” qubit
scheme or even a hybrid “Kloss&K&ρp” qubit scheme.

Note that our formalism is suitable for describing ex-
periments which involve quantum conductors with internal
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degrees of freedom coupled to the cavity electric field. For
the particular case of quantum conductors with no internal
degrees of freedom, such as tunnel junctions or quantum point
contacts, see, for instance, Refs. [44,46] for second-order ef-
fects in the light/matter coupling, and Ref. [45] for higher
orders. In these references, the coupling of the source or drain
of the conductors to the cavity electric field is favored by
a galvanic coupling scheme (i.e., the source or drain of the
device is directly connected to the cavity central conductor).
We do not consider such a coupling but rather an electrostatic
coupling of the mesoscopic circuit internal degrees of freedom
to the cavity electric field because this is favored by most
designs used in mesoscopic QED experiments where ac gates
are placed between the circuit internal sites and the cavity cen-
tral conductor. Our approach nevertheless takes into account
photo-assisted dot-lead tunneling. For instance, in Ref. [23],
the coefficient χ2 reveals signatures of photo-assisted tunnel-
ing between a quantum dot and a superconducting contact.

VI. CONCLUSION

In this work, we have developed a quantum nonlinear de-
scription of mesoscopic QED experiments. More precisely,
we have used a quantum path-integral approach to express the
effective action of a microwave cavity with bare frequency
ω0, coupled to a generic mesoscopic circuit, and excited by a
microwave drive at frequency 2ω0. We have developed this
action to fourth order in the cavity/circuit coupling. This
development reveals photon/photon interactions mediated by
the mesoscopic circuit. We have investigated the possibility to
establish a Lindblad description of the cavity dynamics from
the cavity action. This is always possible to third order in the
light matter coupling. In this limit, the cavity is subject to a
coherent photon pair drive [41] and a squeezing dissipation
[42,43] mediated by the mesoscopic circuit. To fourth order
in the light/matter coupling, we identify sufficient conditions
in which a Markovian Lindblad description of the cavity dy-
namics is still possible. This condition has to be tested for a
given circuit configuration by evaluating numerically differ-
ent mesoscopic correlators. In the Lindblad framework, the
mesoscopic circuit enables Kerr photon/photon interactions
and two-photon loss/gain stochastic processes.

We have shown an example of application of our formalism
to the case of a resonator coupled to a double quantum dot
with normal metal contacts. The Lindblad condition is sat-
isfied when the cavity and double dot are off-resonant (for
single-photon exchange) and the dot-lead and dot-dot cou-
plings weak enough (�, t � ω0 − ωDQD). We have studied
how nonlinear effects such as cavity squeezing and photonic
Schrödinger cat states can occur, with a nontrivial influence
of dissipative mesoscopic transport. In particular, quantum
superpositions of photonic states can occur thanks to two-
photon dissipation caused by tunneling processes inside the
double dot circuit. The cavity squeezing effect also depends
nontrivially on the dissipative tunnel rates between the dots
and normal reservoirs (see Appendix F).

We anticipate that the quantum regime of mesoscopic QED
conceals many more surprises which our approach can reveal.
Indeed, our method can be extended straightforwardly to more
complex circuit geometries with multiple quantum dots and

ferromagnetic or superconducting reservoirs. The effect of
Coulomb interactions inside the quantum dots also represents
a rich field of investigation [66]. For simplicity, we have stud-
ied Lindbladian situations, which are Markovian by definition.
However, our cavity action fully includes non-Markovian ef-
fects and it could be exploited in the non-Markovian regime
by using a more general technical framework [40]. Therefore,
our work should be instrumental to develop mesoscopic QED
in the quantum nonlinear regime. Interestingly, the description
of the effective dynamics of microwave cavities coupled to
dissipative Josephson circuits is also an important topic which
lacks of systematic approaches beyond the second order in the
light/matter interaction [84,85]. Our path-integral approach
could be used to tackle this problem.
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APPENDIX A: DETAILS ON THE DERIVATION OF THE
CAVITY EFFECTIVE ACTION

Here, we give more details on the derivation of Eqs. (28)–
(45). The drive at frequency 2ω0 is not resonant with the
cavity and will affect the photonic dynamics only indirectly
thanks to the nonlinearity of the mesoscopic circuit. To em-
phasize this fact and simplify the calculation of the cavity
effective action, it is convenient to make a displacement of
the cavity fields[

φcl (t )
φq(t )

]
=
[
ϕcl (t )
ϕq(t )

]
+
[∫

ω

√
2ε∗

ac(ω)GA
0 (ω)eiωt

0

]
(A1)

with the cavity drive εac defined temporally in Eq. (3) and GA
0

being the bare cavity Green’s function defined in Eq. (37). In
this framework, the action of the system becomes

Z =
∫

d[φ̄, φ]eiS0
cav (φ̄,φ)

∫
d[ψ̄, ψ]eiSmeso(ϕ̄,ϕ,ψ̄,ψ ) (A2)

with S0
cav defined in Eq. (19),

Smeso(φ̄, φ, ψ̄, ψ ) =
∫

t,t ′
ψ̄ (t )[Ǧ−1(t, t ′) − v̌

φ̄,φ
� (t, t ′)]ψ (t ′),

(A3)

v̌
φ̄,φ
� (t, t ′) = [v̌(φ̄, φ, t ) + v̌ac,1(t ) + v̌

†
ac,1(t )]δ(t − t ′), (A4)

and

v̌ac,1(t ) = ǧ

2

[
εpGR

0 (2ω0)e−i2ω0t + ε∗
pGR

0 (−2ω0)ei2ω0t
]
. (A5)

In Eqs. (A3)–(A5), the ac drive now modifies directly the
potential seen by the electrons of the mesoscopic circuit. The
coefficients in GR

0 in Eq. (A5) express how the ac drive is seen
by electrons after a transduction by the cavity. They lead to
the occurrence of the factor t0 in Eq. (35).

To eliminate the electronic degrees of freedom from
Eq. (A2), we perform a Gaussian integration of (A2) with
respect to the ψ̄ and ψ fields. This Gaussian integration is
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possible because, in the absence of Coulomb interactions, the
system action is quadratic with respect to the electronic fields.
This gives

Z =
∫

d[φ̄, φ]eiS0
cav (φ̄,φ)�(φ̄, φ) (A6)

with

�(φ̄, φ) = det
t,k,d

[1̌ − m̌] (A7)

and

m̌ = Ǧ ◦ v̌
φ̄,φ
� . (A8)

Above, ◦ denotes a convolution on the time variables and a
matrix product on the mesoscopic orbital degrees of freedom,
and dett,k,d is a generalized determinant on the time, Keldysh,
and orbital spaces which is defined such that [86]

ln[�(φ̄, φ)]

= −
∫

t
Tr
k,d

[
m̌(t, t ) + m̌ ◦ m̌|t,t

2
+ m̌ ◦ m̌ ◦ m̌|t,t

3
+ · · ·

]
.

(A9)

In this work, we build a perturbation theory where the devel-
opment parameter is the matricial function m̌ which appears
in Eq. (A9).

The next step is to express Eq. (A9) in terms of dot Green’s
functions. This can generate many terms with a complex
structure, but significant simplifications can be performed in
the limit where the dressed cavity has a sufficient finesse.
For brevity, we only discuss the development of the first- and
second-order terms

C1 = −
∫

t
Tr
k,d

m̌(t, t )εp=0 (A10)

and

C2 = −
∫

t
Tr
k,d

[ m̌ ◦ m̌|t,t/2]
εp=0 (A11)

in Eq. (A9), in the absence of the 2ω0 drive (εp = 0).

Let us first calculate C1. From the definitions of m̌ and v̌
φ̄,φ
� ,

one has

C1 = −
∫

t,t ′
Tr
k,d

[Ǧ(t, t ′)v̌(φ̄, φ, t ′)]. (A12)

Then, using the definition (27) of v̌ in terms of fermionic fields
and the expression (23) of Ǧ in terms of Keldysh components,
we obtain

−
√

2C1 =
∑

d

gd
(
G̃d,d

r (t = 0) + G̃d,d
a (t = 0)

)

×
∫

t
(ϕ̄cl (t ) + ϕcl (t ))

+
∑

d

gd G̃d,d
K (t = 0)

∫
t

(ϕ̄q(t ) + ϕq(t )).

Using the general relation [87] G̃d,d
r (t = 0) + G̃d,d

a (t = 0) =
0 and the definition (26) of G̃d,d

K , one can check

C1 = − i√
2

∑
d

gd (2nd,0 − 1)
∫

t
(ϕ̄q(t ) + ϕq(t )), (A13)

where nd,0 = 〈ĉ†
d ĉd〉ǧ=0 is the average occupation of level d

in the absence of light/matter coupling. A comparison of this
term with Eq. (20) shows that C1 corresponds to a cavity dc
drive

H eff
cav,1 =

∑
d

gd

(
nd,0 − 1

2

)
(â† + â), (A14)

which can be disregarded in our study due to its nonresonant
nature.

We now calculate C2. From the definitions of m̌ and v̌
φ̄,φ
� ,

one has

C2 = −
∫

t,t ′
Tr
k,d

[Ǧ(t, t ′)v̌(φ̄, φ, t ′)Ǧ(t ′, t )v̌(φ̄, φ, t )]/4.

(A15)

Using the definition (27) of v̌ in terms of fermionic fields and
introducing Fourier transforms, one gets

C2 = −
∫∫

ω1,ω2

Tr
k,d

[Ǧ(ω1)ǧφ̄� (ω3 − ω1)Ǧ(ω3)

× ǧφ̄� (ω1 − ω3)]/4

−
∫∫

ω1,ω2

Tr
k,d

[Ǧ(ω1)ǧφ̄� (ω3 − ω1)Ǧ(ω3)ǧφ� (ω3 − ω1)]/4

−
∫∫

ω1,ω2

Tr
k,d

[Ǧ(ω1)ǧφ� (ω1 − ω3)Ǧ(ω3)ǧφ̄� (ω1 − ω3)]/4

−
∫∫

ω1,ω2

Tr
k,d

[Ǧ(ω1)ǧφ� (ω1 − ω3)Ǧ(ω3)ǧφ� (ω3 − ω1)]/4

(A16)

with

φ� (ω3 − ω1) = φcl (ω3 − ω1)σ̌0 + φq(ω3 − ω1)σ̌1 (A17)

and

φ̄� (ω3 − ω1) = φ̄cl (ω3 − ω1)σ̌0 + φ̄q(ω3 − ω1)σ̌1. (A18)

Assuming that the dressed cavity has a good quality factor
(app

0 = 0 + �0 � ω0 has to be checked a posteriori), the
terms φ� (ω1 − ω3) and φ� (ω3 − ω1) have a weak overlap and
therefore the first and fourth lines of the above expression,
which contains products φ̄cl (q)φ̄cl[q] or φcl (q)φcl (q), are negligi-
ble. A change of frequency variables in the remaining terms
(which contain contributions in φ̄cl (q)φcl[q] only) gives

C2 = −
∫∫

ω1,ω

Tr
k,d

[Ǧ(ω1)ǧφ̄� (ω)Ǧ(ω + ω1)ǧφ� (ω)]/4

−
∫∫

ω1,ω

Tr
k,d

[Ǧ(ω1)ǧφ� (ω)Ǧ(ω1 − ω)ǧφ̄� (ω)]/4.

(A19)

Then, we assume that the dressed cavity linewidth is much
smaller than the mesoscopic resonances linewidth (0 +
�0 � � has to be checked a posteriori, with � the order of
magnitude of the tunnel rates to the mesoscopic reservoirs).
In this case, the terms in Ǧ in the above integral vary very
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slowly in the frequency area ω0 − 
app
0 � ω � ω0 + 

app
0 ,

where φ� (ω) and φ̄� (ω) contribute significantly to the cavity
action, and one can thus use ω � ω0 in these terms. This gives

C2 = −
∫∫

ω1,ω

Tr
k,d

[Ǧ(ω)ǧφ̄� (ω1)Ǧ(ω0 + ω)ǧφ� (ω1)]/4

−
∫∫

ω1,ω

Tr
k,d

[Ǧ(ω)ǧφ� (ω1)Ǧ(ω − ω0)ǧφ̄� (ω1)]/4.

(A20)

Finally, we can come back to the time representation for the
cavity fields

C2 = −
∫∫

ω,t
Tr
k,d

[Ǧ(ω)ǧφ̄� (t )Ǧ(ω0 + ω)ǧφ� (t )]/4

−
∫∫

ω,ω

Tr
k,d

[Ǧ(ω)ǧφ� (t )Ǧ(ω − ω0)ǧφ̄� (t )]/4. (A21)

A rearrangement of these terms leads to an action contribution
similar to that of Eq. (29), with fields ϕ̄, ϕ replaced by φ̄, φ.
A similar treatment can be performed for higher order terms
of Eq. (A9) and terms which depend on εp. For instance,
the contribution in g4 corresponds to six terms similar to
those of Eq. (A21). We finally obtain, after some algebra
and term regrouping, a cavity effective Schwinger-Keldysh
partition function Z = ∫ d[φ̄, φ]eiSeff

cav (φ̄,φ) with Seff
cav defined in

Eq. (28). The final step is to come back to an expression of the
cavity action with the fields ϕ̄, ϕ. We disregard terms of order
g4εp, since we assume that both g4 and εp are small. In this
case, one obtains Z = ∫ d[ϕ̄, ϕ]ei(Seff

cav (ϕ̄,ϕ)+�S̃ac (ϕ̄,ϕ)), where
�S̃ac(ϕ̄, ϕ) is a drive term similar to the term �Sac(ϕ̄, ϕ) of
Eq. (20), but with an amplitude εp which has a renormal-
ization in g2εp. However, since this ac drive is nonresonant
with the cavity, one can disregard �S̃ac. Therefore, one can
use Z � ∫ d[ϕ̄, ϕ] exp[iSeff

cav(ϕ̄, ϕ)]. In particular, one gets the
expression

A = i

[Ncl,cl,cl,cl Ncl,cl,cl,q Ncl,cl,q,q

Ncl,q,cl,cl Ncl,q,cl,q Ncl,q,q,q

Nq,q,cl,cl Nq,q,cl,q Nq,q,q,q

]
(A22)

for the matrix which occurs in the expression (38), with coef-
ficients N f , f ′,l,l ′ defined in Eq. (45). Using the cyclic property
of the trace in Eq. (45) and the properties G̃K (ω) = −G̃K (ω)†

and G̃a(ω) = G̃r (ω)†, one can check that there exists relations
between the different components of A in Eq. (A22) so that
one finally gets expression (39).

APPENDIX B: SEMICLASSICAL DESCRIPTION OF
MESOSCOPIC QED

1. Direct semiclassical description of mesoscopic QED

It is useful to reconsider the problem of mesoscopic QED
with a direct semiclassical approach (without the path-integral
formulation) in order to gain more physical insight into the
new coefficients χ4 and Ucl which appear in Eqs. (32) and
(38). Equation (1) gives the photonic equation of motion in

the Heisenberg picture:

d

dt
â(t ) = −iω0â(t ) − i

h̄

∑
d

gd n̂d (t ) − 0

2
â(t ) − iεac(t ).

(B1)

In a semiclassical picture, the operator â(t ) in the above equa-
tion can be treated as a classical quantity a(t ) = â(t ) = 〈â(t )〉.
In this case, the average electron number operator 〈n̂d (t )〉 =
〈ĉ†

d (t )ĉd (t )〉 in orbital d can be calculated as the response to
the “classical” excitations gd ′ (a†(t ) + a(t )), with d ′ ∈ [1, N],
which we will write in a matrix form as

Ẽac(t ) = g̃(a†(t ) + a(t )). (B2)

At this stage, although a(t ) is expected to have a dominant
contribution in e−iω0t , it is essential to take into account weak
components in e±i2ω0t to describe the effect of the drive in
βp on 〈n̂d (t )〉. It is sufficient to estimate these components
from Eq. (B1) treated to order 0 in g, because this is enough
to obtain a βpg3 contribution to the photonic field, as we will
see below. Hence, we use

Ẽac(t ) = g̃(αe−iω0t + α∗eiω0t + Re[t0εpe−i2ω0t/2]) (B3)

with t0 defined by Eq. (36). The amplitude α is not specified
since it must be determined self-consistently from Eq. (B1)
and the response of the average dot charges to Ẽac(t ). From
the Keldysh description of mesoscopic transport [77], this
response is given by∑

d

gd〈n̂d (t )〉 = −iTrd [g̃G̃<(t, t )], (B4)

where the lesser Green’s function of the dots G̃< in the pres-
ence of Ẽac(t ) can be expressed as

G̃<(t, t ) =
∫∫∫

dω

2π
dt1dt2e−iω(t1−t2 )

× G̃r (t, t1)�̃<(ω)G̃a(t2, t ). (B5)

Above, �̃<(ω) is the lesser self-energy of the dots illustrated
in Sec. IV B for the double dot case. The mesoscopic retarded
and advanced Green’s functions G̃r(a) in the presence of Ẽac(t )
can be calculated in terms of the unperturbed mesoscopic
Green’s functions G̃r(a) defined in Sec. III A by using the
Dyson equation

G̃J (t, t ′) = G̃J (t, t ′) +
∫

dt1
h̄

G̃J (t, t1)Ẽac(t1)G̃J (t1, t ′)

(B6)

with J ∈ r(a).
The combination of Eqs. (B4)–(B6) gives, by keeping only

resonant contributions in e−iω0t ,∑
d

gd〈n̂d〉 � (αχ2 + 2α|α|2χ4 + iα∗Ucl )e
−iω0t . (B7)

Tedious algebra is necessary to identify the coefficients which
appear in Eq. (B7) with the correlation functions Ucl and χ4

defined in the main text, especially in the multiorbital case
N > 1. Equation (B7) shows that χ2 is the linear response
function of the dots charge to the excitation in αe−iω0t , and χ4

is the second-order response function to the same excitation,
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whereas Ucl appears as a transduction coefficient for the field
component in α∗eiω0t into a resonant term in e−iω0t thanks to
the energy provided by the drive in εp. One can finally inject
Eq. (B7) into the statistical average of Eq. (B1) to obtain

0 = α∗Ucl −
(

iχ2 + 0

2
+ 2i|α|2χ4

)
α. (B8)

For this last step, we have used the resonant approximation
a(t ) � αe−iω0t in Eq. (B1) and disregarded the term in εac(t )
in the right member of (B1) because it is not resonant with
the cavity. One can see along this calculation that εp plays
a crucial role in intermediary steps of the calculation for the
description of two-photon processes, but its direct contribu-
tion to (B8) can be disregarded. A similar fact happens with
the path-integral approach, where εp produces indirectly the
S(3)

g (t ) term, whereas its direct contribution �Sac(t ) can be
disregarded from the effective action Seff

cav(t ) in the resonant
approximation. Note that Eq. (B8) is in full agreement with
the result given by a direct calculation of the semiclassical
cavity steady states with the path-integral description (see
Appendix B 2).

2. Semiclassical photonic amplitudes given by the
path-integral description

The possible semiclassical photonic amplitudes of the cav-
ity in stationary conditions can also be obtained by looking
for the saddle points of the cavity effective action [40]. Since
the action (28) vanishes for ϕcl = 0, ϕ̄cl = 0, a semiclassical
solution for the cavity field can be found at ϕq = 0, ϕ̄q = 0
and values of ϕcl and ϕ̄cl such that ∂ (S)/∂ϕ̄q(t )|

ϕq=0,ϕ̄q=0 = 0.
This gives

−
√

2εac(t ) =
(

i∂t − ω0 + i0

2

)
ϕcl − χ2ϕcl

− ie−2iω0tUcl ϕ̄cl − χ4ϕ̄clϕclϕcl . (B9)

One can disregarded εac(t ) from the left member of Eq. (B9)
because it is not directly resonant with the cavity. Hence,
one can expect a semiclassical solution ϕsc = √

2αscei(ϕsc−ω0t )

such that(
Ucle

−2iϕsc − 0

2
− iχ2 − 2iχ4|αsc|2

)
αsc = 0 (B10)

with αsc the semiclassical value of â. Equation (B10) is in
full agreement with the semiclassical Eq. (B8) if α = αsc is
used. This equation is also similar to Eq. (83) on the average
photons amplitude αav obtained from the Lindblad description
of the cavity dynamics, up to the term in �0,4 which is
not present in Eq. (B10). This discrepancy is due to the fact
that the equation on αsc is obtained by disregarding quantum
fluctuations of the cavity occupation.

APPENDIX C: ACTION ASSOCIATED TO A
LINDBLAD EQUATION

Following Ref. [88], the action corresponding to a Lind-
blad equation with the form (46) can be expressed as

S =
∫

t
(ϕ̄+(t )i∂tϕ+(t ) − ϕ̄−(t )i∂tϕ−(t ) − iL(t )) (C1)

with ϕ± = 1√
2
(ϕcl ± ϕq), ϕ̄± = 1√

2
(ϕ̄cl ± ϕ̄q), and

−iL(t ) = − H eff
cav[ϕ̄+(t ), ϕ+(t )] + H eff

cav[ϕ̄−(t ), ϕ−(t )]

− i
∑

j

γ j L̂ j[ϕ̄+, ϕ+]L̂†
j [ϕ̄−, ϕ−]

+ i

2

∑
j,s∈{+,−}

γ j L̂
†
j [ϕ̄s, ϕs]L̂ j[ϕ̄s, ϕs]. (C2)

This leads to Eqs. (49), (61), and (62) of the main text. Note
that this result is valid even when the dissipative rates γ j and
the Hamiltonian H eff

cav are time dependent.

APPENDIX D: LINK BETWEEN THE DIRECT DENSITY
MATRIX APPROACH AND THE PATH-INTEGRAL

APPROACH TO SECOND ORDER IN g

To show that the Lindblad Eqs. (12) and (67) obtained
with the direct density matrix approach and the path-integral
approach, respectively, agree to second order in g, one must
establish the relation between the parameters χA, χB and
χ2, λ2 which occur in these equations. Note that χ2 and λ2

have a frequency dependence which is omitted in the main
text where we use χ2 = χ2(ω0) and λ2 = λ2(ω0). For our
present purpose, it is convenient to use the inverse Fourier
transform of these quantities, defined generally as f (t ) =∫ +∞
−∞

dω0
2π

f (ω0)e−iω0t . One can use the general relation∫ +∞

−∞

dω

2π
a(ω + ω0)b(ω) =

∫ +∞

−∞
dt a(t )b(−t )eiω0t , (D1)

where a and b are two generic functions, to re-express
Eqs. (30) and (31) as

χ2(t ) = − i

2
Tr
d

[G̃K (t )g̃G̃a(−t )g̃ + G̃K (−t )g̃G̃r (t )g̃], (D2)

λ2(t ) = − i

2
Tr
d

[G̃K (−t )g̃G̃K (t )g̃

+ G̃a(−t )g̃G̃r (t )g̃ + G̃r (−t )g̃G̃a(t )g̃]. (D3)

At this stage, it is convenient to define the lesser and greater
fermionic Green’s functions

Gd,d ′
< (t ) = i〈ĉ†

d ′ (0)ĉd (t )〉 (D4)

and

Gd,d ′
> (t ) = −i〈ĉd (t )ĉ†

d ′ (0)〉 (D5)

to re-express definitions (24)–(26) as

Gd,d ′
r (t ) = θ (t )(Gd,d ′

> (t ) − Gd,d ′
< (t )), (D6)

Gd,d ′
a (t ) = θ (−t )(Gd,d ′

< (t ) − Gd,d ′
> (t )), (D7)

and

Gd,d ′
K (t ) = Gd,d ′

< (t ) + Gd,d ′
> (t ). (D8)

Then, using Eqs. (D6)–(D8), one can rewrite Eqs. (D2) and
(D3) as

χ2(t ) = iθ (t )Tr
d

[G̃<(t )g̃G̃>(−t )g̃ − G̃>(t )g̃G̃<(−t )g̃], (D9)

λ2(t ) = −iTr
d

[G̃<(−t )g̃G̃>(t )g̃ + G̃>(−t )g̃G̃<(t )g̃]. (D10)
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Since we consider a noninteracting case, one can use the Wick
theorem to re-express the above equations in terms of charge
correlators [71]. Indeed, using the operator N̂ (t ) of Eq. (6),
one finds

〈N̂ (t )N̂ (0)〉 = 〈N̂〉2 + Tr
d

[G̃<(−t )g̃G̃>(t )g̃], (D11)

〈N̂ (0)N̂ (t )〉 = 〈N̂〉2 + Tr
d

[G̃<(t )g̃G̃>(−t )g̃]. (D12)

This leads to

χ2(t ) = iθ (t )(〈N̂ (0)N̂ (t )〉 − 〈N̂ (t )N̂ (0)〉), (D13)

λ2(t ) = −i(〈N̂ (0)N̂ (t )〉 + 〈N̂ (t )N̂ (0)〉 − 2〈N̂〉2). (D14)

A comparison of these equations with the definitions (14) and
(15) of χA(t ) and χB(t ) gives, in the frequency domain,

χ2(ω0) = χB(ω0) − χA(ω0), (D15)

λ2(ω0) = 2i(Im[χA(ω0) + χB(ω0)] + 〈N̂〉2δ(ω0)). (D16)

This proves the relations (70) and (71) of the main text and the
agreement between the Lindblad Eqs. (12) and (67) at second
order in g.

APPENDIX E: ANALYTICAL CALCULATION OF THE
WIGNER FUNCTION TO THIRD ORDER IN g

The definition (77) of the Wigner function involves the
correlation function χ (t, β, β∗) = 〈eβa†

I −β∗aI 〉t . From the ex-
pression of the effective Hamiltonian H eff

cav and the jump
operators L̂ j , one can check that χ follows [40]

∂

∂t
χ = − i�ω0(−β∂β + β∗∂β∗ )χ − γ+

ββ∗

2
χ

− γ−
2

(β∗∂β∗ + β∂β )χ − 2ρpβ
∗∂βχ − 2ρ∗

pβ∂β∗χ

− β2

2
γpe−iϕpχ − β∗2

2
γpeiϕpχ . (E1)

For compactness, we note ∂
∂β

= ∂β and ∂
∂β∗ = ∂β∗ . The above

equation is a first-order differential equation which is more
convenient to solve than the second-order differential equa-
tion (77). It is then straightforward to Fourier transform χ to
obtain W (t ).

APPENDIX F: PARAMETRIC CONTROL OF THE
SQUEEZING EFFECT

This Appendix discusses how the photonic squeezing ef-
fect of Sec. IV D depends on the double dot parameters.
Figure 9 shows the cavity field quadratures �X± versus
the orbital detuning �ωRL = ωR − ωL [Fig. 9(a)], versus �

[Fig. 9(b)], and versus the cavity drive amplitude βp [Fig. 9(c)]
for a case where the single- and two-photon resonances at
�ωRL = R(ω0) and �ωRL = R(2ω0) are allowed. The results
given by the full expressions (81) and (82) of A and B are
shown with full lines. For reference, the variance

�X2 = 1

2

√
0(1 + 2nB) − Im[λ2]

0 − 2 Im[χ2]
(F1)

FIG. 9. [(a)–(c)] Cavity field quadratures �X± vs �ωRL , �, and
βp respectively. In panel (a), we use tLR = 0.3ω0, � = 0.1ω0, and
βp = 7.5. In panel (b), we use tLR = 0.3ω0 (cyan lines) or tLR =
0.025ω0 (magenta lines), �ωRL = R(2ω0), and βp = 11. In panel
(c), we use tLR = 0.3, � = 0.1ω0, and �ωRL = R(2ω0) (red lines) or
�ωRL = R(ω0) (blue lines). The other parameters are the same as in
Fig. 3 with ωav = 0 and gL = 0.01ω0. The full lines correspond to the
result given by the full expressions (81) and (82) of A and B, whereas
the dotted lines omit the contribution of γp (or equivalently Uqq).
For reference, the second-order variance �X2 for an empty cavity
(corresponding to the case for gL = 0) is also shown as a dashed
yellow line. The vertical dashed gray lines in panel (a) indicate the
resonances �ωRL = R(ω0) and �ωRL = R(2ω0). The blue and red
squares indicate working points which are common to panels (a),
(b), and (c). In panel (c), the plots are restricted to the range where
γloss > 0 and γgain > 0, which is narrower in the case �ωRL = R(ω0)
(blue curves). (d) Squeezed cavity Wigner function for the working
point corresponding to the empty red circles in panel (c). The major
axis of the Wigner function is shown as a blue line.

of the cavity field to second order in gL is also shown as
a yellow line. One gets a squeezing effect (�X− < �X2 <

�X+), which is maximal at �ωRL = R(2ω0) [Fig. 9(a)]. As
visible in [Fig. 9(b)], for tLR = 0.3 (cyan full line), squeezing
decreases with �. One could expect that higher values of �

are always detrimental to squeezing. However, for a small
value of tLR (magenta full lines), the squeezing effect finds a
local maximum for a value of � which can be quite significant
[� ∼ 0.9ω0 in Fig. 9(b)].

To determine the role of the parameter Uq (or γp), we show
with dotted lines in Figs. 9(a)–(c) the cavity field quadratures
given by Eqs. (81) and (82) with γp omitted (γp = 0). For
the moderate tunnel rate � used in Fig. 9(a), the full and
dotted lines coincide around �ωRL = R(2ω0) but not near the
single-photon resonance �ωRL = R(ω0). For �ωRL = R(ω0),
the dissipative term in Uq is responsible for an increase of
the squeezing effect, in spite of its dissipative nature [42,43].
Such an effect is allowed by Eq. (82). To see an effect of
Uq on the squeezing at the working point �ωRL = R(2ω0),
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FIG. 10. Cavity field quadratures �X± vs ωav = (ωR + ωL )/2
(a) and vs the bias voltage Vb (b) for �ωRL = 2ω0, tLR = 0.1ω0,
gL = 0.01ω0, and βp = 200. The other parameters are the same
as in Fig. 3. Panel (a) considers different cavity damping rates
0/(10−5ω0) = 2.5, 3.5, and 5 with red, blue, and black lines. Panel
(b) shows results for average dot orbital energies ωav/ω0 = −2.1
(cyan lines) and ωav/ω0 = −1.2 (green lines). The circles indicate
working points common to panels (a) and (b). For reference, the
second-order variance �X2 = √

1 + 2nB/2 for a decoupled cavity
(gL = 0) is also shown as a dashed yellow line. It is independent
of the value of 0.

it is necessary to increase the value of � [see Fig. 9(b)]. In
this case, Uq causes a decrease of the squeezing amplitude.
To summarize, the dissipative term in Uq can either increase
or decrease the squeezing effect, depending on the regime of
parameters. Nevertheless, to maximize the squeezing effect,
it is advantageous to use the regime �ωRL = R(2ω0) and �

small, where the effect of Uq can be disregarded [empty red
squares in Fig. 9(b)]. Therefore, we will consider this regime
in the rest of the present Appendix and Fig. 10.

The use of a double quantum dot circuit as a nonlinear
element for circuit QED can be interesting because it offers
a strong tunability of the squeezing effect, as already seen in
Fig. 9. Figure 10(a) shows that the amplitude of the squeezing
effect is also strongly dependent on the average level posi-
tion ωav = (ωL + ωR)/2. Besides, the squeezing effect can be
controlled by using a nonzero bias voltage Vb [see Fig. 10(b)].
This is consistent with the fact mentioned earlier that using a
nonzero Vb modifies the orbital energy range where the drive
terms Ucl shows strong resonances [Figs. 3(a) and 3(c)]. Note
that, so far, we have used a relatively high cavity damping
rate 0 which limits the squeezing effect. Figures 10(a) and
10(b) show that for a given set of double dot parameters, the
squeezing effect increases when 0 decreases, as expected.
Finally, Fig. 9(d) shows an example of cavity Wigner function
corresponding to the red empty circles in Fig. 9(c). Using the
qutip package mesolve [81], we have checked that this Wigner
function is in quantitative agreement with a direct numerical
treatment of Eq. (46). We have also checked that fourth-order
corrections in gL are negligible for the parameters considered
in the present section. Therefore, a treatment of the master
equation (46) to third order in gL is fully justified.

Interestingly, it has also been suggested to obtain cavity
squeezing by using a single quantum dot with an ac excita-
tion with amplitude ε′

p applied directly to the dot gate [44].

However, on the experimental level, such a strategy is more
costly since it requires fabrication of a direct ac gate for the
quantum dot. Note that Ref. [44] presents the cavity effective
action to second order in gL only. A coherent two-photon drive
term in ε′

pg2
L is taken into account but the terms in χ2, λ2

and the expected contribution in ε′
pg2

L to Uq are disregarded.
Alternatively, two-photon processes or photonic squeezing
have been found for dc voltage-biased Josephson junctions or
tunnel junctions, which have no internal degrees of freedom
[45,46,89–91]. In our case, the dc voltage bias is not necessary
due to the presence of the dot orbital degree of freedom.

APPENDIX G: ANALYTICAL EXPRESSION OF χ2 FOR A
DOUBLE QUANTUM DOT IN THE SEQUENTIAL

TUNNELING LIMIT

In the sequential tunneling limit kBT � �, it is possible to
obtain a simple approximate expression of the charge suscep-
tibility χ2 for the double quantum dot of Sec. IV. One can use
a semiclassical framework, with a master equation description
of transport through the double quantum dot, and a resonant
approximation between the double dot internal transition and
the cavity. Such an approach is described in Sec. 4.2.1 of
Ref. [18] and yields the expression

χ2 = 2g2
t (n− − n+)

ω0 − ωDQD + i�
. (G1)

Above, the factor 2 takes into account spin degeneracy. The
transverse coupling

gt = (gR − gL )sin[θ ]/2 (G2)

between the DQD internal degree of freedom and the cav-
ity depends on the mixing angle θ = arctan[2t/(εL − εR)]
between the left and right DQD orbitals. The average occu-
pations n− and n+ of the bounding and antibounding orbitals
of the DQD can be expressed as

n+ = [2 − f −
L − f −

R + ( f −
L − f −

R ) cos(θ )]

× [ f +
L + f +

R + ( f +
L − f +

R ) cos(θ )]/4 (G3)

and

n− = [2 − f +
L − f +

R + ( f +
R − f +

L ) cos(θ )]

× [ f −
L + f −

R + ( f −
R − f −

L ) cos(θ )]/4 (G4)

with f ±
L(R) = {1 + exp[±(ωL(R) ∓ (eVb/2))/kBT ]}−1.

Figure 11 shows a comparison between the values of χ2

given by Eqs. (G1) and (30). The agreement is very good
near the resonances ω0 = ωDQD, provided tLR � �, because
Eq. (G1) disregards photoassisted tunneling to the normal
metal contacts, contrary to Eq. (30). One interest of Eq. (G1)
is that it shows explicitly that divergences of χ2, which
should occur for ω0 = ωDQD in the absence of dissipation,
are regularized by the dissipative dot-lead tunneling in �.
More generally, in our model, dissipative tunneling to the
reservoirs prevents divergences of the cavity effective param-
eters, because it generates imaginary self-energy terms in the
mesoscopic Green’s function of Eq. (23). This is visible, for
instance, in Figs. 3 and 4, which present the numerical evalu-
ation of these parameters versus ωL(R) or �ωLR = ωL − ωR.
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FIG. 11. Charge susceptibility χ2 of the DQD of Sec. IV vs ωL

for Vb = 0 (a) and Vb = 0.5ω0 (b). The full red lines and dashed
blue lines correspond to the result given by Eqs. (30) and (142),
respectively. The other parameters used are ωR = 0, � = 0.05ω0,
tLR = 0.375ω0, kBT = 0.5ω0, gR = 0, and Vb = 0.5ω0.

APPENDIX H: VALIDITY OF OUR PERTURBATION
SCHEME FROM THE ESTIMATION OF HIGHER ORDER

CORRELATORS IN g

Since we develop the cavity action with respect to ǧ and
βp, the amplitude of these two parameters must not be too
large. Besides, having � �= 0 is crucial for ensuring the va-
lidity of our perturbation scheme in the single- or two-photon
resonant regimes. Indeed, in the absence of dissipation, the
correlators χ2 and χ4 are expected to diverge at ωDQD = ω0

and/or ωDQD = 2ω0 [80]. However, giving a simple analytic
criterion for the regime of validity of our description is very
complex. Strictly speaking, the development parameter in our
approach is the functional matrix m̌ of Eq. (A8), which is used
in the development of the cavity effective action. It is difficult
to express analytically a smallness criterion on this quantity
due to the many parameters involved through Eqs. (27) and
(A8) together with the light/matter coupling. This is why, out
of conciseness, we have referred to the expansion parameter as

FIG. 12. Charge susceptibility coefficients χ2, χ4, χ6, and χ8 of
the DQD of Sec. IV vs � for the parameters of Figs. 7 and 8. The
vertical dashed lines indicate the values of � used in Figs. 8(a)
and 8(b).

g in the main text. One can check the validity of our develop-
ment a posteriori, by estimating mesoscopic correlators which
would occur in the cavity effective action at higher orders in g
and βp to check whether they are negligible. Here, we present
the evaluation of the generalized charge susceptibilities χ6

and χ8 of the mesoscopic circuit at orders 6 and 8 in g
respectively. We expect the other coefficients with the same
order in g to have order of magnitudes similar to χ6 and χ8 at
best, similarly to what we observe at orders 2 and 4 in g. The
parameters χ6 and χ8 can be estimated from a semiclassical
approach similar to that of Appendix B1. By analogy with
Eqs. (29), (38), (B7), and (B10), one gets

Seff
cav(ϕ̄, ϕ) =

∑
n�1

(ϕ̄clϕcl )
nϕ̄qϕcl χ2n + · · · . (H1)

Let us define

G̃ j
r,n

(ω) =
∑

(a1,a2,an−1 )∈Sn

[Gr (ω + jω0)g̃Gr (ω + a1ω0)g̃Gr (ω + a2ω0) . . . g̃Gr (ω + an−1ω0)g̃Gr (ω)],

where Sn is the ensemble of number sequences (a1, a2, an−1) such that a1 = j ± 1, ak − ak−1 = ±1 for k ∈ [2, n − 1] and
an−1 = ±1. One can check

χn(ω0) = − i

2n−2
Tr

⎡⎢⎢⎢⎣g̃
∑

i ∈ [0, n − 1]
ki + kn−i = −1

∫
dω

2π
G̃ki

r,i
(ω)�̃<(ω)G̃kn−i

a,n−1−i
(ω)

⎤⎥⎥⎥⎦

with

G̃ j
a,n

(ω) = [G̃− j
r,n

(ω)
]†

.

Figure 12 shows the absolute values of χ2, χ4, χ6, and
χ8 versus � for the parameters of Figs. 7 and 8. For � =
0.0025ω0, |χ8| has the same order of magnitude as |χ2|
and |χ4|. This illustrates the fact that our development in
g4 is not valid for too small values of �. However, for
the values � = 0.005ω0 and � = 0.01ω0 corresponding to

Figs. 8(a) and 8(b) (indicated by vertical dashed lines), one
starts to have χ2, χ4 � χ6, and χ8 so that our development
at fourth order in g seems reasonable. It turns out that we
have worked at the limit of the allowed range of � in order
to maximize the two-photons effects in Kloss which decrease
for higher values of � (one has Kloss = Im[χ4] � −iχ4 for
the parameters of Fig. 8). We have checked that χ2, χ4 � χ6,
χ8 is also satisfied for the parameters used in Sec. III and
Appendix F. In principle, terms at higher orders in βp should
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also contribute to Eq. (H1). However, the next order contribu-
tion after the term in βpg3 of the main text should be in β2

pg6
and since it is also regularized by �, we expect this term to be
negligible.
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