
A spin quantum bit with ferromagnetic contacts for circuit QED

(EPAPS)

Audrey Cottet and Takis Kontos

Laboratoire Pierre Aigrain, Ecole Normale Supérieure,

CNRS (UMR 8551), Université P. et M. Curie,
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Effective exchange fields

In this letter, we consider quantum dots subject to an effective Zeeman splitting 2δ =

32 µeV which is due to the hybridization of the dot orbitals with the first atomic layers of

the FI contacts, or more macroscopically, to the spin-dependent confinement of electrons

in the dots1. A splitting 2δ = 250 µeV has been observed in Ref.2. There exists various

way to adjust the amplitude of δ. One can e.g. vary the composition of the FI material.

It is also possible to change the dot size3, or the active dot orbital. This will be illustrated

below for a SWNT-based quantum dot, but we expect a similar behavior with other kinds

of quantum dots.

In principle, a second type of effective Zeeman splitting δcot can occur when the tunnel

rate Γσ of electrons through the FI layers is sufficiently strong to allow cotunneling pro-

cesses between the quantum dot orbitals and the itinerant states of the normal reservoirs4,5.

Cotunneling leads (on average) to a spin-dependent renormalization of the orbital levels,

responsible for δcot. Although the field δ was dominant in Ref. 2, δ and δcot were observed

simultaneously in Ref. 6, due to a larger Γσ. We have chosen to use a very small Γσ to min-

imize δcot and base our setup on the δ splitting only, because cotunneling processes leading

to δcot are also responsible for decoherence effects7. Moreover, the splitting δcot has a strong

gate dependence (on an energy scale corresponding typically to the Coulomb charging ener-

gies), which would risk to enhance charge-noise induced dephasing. In our setup, the only

use of the normal metal contacts is to allow a control of the double-dot occupation number.

The rate Γσ can thus be arbitrarily small.

Electrostatic description of our setup

We assume that the central conductor of the superconducting waveguide cavity has similar

capacitive couplings C̃ac to the two dots. The DC gates have capacitances CL
g and CR

g and

the normal reservoirs/FI/dot contacts have capacitances CL(R). The junction between the

two dots has a capacitance Cm. The energy shift D varies linearly with Vac, V L
g and V R

g .

We obtain

∂D/∂Vac = eC̃ac(CR − CL + CR
g − CL

g )/(CL
ΣCR

Σ − C2
m) (1)

with C
L(R)
Σ = CL(R)+C

L(R)
g +Cm+C̃ac. A coupling of the spin qubit to the electric field of the

superconducting cavity is possible if ∂D/∂Vac 6= 0. From the above equation, this requires

either CL 6= CR or CL
g 6= CR

g , which can be obtained with a proper device fabrication. The
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sensitivity of the device to charge noise depends on ∂ν01/∂D and on

∂D/∂nL(R)
g = αL(R)e

2(C̃ac + CR(L) + CR(L)
g )/2(CL

ΣCR
Σ − C2

m) (2)

with αL = 1 and αR = −1. In this letter, we evaluate the performances of our setup

for realistic capacitances CL = 50 aF, CR = 5 aF, C̃ac = 8 aF, Cm = 10 aF, and CL
g =

CR
g = 1 aF. This gives ∂D/∂nL

g ∼ 0.7 meV and ∂D/∂nR
g ∼ −3 meV. It is thus important

to use working points leading to a low ∂ν01/∂D. We obtain h∂ν01/∂D = 2 10−2 and

h∂ν01/∂D = 3 10−5 at the ON and OFF points defined in the main text. Note that in the

yellow triangle of Fig.2.a of the main text, the singly occupied levels |∅, ↑R〉,|∅, ↓R〉,|↑L, ∅〉 and

|↓L, ∅〉 are energetically below |∅, ∅〉, and the doubly occupied levels |↑L, ↑R〉,|↓L, ↓R〉,|↑L, ↓R〉
and |↓L, ↑R〉. We have chosen the ON and OFF points along the dashed line nR

g = 0.5+(CR
Σ +

Cm)/(CL
Σ +Cm)(0.5−nL

g ) in order to maximize this energy separation to a value of the order

of Em
c and 0.7Em

c at the ON and OFF point respectively, with Em
c = Cme2/2(CL

ΣCR
Σ −C2

m) =

0.5 meV the mutual charging energy of the two dots. In these conditions, using very small

tunnel rates through the FIs (Γσ . 0.01µeV ) protects our setup from cotunneling-induced

decoherence.

Calculation of the contact-induced spin splittings from ĤW

For clarity, we present the calculation for dot L only. Periodic boundary conditions

along the SWNT circumference impose lowest transverse wavevectors κK = κ0 and κK ′ =

−κ0,with κ0 = −ν/3R, for pure K and K ′ modes. We consider a semiconducting SWNT,

so that we have ν = ±1 depending on the SWNT chiral vector. In the absence of the

confinement potential Epot(ξ) of Eq. (2), the (spin-degenerate) eigenenergies of ĤW write

Eη,µ,k = η~vF

√
k2 + κ2

0 + µ∆K−K ′ −Eg, with k the longitudinal electronic wavevector. We

use η = ±1 for the SWNT conduction and valence bands. The index µ = ±1 is related

to the K/K ′ degree of freedom. For a constant µ, the SWNT energy band presents a gap

∆SWNT = 2~vF /3R = 350 meV for R = 1 nm. In the presence of Epot(ξ), one can look for

eigenvectors of ĤW with the form

Ψη,µ,k(ξ, ϕ) = A
[

µZηF I1,−ikF I1
eiκ0Rϕ, µeiκ0Rϕ, ZηF I1,−ikF I1

e−iκ0Rϕ, e−iκ0Rϕ

]t

ekF I1ξ (3)
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for ξ < 0,

Ψη,µ,k(ξ, ϕ) = C
[

µZη,ke
iκ0Rϕ, µeiκ0Rϕ, Zη,ke

−iκ0Rϕ, e−iκ0Rϕ

]t

eikξ (4)

(5)

+ D
[

µZη,−ke
iκ0Rϕ, µeiκ0Rϕ, Zη,−ke

−iκ0Rϕ, e−iκ0Rϕ

]t

e−ikξ

for 0 < ξ < λ, and

Ψη,µ,k(ξ, ϕ) = B
[

µZηIs,ikIs
eiκ0Rϕ, µeiκ0Rϕ, ZηIs,ikIs

e−iκ0Rϕ, e−iκ0Rϕ

]t

ekIs(λ−ξ) (6)

for ξ > λ, with

Zη,k = η(κ0 − ik)/
√

κ2
0 + k2 (7)

The four components in the above vectors correspond to the (A, K), (B, K), (A, K ′), and

(B, K ′) components respectively. The potential drop at the edges of the dot is likely to

occur on a length scale much larger than the SWNT lattice constant. In these conditions,

the index µ is conserved along the ξ axis8,9. The wavevectors kFI1 and kIs of the evanescent

waves at the FI1 and Is sides and the factors ηIs and ηFI1 depend on the wavevector k, the

valence/conduction index η and the spin σ of the electron confined in dot L. They can be

obtained from

E = η~vF

√
k2 + κ2

0 + µ∆K−K ′ + EL
g (8)

= ηFI1~vF

√
κ2

0 − k2
FI1 + µ∆K−K ′ − σEex/2 + Eb (9)

= ηIs~vF

√
κ2

0 − k2
Is + µ∆K−K ′ + EIs (10)

The continuity of Ψn,µ,k at ξ = 0 and ξ = λ imposes a longitudinal quantization condition

e2ikλ =
(Zη,k − ZηF I1,−ikF I1

) (Zη,−k − ZηF I1,ikIs
)

(Zη,−k − ZηF I1,−ikF I1
) (Zη,k − ZηF I1,ikIs

)
(11)

We note n the mode index related to the longitudinal confinement of electrons. Apart from

the solution kσ
n=0(E) = 0, all the solutions k = kσ

n(E) depend on spin due to Eex 6= 0, but are

independent of µ. This leads to an effective spin-splitting 2δL inside dot L, which depends

on n but not on µ. Here, we use R = 1 nm, λ = 100 nm and Eex = 3.7 meV. A numerical

resolution of Eq. (11) gives the values of δL shown in Fig. 1 of the EPAPS. Due to the

existence of the SWNT bandgap, we obtain a sweet spot ∂δL/∂EL
g = 0 which can be used

to reduce charge noise-induced dephasing mediated by fluctuations of δL. We find that the
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value of δL at the sweet spot increases with n and decreases with λ. This provides interesting

means to adjust the value of δL, independently of the FI/SWNT contact properties. In the

main text, we assume ∆K−K ′ > 0 and define the |↑L, ∅〉 and |↓L, ∅〉 states as the 29th lowest

pair of spin-dependent levels in the dot conduction band, i.e. η = +1, n = 15 and µ = −1,

but other choices are possible, depending on the value of Eex. We have checked that the spin-

orbit coupling term ∆
‖
curv introduced in Ref. 9 slightly renormalizes ∆K−K ′, but does not

affect the principle of our setup and the value of δL. Note that the longitudinal quantization

of electrons corresponds to an intrinsic level spacing ∆E ∼ hvF /2λ = 16.5 meV, and one

has typically ∆K−K ′ = 3 meV10,11. Hence, the levels |↑L, ∅〉 and |↓L, ∅〉 are sufficiently far

from other orbitals of dot L to allow the qubit operation described in the main text (similar

considerations can be done for dot R).

FIG. 1: Half effective Zeeman splitting δL calculated for dot L in the framework of Eq.(2) of the

main text, as a function of Eb − EL
g (panel a) and the nanotube length λ (panel b). We have

used various values for the orbital index n, η = +1, R = 1 nm, λ = 100 nm, Eb = EIs and

Eex = 3.7 meV. We indicate the position of the ON/OFF points considered in the main text.

Dephasing caused by charge noise

In practice, the dots L and R will be affected by low frequency charge noise, like all

Coulomb blockade devices. This noise is generally attributed to two level charge fluctuators

located e.g. in the substrate of the sample. Although 1/f noise is frequently observed in

quantum dots, few quantitative data are available in the low temperature regime. Here, we

focus on the case of SWNT-based quantum dots. We assume that the charge fluctuators
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lead to a typical 1/f noise spectrum

S
n

L(R)
g

(f) = A2/ |f | (12)

on each gate, with the definition S
n

L(R)
g

(f) = 2
∫ +∞

−∞
n

L(R)
g (t)n

L(R)
g (t + τ) exp(i2πfτ). We

expect a lower charge noise than in standard metallic systems12 due to the smaller size of

the devices. From Ref. 13, for a quantum dot with length λ = 500 nm, one can estimate

A = 5.4 10−4 at T = 1.5 K. It has been checked experimentally that S
n

L(R)
g

is proportional

to λ14. We also assume that S
n

L(R)
g

scales with T 2 down to low temperatures, as observed

for superconducting circuits on Si substrates15,16. This gives A = 3 10−6 for parameters

compatible with our proposal i.e. λ = 100 nm and T = 20 mK. We first assume that the

dot gates are subject to independent fluctuations with a similar spectrum. The dephasing

rate can be estimated in a semi-classical approach as17–19

TD
ϕ =

[
2πA

∣∣∣∣
∂ν01

∂D

∣∣∣∣
(∣∣∣∣

∂D

∂nR
g

∣∣∣∣ +

∣∣∣∣
∂D

∂nL
g

∣∣∣∣
)]−1

(13)

i.e. TD
ϕ = 2.9 µs at the ON point and TD

ϕ = 1.9 ms at the OFF point with the parameters

used in the main text. These values are probably underestimated because charge fluctuations

seen by nR
g and nL

g should be correlated, at least partially, due to the small size of the device12.

Assuming a perfect correlation between nR
g and nL

g , we obtain

TD
ϕ =

[
2πA

∣∣∣∣
∂ν01

∂D

∣∣∣∣
(∣∣∣∣

∂D

∂nR
g

+
∂D

∂nL
g

∣∣∣∣
)]−1

(14)

i.e. TD
ϕ = 4.6 µs at the ON point and TD

ϕ = 3.1 ms at the OFF point. The dephasing time

is longer in this case because ∂D/∂nL
g and ∂D/∂nR

g have opposite signs (see Eq. (2)). In

the main text, we use the pessimistic estimate of TD
ϕ given by Eq. (13). Interestingly, using

suspended SWNTs (or nanowires) should allow to decrease the charge noise amplitude A

and thus TD
ϕ (see Ref. 20).

Dephasing mediated by δL fluctuations

>From the expression of Ĥ, one can check that the amplitude of ν01 corresponds mainly

to 2δL for D > δL + δR + t. Since δL depends on EL
g , this opens a new path to charge noise

dephasing (the δR-path can be disregarded since ∂ν01/∂δR ≪ ∂ν01/∂δL). We work at the

sweet spot ∂δL/∂EL
g = 0 of Fig.4. We assume that nL

g and nR
g are subject to independent

fluctuations with a similar spectrum (see Eq. (12) of the EPAPS). Considering second order

contributions of the charge noise to δL in a semi-classical approach18,19,21, we obtain
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T δL
ϕ ∼


2πA2

∣∣∣∣
∂ν01

∂δL

∂2δL

∂(EL
g )2

∣∣∣∣




∣∣∣∣∣
∂EL

g

∂nL
g

∣∣∣∣∣

2

+

∣∣∣∣∣
∂EL

g

∂nR
g

∣∣∣∣∣

2






−1

(15)

Using ∂EL
g /∂nL

g = −CR
Σ e2/(CL

ΣCR
Σ −C2

m) and ∂EL
g /∂nR

g = −Cme2/(CL
ΣCR

Σ −C2
m), we obtain

T δL
ϕ ∼ 15 ms at the ON and OFF points with the parameters used in the main text.

Relaxation caused by phonons

Since the |0〉 and |1〉 states have slight components in ↓L and ↑L respectively, they can

relax due to electron/phonon interaction. In SWNTs, phonons modes can be classically

described with a continuous atomic displacement um,q(ξ, ϕ) = A exp(i(mϕ + qξ −ωt)), with

A a vector in the (ϕ, ξ, r) cylindrical frame of the SWNT. From Eqs.(3-6) of the EPAPS and

the form of the electron-phonon interaction22, one can check that the only modes which can

induce transitions between the |0〉 and |1〉 states are those with m = 0. We take into account

the acoustic mode most strongly coupled to the SWNT electrons, i.e. the stretching mode22.

In the limit qR ≪ 1, this mode has a dispersion relation ωS = cS |q|, and a displacement

vector uS
0,q(ξ, ϕ) ∝ (0, 1,−iqRη) exp(i(qξ−ωt)) with η = 1−2(c2

l /c
2
t ) ≃ 0.3, ct = 12.3 km.s-1,

cl = 21 km.s-1 and cS = 20 km.s-1. Remarkably, the contacts evaporated on top of SWNTs

confine phonons efficiently, as shown by the observation of quantized modes called ”vibrons”

in suspended SWNTs23–25. This should remain true for non-suspended structures, for which

the contacts are similar. We thus consider decoupled stretching vibrons for the left and right

dots. Assuming that the phonons are quickly damped below the Is, FI1 and FI2 gates, one

finds that the stretching vibrons of dot L and R have displacement vectors proportional to

(0, sin(qpξ),−iqRη cos(qpξ)) with 0 ≤ ξ ≤ L and to (0, sin(qp(ξ − a)),−iqRη cos(qp(ξ − a)))

with a ≤ ξ ≤ a + L respectively, with qp = pπ/λ, p ∈ N. For nanotube sections with

length λ = 100 nm, these vibrons occur at frequencies νph,p = p ∗ 100 GHz which are much

larger than the qubit transition frequency ν01 = 7.68 GHz. In non-suspended structures,

low energy vibrons are usually not observed, which indicates that they are damped due

to the contact with the substrate. This can be described in a phenomenological approach

by considering that the vibrons have a lifetime Γ−1, with Γ comparable to ~νph,1. In this

framework, the relaxation time of the qubit due to the vibrons can be estimated as

T−1
1 =

∑

l∈{L,R}
p∈N

~g̃2
l,p

Γ
(

Γ
2

)2
+ (hνph,p − hν01)2

(16)
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by analogy with the Purcell effect26. We have introduced above the coupling constant g̃l,p

between the qubit and the pth vibron mode of dot l ∈ {L, R}. One can use the above formula

provided ~g̃l,p ≪ Γ. In order to calculate g̃l,p, we decompose the |0〉 and |1〉 states as

|0/1〉 = α
0/1
↑L

|↑L, ∅〉 + α
0/1
↓L

|↓L, ∅〉 + α
0/1
↑R

|∅, ↑R〉 + α
0/1
↓R

|∅, ↓R〉 (17)

The weights α
0/1
↑(↓)L[R]

can be calculated from Eq.(1) of the main text. The coupling of

electrons to the pth vibron mode of dot l can be described by adding to ĤSWNT an electron-

vibron interaction term

H l,p
ph (ξ) = Ml,p

(
bq + b†q

)
(18)

with27

ML,p(ξ) = 2
√

2C1

(
c2
t/c

2
l

)
qp cos(qpξ)ŝ0γ̂0θ[ξ]θ[λ − ξ]N (19)

MR,p(ξ) = 2
√

2C1

(
c2
t/c

2
l

)
qp cos(qp(ξ − λ − a))ŝ0γ̂0θ[ξ − λ − a]θ[λ − 2ξ − a]N (20)

and

N =
√

~/4πMλνph,p (21)

We use C1 ≃ 30 eV, while θ[ξ] is Heavidside function. The mass Mλ of a SWNT section

with length λ can be calculated as Mλ = 8πMCRλ/3
√

3a2
0, with a0 = 0.142 nm and MC the

atomic mass of carbon. We disregard the ŝ1(2)γ̂0(3) components of ML(R),p(ξ) because they

occur together with a constant C2 ≃ 1.5 eV ≪C1
22. We finally obtain

~g̃L,p =
∣∣(α1

↑L

)∗
α0
↑L

〈↑L, ∅|ML,p |↑L, ∅〉 +
(
α1
↓L

)∗
α0
↓L

〈↓L, ∅|ML,p |↓L, ∅〉
∣∣ (22)

and

~g̃R,p =
∣∣(α1

↑R

)∗
α0
↑R

〈∅, ↑R|MR,p |∅, ↑R〉 +
(
α1
↓R

)∗
α0
↓R

〈∅, ↓R|MR,p |∅, ↓R〉
∣∣ (23)

We recall that the wavefunctions corresponding to |↑ (↓)L, ∅〉 and |∅, ↑ (↓)R〉 can be obtained

from Eqs. (3-6), and (11) of the EPAPS. For Qph = hνph,1/Γ = 1.5, we obtain relaxation

times TON
1 = 1.0 µs and TOFF

1 = 0.21 s at the ON and OFF points respectively. Remarkably,

with a suspended SWNT, Γ should be strongly reduced and T1 should be enhanced thanks to

a Purcell-like effect. For instance, with Qph = 20, we obtain TON
1 ≃ 14 µs and TOFF

1 ≃ 2.8 s.
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