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Inference of compressed Potts graphical models
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We consider the problem of inferring a graphical Potts model on a population of variables. This inverse Potts
problem generally involves the inference of a large number of parameters, often larger than the number of
available data, and, hence, requires the introduction of regularization. We study here a double regularization
scheme, in which the number of Potts states (colors) available to each variable is reduced and interaction
networks are made sparse. To achieve the color compression, only Potts states with large empirical frequency
(exceeding some threshold) are explicitly modeled on each site, while the others are grouped into a single state.
We benchmark the performances of this mixed regularization approach, with two inference algorithms, adaptive
cluster expansion (ACE) and pseudolikelihood maximization (PLM), on synthetic data obtained by sampling
disordered Potts models on Erdős-Rényi random graphs. We show in particular that color compression does not
affect the quality of reconstruction of the parameters corresponding to high-frequency symbols, while drastically
reducing the number of the other parameters and thus the computational time. Our procedure is also applied to
multisequence alignments of protein families, with similar results.
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I. INTRODUCTION

Graphical models are an important tool for modeling de-
pendencies and inferring effective interactions among a pop-
ulation of variables from data. We hereafter refer to this ap-
proach as the inverse Ising problem [1–3] in the case of binary
variables and as the inverse Potts problem in the more general
case of of multicategorial variables [4]. Applications include
inferring functional couplings among a set of neurons from
the recording of their activity [5–7], among birds in flocks
[8], and among amino acids in sequences that belong to the
same protein family [9]. Over the past decade, it was shown
that describing these protein families by Potts models whose
parameters were learned from the corresponding sequence
alignment could provide information on the protein structure
[9–14,14–18], help predict fitness variations following mu-
tations [3,19–22], and design new working proteins of the
same family [23,24]. Given the computational untractability
of achieving exact solutions, different effective methods have
been proposed to infer the Potts parameters from sequence
data, including Gaussian approximation with different priors
[10,17,25,26], message passing [11], pseudolikelihood max-
imization (PLM) [9,27,28], minimum probability flow [29],
and the adaptive cluster expansion (ACE) method [30,31].
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Even if Potts models only include pairwise interactions,
the number of parameters to be inferred is huge. For an
N-site protein, where each site can be one out of the 20
natural amino acids or an extra symbol standing for a site
insertion or deletion, the number of independent parameters
is 20N + 202N (N − 1)/2. This gives about 106 parameters
for N = 100 and almost 108 parameters for N = 500, while
protein sequence alignments typically include from a few
thousand to few tens of thousands sequences. Moreover,
amino-acid frequencies, and, hence, sampling quality may
vary substantially from site to site, making it impossible to
accurately reconstruct the complete set of Potts parameters.
To overcome the problem of undersampling, regularization
terms are generally included. Standard L2 regularization helps
constrain parameter values but does not change their number.
L1- and L0-based regularization, on the contrary, may effec-
tively remove many interaction parameters associated to low
(in absolute value) connected correlations.

In this paper, a simple procedure to reduce the number
q of Potts parameters is described and analyzed. In physics,
Potts states are often referred to as colors, so we call this state
reduction procedure color compression. Our goal is to infer
a compressed Potts model, where the number of states qi � q
depends on the site i. The basic idea is to group together rarely
observed states on each site, defined as those below a given
frequency threshold f0. This way, the number of Potts states
qi on each site i is variable, leading to the reduced number
of parameters Mcc = ∑N

i qi + ∑N
i< j qi q j . Color compression

is therefore equivalent to an L0 regularization on the number
of inferred parameters associated to the Potts states. Slightly
different schemes are based on grouping colors according
to their entropy contributions to the site variability [31] or
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to their mutual information [32] or compression to a fixed
number of colors [33], and come to a similar outcome. As
expected, color compression can help in limiting the compu-
tational time, in avoiding overfitting and, in a more theoreti-
cal framework, in understanding the intrinsic dimensionality
of the problem, by distinguishing the parameters that can
be reliably inferred from those fixed through regularization
only. Color compression was already used by some of us
in the adaptive cluster expansion (ACE) algorithm [31] in
order to reduce the computational time and have a simpler
inferred model for the analysis of protein sequence data,
but its performance has not been systematically tested up
to now.

The aim of the present study is to benchmark the color
compression procedure in a systematic way as a function of
the compression frequency threshold f0 and of the sampling
depth B: Correlations between variables that are grouped in
the color compression procedure are lost. We expect there-
fore that compression is useful in the inference at low B
and low f0 to discard correlations between poorly sampled
colors, affected by large statistical fluctuations. Conversely,
information on the correlated structure of the data will be
lost for large B and f0. Consequences of compression on
the performances of inferred models are here investigated
for different regularization types and strengths, for two par-
ticular inference procedures: PLM with large or small L2

regularization parameters, and the ACE procedure with a fully
connected or sparse interaction graph. We then introduce a
procedure to recover, after inference of the compressed Potts
model, a full Potts model over all possible q states, which we
refer to as color decompression. Decompression is necessary
to compare the inferred parameters to the ground truth (when
available), to compare the quality of the inferences for dif-
ferent color compression strengths (and therefore different qi

values), and, more generally, when the model is used to pre-
dict the behavior of poorly sampled variables in the original
data set.

The first part of the paper briefly sketches the method-
ological background and the inference algorithms (Sec. II).
In Sec. III, the procedures of color compression and decom-
pression are introduced. We then assess the performances
of the procedures on synthetic data generated from Potts
model on random graphs in Sec. IV. In Sec. V, we show
an illustrative example on fitness prediction for real proteins,
to verify that the results obtained on synthetic data model
translate to real cases. Section VI shows the gain our color
compression procedure provides in terms of computational
time. Some conclusion and perspectives are presented in
Sec. VII.

II. REMINDER ON INFERENCE AND ALGORITHMS

A. Inverse Potts problem

The Potts model describes a system of N interacting sites,
each assuming one of q possible Potts states (or colors).
The probability distribution of each color on each site is
controlled by a set of parameters that can be divided into local
fields hi(ai ), depending only on one site i and its color ai,
and pairwise couplings Ji j (ai, a j ), depending on the pair of

sites i, j and the two Potts states ai, a j . An energy value is
associated to each system configuration a = a1, . . . , aN ,

E (a|J) = −
N∑

i=1

hi(ai ) −
N−1∑
i=1

N∑
j=i+1

Ji j (ai, a j ), (1)

and, consequently, a probability

P(a|J) = exp [−E (a|J)]

Z (J)
, (2)

where Z (J) = ∑
a exp [−E (a|J)] is the partition function and

ensures that all probabilities sum to one. For simplicity, here
we label the set of fields and couplings as J.

Given a sample of configurations, one may be interested in
inferring back the model from which these samples were gen-
erated, or at least a model reproducing the statistical properties
of such configurations, such as the one- and two-site frequen-
cies, fi(a) and fi j (a, b). In general, the Potts model defined
above is the simplest, or maximum entropy [34], probabilistic
model capable of reproducing the observed frequencies. In the
present case, we know by construction that the Potts model is
not only the simplest model to fit the data but also the real
model from which the sample was generated. To reproduce
the statistics of the data, the parameters hi(a) and Ji j (a, b)
must be chosen such that site averages and correlations in the
model match those in the data, i.e.,∑

a1,...aN

δ(ai, a)P(a1 . . . aN |J) = fi(a),

∑
a1,...aN

δ(ai, a)δ(a j, b)P(a1 . . . aN |J) = fi j (a, b), (3)

where δ(ai, a) is the Kronecker δ function, which is one if the
symbol ai at site i is equal to a and zero otherwise. Finding
the parameters hi(a), Ji j (a, b) that satisfy Eq. (3) constitutes
the inverse Potts problem.

B. Cross entropy and regularization

Formally, the solution to the inverse Potts problem is the
set of fields and couplings that maximize the average log-
likelihood or, equivalently, that minimize the cross entropy
between the data and the model. This cross entropy can be
written as

S(J|f ) = log Z (J) −
N∑

i=1

q∑
a=1

hi(a) f s
i (a)

−
N−1∑
i=1

N∑
j=i+1

q∑
a=1

q∑
b=1

Ji j (a, b) f s
i j (a, b), (4)

where, for simplicity, we indicate the set of single and pair-
wise frequencies as f and the set of fields and couplings
as J.

To guarantee that the minimization of the cross entropy is
a well-defined problem, a regularization term �S is added,
which, in the Bayesian formulation, corresponds to prior
knowledge over the parameters J. A Gaussian prior dis-
tribution, also referred to as L2 regularization, is a usual
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choice:

�S = γh

N∑
i=1

q∑
a=1

hi(a)2 + γJ

N−1∑
i=1

N∑
j=i+1

q∑
a=1

q∑
b=1

Ji j (a, b)2. (5)

The regularization parameters γJ and γh are related to the
prior variances of fields (σ 2

h ) and couplings (σ 2
J ) through

γh = 1/(Bσ 2
h ), and γJ = 1/(Bσ 2

J ), where B is the number of
configurations in the sample. When the penalties are relatively
weak [γ ∼ O(1/B)], this regularization can be thought of as
a weakly informative prior [35] whose main purpose is to
prevent pathologies in the inference.

C. Gauge invariance

The Nq frequencies fi(a) and 1
2 N (N − 1)q2 correlations

fi j (a, b), with i < j, are related to each other: The former sum
up to 1, while the latter have the frequencies as marginals.
Therefore, not all constraints in Eq. (3) are independent and
multiple sets of parameters give the same probability distri-
bution. In the language of physics, this overparameterization
of the model is referred to as gauge invariance and the
choice of one particular parameter set among the equiva-
lent ones as gauge choice. This gauge invariance reduces
the number of free parameters in the Potts model to q − 1
fields for each site and (q − 1)2 couplings for each pair of
sites.

In particular, we can reparameterize the model without
changing the probabilities by an arbitrary transformation of
the form:

hi(a) → hi(a) + Hi +
∑
j( �=i)

Ki j (a),

Ji j (a, b) → Ji j (a, b) − Ki j (a) − Kji(b) + κi j

for any Ki j (a), Hi, and κi j . In the so-called lattice-gas gauge,
this freedom is used to define a gauge state ci at each site such
that

Ji j (a, c j ) = Ji j (ci, b) = hi(ci ) = 0, (6)

for all states a, b and sites i, j. The couplings and fields are
transformed as follows:

hi(a) → hi(a) − hi(ci ) +
∑
j �=i

[Ji j (a, c j ) − Ji j (ci, c j )],

Ji j (a, b) → Ji j (a, b) − Ji j (ci, b) − Ji j (a, c j ) + Ji j (ci, c j ). (7)

Two common gauge states are the most and the least
frequent states of each site, defining respectively the consen-
sus gauge and the least-frequent gauge. In protein analysis,
the gauge state is often fixed to the amino acid present at
site i in a reference sequence, called the wild-type sequence.
An alternative choice is the so-called zero-sum gauge, in
which

q∑
c=1

Ji j (a, c) =
q∑

c=1

Ji j (c, a) =
q∑

c=1

hi(c) = 0, (8)

for all states a and all variables i, j. Fields and couplings can
also be put in the so-called zero-sum gauge through

hi(a) → hi(a) − hi(·) +
∑
j( �=i)

[Ji j (a, ·) − Ji j (·, ·)],

Ji j (a, b) → Ji j (a, b) − Ji j (·, b) − Ji j (a, ·) + Ji j (·, ·),
(9)

where g(·) denotes the uniform average of g(a) over all states
a at fixed position.

Note that, while all observables such as the moments of
the distribution are invariant with respect to the gauge choice,
the fields and the couplings are not. Arbitrary functions of the
couplings and fields, such as the commonly used Frobenius
norm of the couplings, are also not generally gauge invariant.
If not explicitly stated, the comparisons shown in this paper
are performed in the consensus gauge, but the choice of the
gauge for the inference and for the analysis of the inferred
network can be different. The gauge chosen during the infer-
ence will be further discussed in Sec. II D in the descriptions
of ACE and PLM.

D. Algorithms

The presence of the partition function Z in Eq. (4) pre-
cludes direct numerical minimization of the cross entropy
when the system size is large, since this requires summing
over all

∏N
i=1 qi possible configurations of the system. How-

ever, many approximate solutions have been proposed to
tackle this issue. We briefly recall two of these methods to re-
spectively approximate the cross entropy or the log likelihood:
the adaptive cluster expansion (ACE) and pseudolikelihood
maximization (PLM).

1. Adaptive cluster expansion (ACE)

The cross-entropy [Eq. (4)] can be exactly decomposed as
a sum of cross-entropy contributions, calculated recursively
(see the Appendix). The adaptive cluster expansion [2,30,31]
is based on the idea of summing up cluster contributions based
on their importance as quantified by their absolute contribu-
tion to the cross entropy. To this end, an inclusion threshold
parameter t is introduced and only clusters with cross-entropy
contributions larger than the threshold t are included. The in-
clusion threshold t is then progressively decreased to include
more clusters in the summation. The expansion is usually
stopped when the frequencies and correlations of the inferred
model reproduce the empirical ones to within the statistical
error bars due to finite sampling. The inference routine which
has been used in this paper is publicly available in Ref. [36].
For an input sample of size B, the regularization parameters
are set to γJ = 1/B and γh = 0.01/B, corresponding to a
variance of the prior distribution of couplings of order 1 and a
variance of fields of order 100.

2. Pseudolikelihood maximization (PLM)

The idea behind pseudolikelihood maximization is to ap-
proximate the full likelihood of the data given the model, or
equivalently the full cross entropy [Eq. (4), by the site-by-site
maximization of the conditional probability of observing one
state at a site, given the observed states on the other sites. This
approximation makes the problem tractable, and it also makes
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it possible to parallelize the computation for the different sites.
Pseudolikelihood is a consistent estimator of the likelihood in
the limit of infinite input data. For this study, a version of the
asymmetric pseudolikelihood maximization [9,27] capable of
working with a site-dependent number of Potts states has been
implemented adapting the public code by Ekenberg and Aurell
in Ref. [37].

Unlike ACE, the networks inferred by PLM with L2 regu-
larization are always fully connected. As empirically shown in
protein sequence analysis [9,22,23] and in theoretical analyses
[38], large regularization is needed in the presence of fully
connected networks to avoid overfitting and thus to improve
contact and fitness predictions. We have tested different regu-
larization strengths, see Sec. III, and fixed γJ = N/B, γh =
0.1/B for system with N variables and input sampling of
size B.

With PLM gauge invariance is automatically broken. The
inference is performed in the gauge that minimizes the L2

regularization:

γJ

q j∑
b=1

Ji j (a, b) = γhhi(a), γJ

qi∑
a=1

Ji j (a, b) = γhh j (b),

qi∑
a=1

hi(a) = 0. (10)

As for ACE, the PLM fields and couplings are subsequently
transformed to the consensus gauge for comparison.

III. REGULARIZATIONS

A. Removing variable states

1. Color compression

So far we have described [Eqs. (4) and (5)] how to infer
the parameters of a Potts model where the number of states
q is the same at all sites, but it is easy to generalize this
procedure to Potts models in which the number of states
qi depends on the site i. This situation naturally arises due
to sampling: States with very small probabilities are rarely
observed. For instance, in multiple sequence alignments of
protein families, for the large majority of sites only a subset
of the full q = 21 possible symbols are observed. In the color
compression procedure, for each site i, we model explicitly
only the qi states observed with a frequency fi(a) larger than
a frequency cutoff threshold f0

fi(a) > f0, (11)

and we group together the remaining q − qi low-frequency
states into a single one. The frequency of the grouped or
compressed Potts state qi + 1 is then the total frequency
of the states that have been grouped together: fi(qi + 1) ≡∑q

a′=qi+1 fi(a′).

2. Artificial data sets on Erdős-Rényi random graphs

To benchmark color-compressed inference, we have gener-
ated synthetic data from a Potts model with N = 50 variables
carrying q = 10 Potts states and interacting on an Erdős-
Rényi random graph. To build the interaction graph, each edge
in the network is included with probability 0.05, giving a

mean connectivity 2.5, with a maximum connectivity equal
to 7. An example of a contact map is shown in the Appendix
(Fig. 16). The field and couplings parameters on interacting
sites are selected from Gaussian distributions of mean μ = 0
and standard deviations σ 2

J = 1 and σ 2
h = 5. Therefore, if i

and j interact Ji j is a 10 × 10 matrix whose elements are
chosen independently according to the above distributions,
and each element of the matrix is zero when the sites do not
interact.

We have generated 10 independent realizations of such
ER models (networks of interactions and sets of fields and
couplings). For each realization, B = 5 × 102, 103, 104, or
105 configurations are generated by Markov chain Monte
Carlo sampling. The number of available data, B × N , can be
compared to the number of parameters to be inferred, Mtot =
qN + q2N (N − 1)/2 � 1.2 × 105. We have, for the previ-
ously listed values of B, B × N = 2.5 × 104, 5 × 104, 5 ×
105, or 5 × 106, the first two being in heavy undersampling
conditions, the third in scarce sampling, and only the last one
being relatively well sampled.

3. Reduction in the number of parameters in compressed data:
Comparison between ER data with q = 10

and sequence data with q = 21

Thanks to color compression, the number of colors per
site, qi, and thus the number of parameters Mcc = ∑N

i qi +∑N
i< j qi q j are reduced with respect to the full number of

colors per site, q, and the total number of parameters to be
inferred Mtot. Figure 1 (left) illustrates how such reduction is
achieved as a function of the compression threshold f0 and for
different sampling depths B for the artificial data. Increasing
f0, the inferred model goes from the full-color 〈qi〉 = q Potts
model to the Ising model with only two colors 〈qi〉 = 2 per
site, indicating only the presence or absence of the most
probable color on each site. The number of parameters to be
inferred is divided by 50 at high compression.

Figure 1 (right) shows a similar behavior for parameter
reduction as a function of f0 and sampling size B in protein
sequence data, for three families that will be further described
and analyzed in Sec. V. In the latter case, the number of
Potts states is the number of possible amino-acid types (plus
the gap symbol), q = 21, and the number of parameters is
decreased by 100 times at high compression. While protein
sequence data are the direct application of color compression
that we will consider in Sec. V, we have generated synthetic
data from a Potts model with q = 10 instead of q = 21 states
to speed up the numerical analysis performed varying sam-
pling depth, compression threshold, and inference methods,
especially for the ACE algorithm. Indeed, as will be shown
in Sec. VI, the computational cost of inferring a complete
q = 21 Potts model may become very large. Moreover, the
aim of the present study is to investigate the interplay between
sampling and effect of compression, and we do not expect
qualitative changes between q = 10 and q = 21: We expect
that the compression threshold f0, at which the performances
of the inferred model worsen with respect to the full Potts
model, does not depend on the maximal numbers of Potts
state in the original model but rather on their occurrence
in the sampling. At large compression threshold, we expect
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FIG. 1. Mean number of colors per site 〈qi〉 (top) and relative reduction in the number of parameters to be inferred Mcc/Mtot (bottom),
as a function of the f0: no compression, 0 (only unseen symbols are removed from inference), and 1/B < f0 < 0.1. Data from a single ER
realization (left) and sequence data for three protein families, WW (N = 31), PDZ (N = 84), RRM (N = 82) (right), at different sample
depths B.

that model performance deteriorates because highly frequent,
well-sampled colors are grouped and their correlations are
lost.

4. Color decompression

Once the restricted Potts model is inferred, we need to
recover the complete model with q states at each site in order
to compare it to the ground truth. To this aim, we have to
determine the parameters for the states that were grouped on
site i. We use the following procedure: For each grouped state
a′, the fields and the couplings are estimated through

hi(a
′) = hi(qi + 1) + log

[
fi(a′)

fi(qi + 1)

]
,

Ji j (a
′, b) = Ji j (qi + 1, b), (12)

where qi + 1 refers to the unique Potts state for the grouped
symbols. This procedure allows us to correctly recover the
local fields parameters reproducing the frequencies fi(a′) for
the grouped symbols, while a common coupling parameters
is assigned to all the grouped symbols. Then, we associate
fields and couplings to states that are never observed in the

sampling, hereafter referred to as unseen states, through a
natural extension of the procedure described above. We assign
a pseudocount frequency fi(a′′) = α/B to the unseen symbols
(a′′). Hereafter, we have fixed α = 0.1, in the expected range
0 < α < 1. When the grouped state is not present while
unseens are present, we use the least probable state on the
given site (li) instead of the grouped state in the denominator
of Eq. (12), by replacing qi + 1 by li.

The choice of associating the unseen states to the grouped
state or the least probable state is both simple and effective. In-
deed, it follows the gauge choice and yields fields with lower
values than for the observed states. A detailed comparison of
the effects of the pseudocount above and of the standard L2

regularization in the simple case of an independent model is
presented in the Appendix.

5. Gauge used in the ACE inference

ACE inference has been implemented in the lattice-gas
gauge [Eq. (6)] [31]. It is important to notice that the choice of
the gauge symbol may have some effect on the performance
of the inference procedure because the regularization term is
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FIG. 2. Cluster expansion as function of the cluster inclusion threshold t for one data set, obtained by sampling one realization of an
Erdős-Rényi random graph with B = 1000 configurations and applying ACE to compressed data with f0 = 0.01. From top to bottom: (i)
relative reconstruction errors versus t on frequencies εp, connected correlations εc, and maximal relative error εmax. Stars indicate possible
solutions of the inverse models, reproducing well the empirical one- and two-point correlations (εmax < 5), which are obtained at different
expansion thresholds and corresponding to sparse graphs at large thresholds, or fully connected reconstructed graphs at small thresholds; see
Table I. (ii) Regularized cross entropy vs t . (iii) Number of total clusters Ncl and number of two-site clusters N2 included in the expansion vs
t . (iv) Maximal cluster size vs t . The spACE expansion stops at N2 = 200.

not gauge invariant. For abundant data or in the limit of large
compression, Potts states are well sampled and the choice
of the gauge symbol is largely irrelevant. However, for few
data or in the absence of color compression, or at small
compression, the best performance is obtained by choosing
as gauge symbol the least-probable Potts state on each site. In
this way, all the fields and couplings corresponding to at least
one poorly sampled state are fixed to zero and have therefore
null statistical variances by construction. Fields and couplings
are then translated to the gauge in which the most probable
symbol is chosen as gauge symbol (consensus gauge) to
perform the comparisons described in the next sections using
Eq. (7). This consensus gauge is best for comparison because
the statistics of the consensus symbols (on all sites) are the
easiest ones to measure accurately.

B. Removing interactions

We also regularize the inference procedure by limiting the
number of nonzero interactions. Sparsification of the interac-
tion network is sometimes achieved through L1 regularization
of the couplings. Hereafter, we show that the inclusion thresh-
old of the ACE inference procedure defined in Sec. II D 1
plays a similar role, while not affecting the amplitude of
nonzero couplings.

1. Role of ACE inclusion threshold: Sparse versus
dense inferred graphs

Figure 2 shows the behavior of the ACE algorithm as a
function of the inclusion threshold t for one particular graph,
hereafter called ER05, with B = 1000 sampled configura-
tions, analyzed with a color compression of f0 = 0.01. This

TABLE I. Inferred models obtained varying the expansion
thresholds for the reference data (ER05, B = 1000 configurations),
of Fig. 2, with compression frequency f0 = 0.01. The table gives
the cluster inclusion threshold t , the number N2 of two-site clusters,
the maximal relative error εmax, the regularized cross entropy Sλ

c ,
and the cross entropy Sc obtained with the cluster expansion at
different thresholds t . The entropy of the model having generated
the data is S = 50.3. Possible solutions (εmax < 5) are indicated by
asterisks. The optimal threshold determined by the spACE procedure
is 3.6 × 10−2.

t εmax N2 Sλ
c Sc

1 17 0 56 56
9.6 × 10−2 4.9∗ 29 51.7 51.2
3.6 × 10−2 3.9∗ 55 50.6 49.9
2.2 × 10−2 34 90 49.7 48.8
3.4 × 10−5 1∗ 1225 42.3 39
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representative data set will be our reference case. For each
threshold t used to select clusters in the ACE expansion, the
model frequencies 〈δ(ai, a)〉 and 〈δ(ai, a)δ(bi, b)〉 calculated
by Monte Carlo simulation are compared to the data frequen-
cies fi(a) and fi j (a, b) [see Eq. (3)].

As detailed in Refs. [2,31], to monitor the inferred model’s
ability to reproduce the measured frequencies and correlations
while avoiding overfitting, we define a relative error that is
the ratio between the deviations of the predicted observables
from the data, � fi(a) = 〈δ(ai, a)〉 − fi(a) and � fi j (a, b) =
〈δ(ai, a)δ(bi, b)〉 − fi j (a, b), and the expected statistical fluc-
tuations due to finite sampling, σi(a) = √

fi(a)[1 − fi(a)]/B
and σi j (a, b) = √

fi j (a, b)[1 − fi j (a, b)]/B. The relative error
on frequencies is

εp = 1

Nq

√√√√∑
i,a

[
� fi(a)

σi(a)

]2

. (13)

The relative error on connected correlations, ci j (a, b) =
〈δ(ai, a)δ(bi, b)〉 − 〈δ(ai, a)〉〈δ(bi, b)〉, is

εc = 2

N (N − 1)q2

√√√√√ ∑
i< j,a,b

[
�ci, j (a, b)

σ c
i, j (a, b)

]2

, (14)

where we estimate the standard deviation in the con-
nected correlations as σ c

i, j (a, b) = σi j (a, b) + f j (b)σi(a) +
fi(a)σ j (b). Finally, the maximum relative error is

εmax = max
{i, j,a,b}

1√
2 log (M )

[ |� fi(a)|
σi(a)

,
|� fi j (a, b)|

σi j (ab)

]
, (15)

where M = Nq + [N (N − 1)/2]q2 is the total number of one-
and two-point correlations. As shown in Fig. 2 (top panel), the
relative errors defined above have a nonmonotonic behavior
as a function of the threshold, reaching relative minima that
successfully reconstruct the data (εmax < 5) at multiple values
(marked by asterisks) of the expansion threshold t ; see Table I.
The regularized cross entropy, the total number of clusters
included in the expansion, and their maximal size as a function
of the cluster inclusion threshold t are also shown Fig. 2.

The cluster inclusion threshold acts as an additional reg-
ularization. There are three plateaus in the regularized cross
entropy as a function of the cluster inclusion threshold t
of Fig. 2: The first plateau corresponds to an independent
model, the second one to a sparse interaction network, and the
third one to a fully connected network. The number of edges
present in the inferred graph of Fig. 2 is given by the number
N2 of two-site clusters in the ACE expansion and is shown in
Table I for the threshold corresponding to the minimal relative
errors εmax. In particular, the two relative minima better repro-
ducing the data correspond to two different inferred networks.
The minimum with εmax = 3.9 is at high threshold (t = 0.036)
and is characterized by a numbers of edges N2 = 55 smaller
than the total number N (N − 1)/2 = 1225 of possible pairs.
The inferred model is therefore a sparse graph, with a number
of edges N2 comparable with the number of edges of the
model used to generate the data (N0 = 59 for the model used
to generate the data in Fig. 2). The second relative minimum
with εmax = 1 is at low threshold t = 6.4 × 10−5 where the

expansion includes the maximal number of two-site clus-
ters N2 = N × (N − 1)/2, corresponding to a fully connected
graph. As can be guessed by the difference in the connectivity
between the original and inferred model, and as we will better
quantify in Sec. IV A, the fully connected solution overfits the
data.

2. spACE, a variant of ACE for sparse interaction
networks inference

To force the ACE algorithm toward a sparse solution, we
introduced a procedure in the cluster expansion [36], which
stops the algorithm at a maximal number Nmax

2 of two-site
clusters; see the Appendix. This procedures imposes a prior
knowledge on the sparsity of the interaction graph by giving
an upper bound for the number of edges. The Erdős-Rényi
random graph models used here to generate the data have
an average connectivity of 2.5 neighbors per site, so we can
use this prior knowledge to fix a maximal number of edges
to Nmax

2 = N × 2.5 ≈ 125. In practice, to find the best sparse
graph with a number of edges smaller than the prescribed
value Nmax

2 , we spanned the threshold range in regular in-
tervals,1 at which the local minima of the absolute error
and the corresponding threshold t parameters are recorded
(see Table I). The parameters corresponding to the global
minimum (under the sparsity conditions) are then chosen
(t = 3.6 × 10−2 for Table I). The spACE procedure is stable
when changing Nmax

2 around its prior fixed average value. In
the following, we have stopped the algorithm for Nmax

2 = 200
(shown on Fig. 2), after checking that the value Nmax

2 =
100 gave similar results. This procedure greatly reduces the
computational time, which increases linearly with the number
of computed clusters and grows exponentially, as qKmax , with
their maximal size Kmax (see Sec. VI and the Appendix): As
shown in Fig. 2 Kmax = 3 at Nmax

2 = 200 while Kmax = 7 for
the fully connected graph. The number of inferred parameters
Mcc in Fig. 1 is further reduced by a factor 5 × 10−2 for the
best sparse model on ER data in Table I having couplings only
on connected sites.

IV. BENCHMARKING OF COLOR COMPRESSION AND
DECOMPRESSION ON SYNTHETIC DATA

To carry out an extensive analysis of the effects of the
color compression introduced in Sec. III on the quality of the
inference, we will apply it to artificial data generated by Potts
models on Erdős-Rényi (ER) random graphs. The model and
the generation of the data are described in Sec. III A 2.

Once the data are obtained, we apply the compres-
sion schemes introduced in Sec. III with no color com-
pression and with frequency cutoff f0 = [0, 10−4, 10−3, 3 ×
10−3, 10−2, 3 × 10−2, 10−1]. Note that all frequency thresh-
olds 0 < f0 � 1/B give the same color compression, so we
infer the model only for the upper value in this range and thus
the number of the tested frequency thresholds depends on B.

1The first interval is I/τ < t < 1, the second is for 1/τ 2 < t < 1/τ ,
and so on. We have chosen here τ = 3.4 (see command -trec on the
GitHub site)
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TABLE II. Comparison between importance sampling (AIS) and ACE methods to obtain the logarithm of the partition function Z , the
entropy S, and the Kullback-Leibler divergence (KL), at the different sparsity threshold t for the reference model, ER05, with data sampling
B = 1000 and color compression fo = 0.01. The optimal threshold determined by the spACE procedure is 3.6 × 10−2. Fluctuations of the
above values in AIS estimation over repetition of MC sampling are of the order 5 × 10−3 for the sparse models and 5 × 10−2 for the fully
connected model.

Cluster inclusion threshold t log Z(AIS) log Z(ACE) S(AIS) S(ACE) KL(AIS) KL(ACE)

1 28.9 28.6 56.9 56 6.4 6
9.6 × 10−2 32 31.9 52.6 51.4 2.2 2.3
3.6 × 10−2 32.5 31.8 51.8 50.7 1.5 1.5
2.2 × 10−2 34.2 32.8 52.9 50.9 2.5 3
3.4 × 10−5 36 26 57.8 49.1 7.4 5

Moreover, f0 = 0 corresponds to removing from the inference
only the unseen states.

Given the 10 realizations of the Erdős-Rényi model, the
4 sample sizes, and the 5 to 8 (depending on the sampling)
values of the frequency threshold, we define 280 data sets.
For each of them, we have inferred the corresponding Potts
parameters, both with the ACE and the PLM algorithms.

A. Probability distributions

The Kullback-Leibler (KL) divergence measures how the
inferred probability distribution of the possible configurations
diverges from the empirical one (defined from the data sam-
ples) and can be computed as

D(PJreal ||PJinf ) =
∑

a

PJreal (a) log
PJreal (a)

PJinf (a)

= log(Zinf ) − log(Zreal ) + 〈Einf (a)

− Ereal(a)〉a in real,

where a = {a1, . . . , aN } is a configuration and 〈·〉a in real indi-
cates the average over the configurations generated by Markov
chain Monte Carlo (MCMC) from the real model. The first
and the second lines are identical only when an infinite con-
figuration sample is employed. Here, we estimate the average
over PJreal using an ensemble of 50 000 MCMC configurations
sampled from the model.

As described before, the computation of the partition
function Z is far from being trivial and was done in two
ways. First, we used annealed importance sampling (AIS)
[39], starting from the independent-site model: All initial
couplings were set to zero, while initial fields were computed
as h0

i (a) = log( fi(a) + α) − log( fi(consi )) where consi is the
most common state at site i and α = 1/B is the smallest
observed frequency used as regularization. Then a chain of
models with increasing couplings (up to the inferred values)
are thermalized and the ratios of their partition functions may
be estimated. Second, the Kullback-Leibler divergence and
the logarithm of the partition function can also be directly
estimated by the ACE procedure (Table I); see the Appendix.
The KL divergences obtained directly from the ACE expan-
sion and the ones obtained with importance sampling are very
similar, as shown in Table II, for the reference case in Fig. 2
at the optimal cluster inclusion threshold corresponding to
a sparse inferred network. The values of the logarithm of
the partition function and of the entropy are also consistent

between the two methods. In the following, we will use the
annealed importance sampling to calculate the KL divergence
to compare results from PLM and ACE.

1. KL divergence for ACE models at different
inclusion thresholds t

Table II displays the KL divergences for the reference data
set and different cluster inclusion thresholds of Fig. 2 and in
Table I obtained both with importance sampling and the ACE
expansion.

The fully connected graph model has a larger KL diver-
gence and is therefore overfitting the data, while the sparse
graph model reproduces better the original model. All results
for the ACE expansion presented in the following are obtained
with the spACE procedure to infer a sparse graph. For the fully
connected solution, due to overfitting, the cross entropy of
Table I is not a good approximation to the entropy. Therefore,
the estimate of the logarithm of the partition function and
of the entropy given in Table II are significantly different from
the ones obtained by the AIS method.

2. KL divergence as a function of the sampling depth B and the
color compression threshold f0

Figure 3 shows the mean over the ten ER realizations of the
KL divergence between the real and the inferred distributions
for various sampling depths and compression parameters for
both ACE (left) and PLM (right). As expected, the KL di-
vergence decreases for bigger samples, becoming very close
to zero for B = 105. The same happens for the standard
deviations over the 10 realizations. ACE gives smaller KL
divergences with respect to PLM, showing that the sparsity
imposed in the spACE procedure gives a model reproducing
better the original, sparse ER models.

The black empty squares in Fig. 3 indicate a reference
compression threshold f ∗

0 = 10/B, i.e., grouping symbols
observed fewer than 10 times. We consider that frequencies
larger than f0 are reliably estimated.2 For f0 > f ∗

0 , the com-
pression procedure discards information on “reliable” colors,
and a loss in performance is expected.

2We estimate the standard deviation σ of the observed frequency
based on a binomial variable with probability f̂ in a sample of
size B: σ =

√
( f̂ (1 − f̂ )/B �

√
f̂ /B. Probabilities larger than f0

correspond to signal-to-noise ratios f̂ /σ >
√

f ∗
0 B > 3.

012309-8



INFERENCE OF COMPRESSED POTTS GRAPHICAL … PHYSICAL REVIEW E 101, 012309 (2020)

 0

 1

 2

 3

 4

 5

 6

no 0 10-4 10-3 10-2 10-1

K
L 

di
ve

rg
en

ce

f0
B=5×102 B=5×102B=103 B=104 B=105

 0

 1

 2

 3

 4

 5

 6

no 0 10-4 10-3 10-2 10-1

K
L 

di
ve

rg
en

ce

f0
B=103 B=104 B=105

(a) ACE (b) PLM

FIG. 3. Kullback-Leibler divergence between real and inferred probability distributions averaged over 10 realizations plotted as function
of the compression parameter f0 for different sample sizes. The left plot is for ACE; the right plot for PLM. Error bars are standard deviations
over the 10 realizations. Black empty squares correspond to the reference cutoff frequency f ∗

0 = 10/B.

For both inference procedures, the increase in KL diver-
gence in Fig. 3 becomes visible only at a large value of the
cut frequency f0 � 0.001, independently from the sampling
depth. We indeed expect that the increase of the KL diver-
gence due to the color compression procedure be a monotonic
function of the cut frequency f0, so it is irrelevant at small cut
frequency.

For high values of f0, the increase of the KL divergence
with respect to the uncompressed model is, of course, much
more significant at high B.

Table III shows that the strong regularization (γJ ≈ N/B)
used in the fully connected PLM inference is essential to
reduce overfitting: a PLM model inferred with a weak regu-
larization (γJ ≈ 1/B) gives indeed very large KL divergences,
especially at low sampling depth. Color compression, acting
as an additional regularization, helps in this latter case to
reduce overfitting and to lower the KL divergence. As shown
in the Appendix and Fig. 15, the KL divergences for the
weak regularized PLM model reach indeed a minimal value,
at intermediates or large compression thresholds f0 depending
on a sampling depth, compatible with, but slightly larger than,
the one obtained for the usual strongly regularized PLM of
Table III.

TABLE III. KL divergences between inferred and empirical
distributions on the reference data sets at different B and with no
color compression. The value obtained by weakly regularized PLM
γJ = 1

B is compared to the ones obtained by the standards strongly
regularized PLM inference and weakly regularized spACE inference,
used in Fig. 3.

PLM PLM ACE
B (γJ = 1

B , γh = 0.002
B ) (γJ = 50

B , γh = 0.1
B ) (γJ = 1

B , γh = 0.01
B )

103 12.97 3.80 1.35
104 2.85 1.28 0.37
105 2.10 0.30 0.18

B. Low-order statistics

In this section, we discuss the generative properties of
the inferred models, in particular the ability to reproduce
the low-order statistics of the original model: the site
frequencies fi(a) = ∑

generated a δ(ai, a)/Bgen and covariances
covi j (a, b) = ∑

generated a [δ(ai, a)δ(a j, b)/Bgen] − fi(a) f j (b).
To benchmark the generative power of the inferred model
as a function of the color compression, two sets of 20 000
configurations are generated by Markov chain Monte Carlo,
respectively with the real and with the inferred model for each
B, f0, and graph realization, and their low-order statistics are
compared.

Figure 4 shows, for the models inferred from the reference
data set, the comparison of the frequencies and covariances
computed from the configurations generated by the real model
(test sequences) and by the models inferred with ACE and
PLM, without color compression (top panels) and with f0 =
0.01 (bottom panels). As shown in the figures, PLM co-
variances are downscaled, due to the strong regularization,
as happens for the couplings (Sec. IV D). Moreover, PLM
assigns smaller frequencies to the unseen Potts states (left
panels of Fig. 4 in log-log scale). This is probably due to the
fact that the pseudocount used during decompression seems
to be well fixed for the weak regularization used in ACE but
not for the large regularization used in PLM. The insets in
Fig. 4 show that, contrary to spACE, zero covariances are set
to nonzero values with PLM due to overfitting.

To have a more systematic comparison, we analyzed their
absolute mean square error defined as

� f =
√∑

i

∑
a

[
f gen
i (a) − f test

i (a)
]2∑

i qi
,

�corr =

√√√√∑
i j

∑
ab

[
covtest

i j (a, b) − covgen
i j (a, b)

]2∑
i j qiq j

. (16)
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FIG. 4. Reconstruction of average frequencies and covariances for the reference case (ER05, B = 1000). Comparison between generated
data and test set for no color compression (top) and f0 = 0.01 for ACE [left, (a)] and PLM [right, (b)]. The Pearson correlation coefficient (R)
and the absolute error [�, Eq. (16)] are marked on top of the plots both for the full model and for the reduced one (only explicitly modeled
states).

These quantities are then computed for different B and f0 and
averaged over 10 graph realizations.

Figure 5 shows the mean square errors (MSE) for
the frequencies and covariances. spACE has again better
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FIG. 5. Absolute error [Eq. (16)] of frequencies (� f , top panels) and covariances (�corr, bottom panels) averaged over 10 ER realizations,
as a function of the color compression for several sample sizes. Dashed lines: error on explicitly modeled Potts states only. Full lines: error
on all parameters. Error bars are standard deviations computed over the 10 realizations. Inference is performed respectively by ACE (left) and
PLM (right).
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FIG. 6. ACE and PLM interaction graph reconstruction as a function of the color compression f0. Positive predicted value PPV(n =
min{N0, Npred}) for ACE and PLM inference. Points and error bars are averages and standard deviations obtained on 10 ER realizations. For
ACE, all quantities are computed in the consensus gauge with (dotted line) and without (full line) APC (left and middle plots, respectively).
Right plot: PPV(N0) with PLM either in the consensus gauge without APC (full line) or in the zero-sum gauge with APC (dotted line).

performances than PLM.3 The MSE for the full Potts model
(full lines) shows a little dependence on the compression
frequency f0; meanwhile, the MSE restricted to explicitly
modeled colors (dotted lines) generally increases at large
compression. The only exception is that frequencies are better
reproduced with PLM at strong color compression because the
decompression procedure [Eq. (12)], acting as an independent
model, correctly assigns fields to grouped states. The above
observations are simply explained by the fact that the contri-
bution to the MSE of a color increases with its frequency. The
MSEs on the full Potts model, after decompression (full lines
in Fig. 5) are quite independent from f0, as the averages in the
MSE are dominated by the large amount of colors with small
frequencies; see Fig. 4. On the contrary, the MSE on explicitly
modeled colors (dotted lines in Fig. 5) shows a large increase
with the compression threshold because the mean is restricted
to more frequent colors.

C. Interaction networks

In this section, we focus on the reconstruction of the
interaction network and the prediction of pairs of sites that
are connected, or “in contact,” in the interaction graph. The
original ER graph is sparse, with an average connectivity
of about 2.5. We can predict contacting sites as those site
pairs with large couplings, as traditionally done for protein
structures [13–15]. To this end, we compute the Frobenius
norm of the (10 × 10) inferred and decompressed coupling

matrix between each pair of sites i, j, Fi j =
√∑

a,b Ji j (a, b)2 .

The heat map of the Frobenius norms of the couplings
inferred by ACE and PLM at different color compressions
gives very similar results and allows us to identify the largely
coupled sites by ACE and PLM (see Fig. 16 in the Appendix).
The only difference between ACE and PLM is that spACE
infers a sparse network with zero Frobenius norms on the

3Similar results are obtained when considering the Pearson correla-
tions between the real and inferred frequencies or correlations rather
than the absolute errors (not shown).

majority of links, while PLM with the L2 norm regularization
described in Eq. (5) infers a dense Frobenius norm matrix.
There is therefore no straightforward separation between pairs
of sites predicted to be in interaction.

To gain more insight into these predictions, as done for
protein structure [23,27,40], we can sort links by decreas-
ing Frobenius norm and follow the precision obtained pro-
gressively including the corresponding links in the so-called
positive predicted value (PPV) curve (see the Appendix). This
is shown in Fig. 6 for a number of links up to the last inferred
one for ACE or to N0 = 50 for PLM, for the reference case.

The Frobenius norm is computed in the consensus gauge,
which will be used to compare the couplings and fields in
the next section and in the zero-sum gauge used on protein
structure prediction [18,23,41]. Performance can be further
improved with the average product correction (APC) (de-
fined in the Appendix) when using zero-sum gauge. When
inferring sparse networks, APC only corrects the ranking of
the predictions in the PPV curve, but it does not change the
overall number of site pairs predicted to be in interaction, nor
the global precision; on the contrary, APC on the zero-sum
gauge largely improves PLM precision, as expected. Figure 6
(bottom) shows the average PPV, over all the data realization
and as a function of f0, at the number of real links PPV (N0 =
50) for PLM and at the lesser between the predicted Npred or
real N0 number of links with ACE.

As expected, the plots show that the contact prediction im-
proves with sampling, and that the APC significantly improves
the results for PLM in zero-sum gauge. PLM generally gives
higher PPV, especially at high sampling depth B = 104 and
B = 105 where the reconstruction error for spACE are due to
the sparsity threshold. We have verified that, at large sample
and when inferring fully connected networks, ACE has the
same PPV as PLM. We see that, for both algorithms, the
performance is usually stable against the introduction of color
compression.

D. Couplings and fields

In Fig. 7, we compare the fields and the couplings of the
real model (x axis) and the inferred Potts model (y axis)
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FIG. 7. Comparison of inferred and real fields and couplings with ACE and PLM for one realization of ER graph with no color compression
(top) and f0 = 0.01 (bottom), for B = 1000 sampled configurations. Parameters on explicitly modeled (kept), grouped, and unseen Potts states
are colored differently. Left: field comparison. Right: coupling comparison. On top of each plot, the Pearson correlation coefficient (R) and the
absolute error [�, as in Eq. (17)] are indicated.

obtained for the reference data of the graph ER05 sampled
at B = 1000 without color compression (top panels) and with
f0 = 0.01 = 10/B (bottom panels), respectively, with ACE
and PLM. Different colors in Fig. 7 show Potts states (or
Potts states pairs) occurring at different frequencies and there-
fore treated in the color compression procedure as explicitly
modeled, grouped, or unseen in the configuration sample. For
couplings, if at least one of the two Potts state is unseen, the
pair is considered as unseen; if at least one site is grouped,
the pair is considered as grouped; if both sites are explicitly
modeled, the pair is considered as explicitly modeled. The
comparison is performed in the consensus gauge.

Figure 7 shows that, as observed in Sec. IV C, the sparse
procedure, spACE, misses some edges and the corresponding
couplings are fixed to zero. PLM couplings are systematically
smaller in amplitude than real ones, ending up in a tilted entry-
by-entry comparison. This is due to the large regularization
introduced to avoid overfitting.

Figure 8 shows the absolute errors on the fields and cou-
plings defined through

�h =
√∑

i

∑
a

[
hinf

i (a) − hreal
i (a)

]2∑
i qi

,

�J =

√√√√∑
i j

∑
ab

[
J real

ij (a, b) − J inf
ij (a, b)

]2∑
ij qiq j

; (17)

These errors measure the average distances from the diagonal
of the points in the scatter plots of Fig. 7. We observe that the
couplings and fields reconstruction performances are stable as
a function of the color compression up to the reference value
f ∗
0 � 10

B , where they drop because the compression become
too strong. Such drop is perfectly clear for the couplings
parameters, especially within the small regularization used
in spACE. Large compression threshold, as well as large
coupling regularizations, degrades indeed the information on
the correlations of grouped, badly sampled, variables. The
increase of field reconstruction error at all compressions is
negligible for small sampling depth B = 500, B = 1000, and
for both algorithms, showing that the decompression proce-
dure introduced in Sec. III correctly assigns, in the limit of
the available information, the large and negative fields for the
grouped and unseen Potts symbols, as done by using prior
information with the L2 regularization and shown in Fig. 7.
The dashed lines in Fig. 8, in agreement with Fig. 7, show
that by restricting the coupling comparison to the explicitly
modeled symbols, the better sampled ones at larger f0, the
reconstruction indicators are better. In other words, even in the
largely undersampled regime, parameters for well-sampled
colors are correctly inferred and are not affected by the poorly
sampled states. This emphasizes the difference between sites
and states in a Potts model. In the standard renormalization
procedure [42], when the number of sites are reduced in an
effective “renormalized” Potts model, the parameter values of
the retained sites change. In contrast, in the space of Potts
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states, grouping some of them, and keeping the probabilities
conserved, does not affect the others.4

V. APPLICATION TO SEQUENCE-BASED MODELS OF
PROTEIN FAMILIES

We now apply our inference approach to protein sequence
data. Input samples are multiple sequence alignments of pro-
tein families, the nodes of the graph are the protein sites,
and states are the 20 amino acids plus the insertion-deletion
symbol (q = 21). In this context, we aim at reconstructing
the contact map [14,40] or the fitness landscape [19–22]. In
particular, we would like to compare the change of energy cor-
responding to single-point mutations with respect to a wild-
type protein sequence to the experimentally measured changes
of fitness of the protein. Unlike the ER data, sequences are
not uniformly sampled. A reweighting procedure, described
in the Appendix, is usually introduced to reduce the initial

4Similar results are obtained when considering the Pearson corre-
lations between real and inferred parameters, rather than their abso-
lute differences. ACE gives better results than PLM for parameter
reconstruction, especially on couplings (not shown). This is because
spACE avoid overfitting data and setting many nonzero couplings for
noninteracting sites in the real interaction graph.

number B of sequences in the sample to an effective number
of independent ones Beff .

We here consider three protein families whose fitnesses
have been systematically assessed against single-point muta-
tions. We specify for each of them the number of sites in the
alignment N , the number of sequences B, and the number of
effective sequences Beff as follows:

(i) WW (N = 31, B = 8251, Beff = 2590) is a protein do-
main that mediates specific interactions with protein ligands.
Here fitness has been measured in terms of the capability to
bind a certain ligand [43].

(ii) PDZ (N = 84, B = 24 795, Beff = 4240) is a protein
domain present in signaling proteins. Here fitness has been
measured in terms of binding affinity [44].

(iii) RRM (N = 82, B = 70 780, Beff = 18 800) is an
RNA recognition motif; fitness was estimated through growth
rate measurements in Ref. [45].

Alignments and experimental fitness measures used in
this section were taken from Ref. [22]. The PLM procedure
was applied with the same large regularization used for the
artificial data, γJ = N/B, γh = 0.1/B. The SpACE procedure
was applied with a threshold cutoff Nmax

2 = 3N and a smaller
regularization γJ = 10/B, γh = 0.1/B; however, the relative
error εmax [Eq. (15)] was generally too large even in its local
minima, indicating that the procedure had not converged. As
shown in Ref. [31], a Boltzmann machine learning (BML)
procedure was further used, starting from the spACE inferred
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FIG. 9. Spearman correlation coefficient between the fitness predictions and the experimental measures found in literature, as a function
of the color compression for ACE and PLM. The protein families used here are WW(PF00397), PDZ(PF00595), and RRM1 (PF00076).

parameters as an initial guess, to better reproduce the low-
order statistics of the data and therefore the quality of the in-
ferred model. Mutational cost of single mutations is predicted
by their energetic cost, corresponding to the value of the field
of the mutated amino acid, after having transformed the field
parameters in the gauge of the wild type sequence through
Eq. (7) [23].

Contrary to what happens for synthetic data, where the true
model is known, the relationship between inferred energies
and experimental fitness values may be nonlinear, so we use
as a quality measure of the inference the Spearman correlation
coefficient between them rather than the Pearson. The Spear-
man values of Fig. 9 for the full model (no compression) and
PLM are in agreement with the ones previously obtained [22]
with PLM algorithm and a slightly different procedure, giving
Spearman values of 0.6, 0.57, and 0.5 for RRM1, WW, and
PDZ, respectively. ACE + BML performances are compatible
with PLM results, better for families with a large number of
sequences such as RRM, and slightly worse in the PDZ case.
The impact of color compression on the prediction is then
investigated and shown in Fig. 9 and has to be compared to the
quality of field reconstruction in Fig. 8, after decompression
(full lines). For the WW and PDZ families, as for PLM with
the ER data with B = 1000 and B = 500, the predictions are
not affected by large compression thresholds. Very large com-
pressions may even improve performances, as for the WW
family, where inference with almost binary Potts variables
(at f0 = 0.1, 〈qi〉 = 2.5; see Fig. 1) gives better predictions
than with a full q = 21-state Potts model. A similar effect was
observed also for HIV fitness predictions in Ref. [20]. The fact
that large color compressions can improve fitness predictions
may be related to the experimental uncertainties and limited
resolution on the fitness measures and also to the difficulty
in estimating the effective number of independent sequences
in the data. For the better sampled RRM family, predictions
worsen at large compression f0 > 10/Beff , as expected and
observed in Fig. 8 for the well-sampled artificial data (at
B = 104 and B = 105).

VI. GAIN IN COMPUTATIONAL TIME FOR SYNTHETIC
AND PROTEIN SEQUENCE DATA

In this section, we study how the computational time scales
with the sample size and the color compression frequency
threshold for spACE and PLM on synthetic and protein se-
quence data. Times have been obtained on a processor Intel®
Xeon(R) CPU E5-2690 v4 at 2.60 GHz x 56. The limiting
factors for computational time with the ACE expansion are
three: (i) the number of colors 〈q〉 in the inferred model,
due to the computation of the partition function which grows
as 〈q〉K on clusters of size K , (ii) the overall number of
clusters which enters in the construction rule, and (iii) the
number of configurations sampled by Monte Carlo to calcu-
late the relative errors in the reconstruction of the statistics of
the data.

For PLM, the average over the sampled configurations for
the pseudolikelihood and moments calculation determines a
linear dependence on the sample size B and on the number of
parameters. Figure 10 and Table IV show the computational
times for the reference ER graph realization as a function of
f0 and B. On such data, spACE (Fig. 10) weakly depends on
K and 〈q〉, which take small values, and the limiting step is
therefore the number of Monte Carlo sampled configurations.
Having a large number of MC steps (here fixed to 5 00 000)
is important to correctly estimate the relative errors at very
large sample size, given the small value of the sampling
variances. The computational time shows therefore a weak
linear dependence on the compression, as shown in Fig. 13
(Appendix). The computational times for spACE and PLM
on real proteins are compared in Tables V and Fig. 11. As
shown in Table V for real proteins, larger numbers and larger
sizes of clusters are summed on in the ACE expansion, as
compared to the artificial data in Table IV. The total number of
processed clusters (N̂cl ) and their average size 〈q〉 are clearly
the limiting factors for the running time, making ACE slower
than PLM. PLM further benefits from parallel computing;
here results obtained on 1 and 20 are compared, while for
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FIG. 10. Computational times averaged on all ER data for ACE and PLM for different B and color compressions. Left: computational time,
in seconds, using only 1 CPU, for ACE and PLM as a function B; a power law and linear fits are added to ACE and PLM (dashed lines). Right:
computational time ratio between the compressed and decompressed inference for ACE (1 CPU) and PLM (25 parallel CPU) as a function of
fraction of parameters to infer; dotted line indicates x = y and full line indicates linear PLM fit.

TABLE IV. Running times, in seconds, for spACE (Nmax
2 = 4N) and PLM on 1 and 20 cores, for the data from the reference graph ER05,

at two different sampling depths, ER 1000 (N = 50, B = 1000) and ER100000 (N = 50, B = 1 00 000), for different color compression
thresholds f0. The number of clusters processed by the algorithm N̂cl and the average number of colors explicitly modeled are also indicated
〈qkept〉.

B = 103 B = 105

f 0 tACE N̂cl kmax 〈qi〉 t1
PLM t20

PLM tACE N̂cl kmax 〈qi〉 t1
PLM t20

PLM

No 103 2511 4 10 39 8 9 × 102 1306 4 10 1.8 × 104 1.5 × 103

0 103 2320 4 8.6 32 8 9 × 102 1306 4 9.9 1.8 × 104 1.5 × 103

0.01 103 2065 4 5.8 22 7 9 × 102 1305 4 5.8 104 103

0.1 8 × 102 1350 4 2.2 11 7 6 × 102 1314 4 2.3 2 × 103 3 × 102

TABLE V. Running times (in seconds) for ACE and PLM for the three studied protein families: WW (N = 31, B = 8251), PDZ (N = 84,
B = 24 795), and RRM1 (N = 82, B = 70 780) for different color compression thresholds f0. spACE has been stopped at Nmax

2 = 93, 252, 246
(WW, PDZ, RRM1); the number of clusters processed by the algorithm N̂cl and the average number of colors explicitly modeled 〈qkept〉 are
also indicated. PLM times are given for both on 1 and 20 cores.

WW PDZ RRM1

f 0 tACE N̂cl kmax 〈qi〉 t1
PLM t20

PLM tACE N̂cl kmax 〈qi〉 t1
PLM t20

PLM tACE N̂cl kmax 〈qi〉 t1
PLM t20

PLM

No 1.5 × 103 702 4 21 2 × 102 25 4 × 104 4355 5 21 104 838 2 × 105 4127 6 21 6 × 104 4 × 103

0 103 702 4 18.6 2 × 102 24 3 × 104 4355 5 19.8 104 728 2 × 105 4127 6 20.9 6 × 104 4 × 103

0.01 4 × 102 702 4 9.4 85 15 5 × 103 4548 6 11.2 5 × 103 428 6 × 104 4992 7 12 3 × 104 2 × 103

0.1 2.5 × 102 714 4 2.2 17 8 103 4146 5 2.5 1.5 × 103 123 103 3724 5 2.5 5 × 103 5 × 102
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FIG. 11. Time gain due to color compression on protein sequences data with ACE (left) and PLM (right). The protein families used here
are WW (PF00397), PDZ (PF00595), and RRM1 (PF00076).
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spACE the computation has also been followed by time-
consuming MC learning. Figure 11 shows the large reduction
in computational time within spACE by color compression,
such compression makes often feasible the numerical compu-
tation, especially for nonsparse ACE inference (see Fig. 13),
which would take a prohibitively long time without significant
compression.

VII. CONCLUSION

The present work reports an extensive numerical bench-
marking of inferred color compressed Potts model with two
algorithms (ACE and PLM) on synthetic data, as well as on
protein sequence data. Knowing the ground-truth model that
generated the data, we can assess the inference performance
at different compression strengths, by (1) computing the
Kullback-Leibler divergence between the real and inferred
models; (2) checking the reconstruction of low-order statis-
tics; and (3) testing the reconstruction of the structure of the
interaction network and of the couplings and field parameters.

We will in the following resume and discuss the com-
parison between PLM and ACE inference methods before
discussing the results on color compression.

A first important advantage shown by ACE with respect
to PLM inference is that ACE can be easily stopped at large
value of the cluster inclusion threshold to reconstruct a good
sparse model for the artificial data, which have been generated
from sparse random graphs. Imposing sparsity regularization
naturally reduces the number of coupling parameters in the
inferred model, leaving the possibility to choose a small
value for the L2 regularization parameter on the left nonzero
couplings. Such a double-regularization scheme allows a very
good reconstruction of the overall model, the model param-
eters, and the statistics. In contrast, for PLM, the inferred
model is fully connected and therefore a large L2 regular-
ization is needed to avoid overfitting, in the optimal model
reconstruction, with the consequences that all the amplitudes
of coupling parameters are systematically underestimated and
the statistics of the data less well reproduced. Further theo-
retical investigations are needed to obtain the optimal regu-
larization value found for the inference of a fully connected
model, as a function of the sparsity of the original graph,
the number of sites and color, and the number of data, and
will be carried out in a forthcoming paper. It would be also
interesting to introduce a double regularization scheme for the
PLM algorithm. The situation is different for protein sequence
data because the spACE procedure with the simple stopping
criterium implemented here does not converge to small sta-
tistical reconstruction errors, without additional MC learning
algorithm. The resulting inferred network is no more sparse
and no gain of performances of ACE with respect to PLM are
achieved at larger computational costs. The spACE procedure
can be improved to better impose sparsity constraint in a
more general case [46,47]. A question which deserves further
investigation is if the inference of sparse connectivity graph
is more appropriate for parameter reconstruction in the large
undersampling regime, even for data generated with models,
such as protein sequence data, which are not necessary sparse.
Preliminary results for fitness prediction on protein sequence
data seems to indicate that sparse models give very good

performances [47]. Next, we will resume our conclusion and
discussion on color compression.

The central finding of the present work is that color
compression does not degrade the studied performances in
a very large range of frequency compression cutoff, while
largely reducing the dimensionality of the inferred model and
its computational time. The reduction of computational time
obtained thanks to color compression often become essential
for solving the inverse problem in reasonable times. For
example, ACE inference of models for many HIV proteins
[48–51] has been possible thanks to color compression. The
color compressed version of the PLM algorithm introduced
adapted here from the routine of the group of Aurell and
collaborators [9,27] can be crucially important when dealing
with large protein sequences or with whole genome inference
[26,52] with a much larger number of variables than single-
protein sequence data. The color compression and decompres-
sion procedures introduced here are not restricted to pairwise
graphical models. They could be used in other machine learn-
ing approaches on protein sequence data, such as restricted
Botzmann machines [53] or variational autoencoders [54].
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APPENDIX

1. Reminder about adaptive cluster expansion
and the inclusion threshold

In the ACE inference procedure, the cross entropy is
expanded as the sum of cluster contributions. Defining a
cluster as a subset of variables � = {i1, . . . , ik}, k � N , we
can formally write the cross entropy as the sum of cluster
contributions,

S(J|f ) =
∑

�

�S�, (A1)

where the sum is over all nonempty clusters of the N variables.
The cluster cross-entropy contributions �S� are recursively
defined through

�S� = S� −
∑
�′⊂�

�S�′ . (A2)

Here S� denotes the minimum of the cross entropy (4) re-
stricted only to the variables in �. Thus, S� depends only on
the frequencies pi(a), pij(a, b), with i, j ∈ �. Provided that
the number of variables in � is small (typically �10 for q =
10 Potts state as in the present work) numerical maximization
of the likelihood restricted to � is tractable. The definition of
�S� ensures that the sum over all clusters � in (A1) yields the
cross entropy for the entire system of N variables. As detailed
in Refs. [2,31], a recursive construction rule is used to avoid,
before selection, the computation of all cluster entropies. Such
a rule consists in building up clusters of size k by combining
selected clusters selected of size k − 1. The ACE expansion
consists in truncating the expansion in Eq. (A1) by fixing a
cluster inclusion threshold t and summing up in Eq. (A2) only
cluster contributions with |�S�| > t .
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2. ACE and SpACE pseudocodes

The ACE algorithm, described in detail in Ref. [31], is
based on the selection and summation of individual cluster
contributions to the cross entropy. It is built by the recursion
of the following routine. Given a list Lk of clusters of size k,
beginning with the list of all the N (N − 1)/2 possible clusters
of size k = 2, use the following procedure:

(1) For each cluster � ∈ Lk ,
(a) compute S� by numerical minimization of Eq. (4)

restricted to �,
(b) record the parameters minimizing Eq. (4), called

J� , and
(c) compute �S� using Eq. (A2).

(2) Add all clusters � ∈ Lk with |�S�| > t to a new list
L′

k (t ).
(3) Construct a list Lk+1 of clusters of size k + 1 from

overlapping clusters in L′
k (t ).

The rule used by default for constructing new clusters of
size k + 1 from selected clusters of size k is the so-called
strict rule: A new cluster is added only if all of its k + 1
subclusters of size k belong to L′

k (t ). The above process is then
repeated until no new clusters can be constructed (for ACE) or
also until the maximal number of two-site clusters Nmax

2 is in
the selected list L′

k (t ) (for SpACE). After the summation of
clusters terminates, the approximate value of the parameters
minimizing the cross entropy, given the current value of the
threshold, is computed by

J(t ) =
∑

k

∑
�∈L′

k (t )

�J�, �J� = J� −
∑
�′⊂�

�J�′ . (A3)

Then a Monte Carlo simulation is run to estimate the model
one- and two-point correlation functions, which are compared
to the empirical ones, taking into account their expected
statistical fluctuations, by the computations of relative errors
defined in Eqs. (13)–(15); see also Fig. 2 in the main text.
When the maximal error is smaller than one, the algorithm
stops. Within the SpACE approximation, even if a relative
error of 1 is not reached, the smaller relative errors among the
ones obtained for logarithmically spaced threshold intervals
are chosen.

3. Cluster expansion and computational time as a function of
the color compression f0 for fully connected graphs

Figure 12 shows the behavior of the maximal relative
reconstruction error εmax as a function of the cluster inclusion
threshold t when changing the color compression threshold f0.
The presence of two relative minima corresponding to sparse
and fully connected models fitting the data is observed for
all the values of f0; see the two stars in Fig. 12. Moreover,
the threshold t corresponding to the sparse inferred graph is
largely independent of the level of color compression.

Figure 10 in the main text shows a mild computational gain
as a function of the color compression when inferring a sparse
interaction network (large-threshold minima). Such gain is
generally huge when the expansion converges only at low
threshold values and sums up clusters of larger sizes K . The
numerical computation of the cross entropy requires the sums
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FIG. 12. Maximum relative error as a function of the expansion
threshold for a particular graph realization (same used in Fig. 5:
ER05, sampled with B = 1000), for different color compression f0.

over a number of qK configurations for K Potts variables with
q states each. To illustrate this effect, in Fig. 13 we show the
reduction in computational time when the cluster expansion
is stopped at the small threshold value for a fully connected
inferred graph. One can reach a 1000-fold computational time
reduction with large color compressions. As shown in Fig. 13,
the expansion was stopped to maximal relative error of order
10 at small threshold t after 11 days while it took 50 min to
infer a good-quality, fully connected model for the maximal
color compression f0 = 0.1. Note that the computational
time to reach the sparse good model shown in Fig. 10 is
smaller due to the reduced number of clusters. For large
interconnected models, color compression can therefore be
essential to reach convergence in a reasonable amount of time
and infer a model that reproduces the statistics of the data.

4. Kullback-Leibler divergence from the ACE expansion

The computation is done in the Ising case for the simplicity
of the notations, the generalization to the Potts case being
straightforward. We denote by JB = {JB

ij , hB
i } the inferred

parameters at sample size B and by Jtrue = {J true
ij , htrue

i } the
true underlying model parameters. The inferred cross entropy
at sampling B is written as

SB = −
∑

σ

PJB (σ) log PJB (σ), (A4)

where the sum is over all possible configurations σ =
{σ1, . . . , σN }. The inferred probability distribution at finite
sampling B is

PJB (σ) = exp
( ∑N

i=1 hB
i σi + ∑N

k<l JB
klσkσl

)
ZB

. (A5)

012309-17



FRANCESCA RIZZATO et al. PHYSICAL REVIEW E 101, 012309 (2020)

0.001 0.01 0.1
Color compression

1000

10000

1×105

1×106

tim
e 

(s
ec

)

NO 0

ER10
ER05

0 0.2 0.4 0.6 0.8 1
NP/NPuncompressed

0.001

0.01

0.1

1

t/t
(n

ot
 c

om
pr

es
se

d)

FIG. 13. Reduction in computational time due to the color compression for fully connected ACE inference on two data sets obtained
by sampling B = 1000 configurations from two Erdős-Rényi random graph models. Left: Computational time at the fully connected,
low-threshold minimum, as a function of the color compression threshold f0. Right: Computational time relative to the one with no color
compression as a function of the number of parameters.

The Kullback-Leibler (KL) divergence between the true and the inferred distributions is written as

D(PJtrue ||PJB ) =
∑

σ

PJtrue (σ) log
PJtrue (σ)

PJB (σ)
= −Strue −

∑
σ

PJtrue (σ)

{∑
i

hB
i σi +

∑
k<l

JB
klσkσl − logZB

}

= −Strue + logZB −
∑

σ

PJtrue (σ)

{∑
i

hB
i σi +

∑
k<l

JB
klσkσl

}
.

However, Eqs. (A4) and (A5) give

logZB = SB +
∑

σ

PJB (σ)

{∑
i

hB
i σi +

∑
k<l

JB
klσkσl

}
.

The KL divergence between the true and the inferred distributions is then written as

D(PJtrue ||PJB ) =(SB − Strue ) −
∑

σ

PJtrue (σ)

{∑
i

hB
i σi +

∑
k<l

JB
klσkσl

}
+

∑
σ

PJB (σ)

{∑
i

hB
i σi +

∑
k<l

JB
klσkσl

}
.

Moreover, a reasonable approximation is

Strue = −
∑

σ

PJtrue (σ) log PJtrue (σ) ≈ SB→∞ = −
∑

σ

PJB→∞ (σ) log PJB→∞ (σ), (A6)

because the true underlying parameters are recovered by the inference method in the perfect sampling case: PJB→∞ (σ) → PJtrue (σ).
Therefore,

D(PJtrue ||PJB ) = (SB − S∞) +
∑

i

hB
i (〈σi〉B − 〈σi〉∞) +

∑
k<l

JB
kl (〈σkσl〉B − 〈σkσl〉∞), (A7)

where 〈·〉B = ∑
σ ·PJB (σ) and 〈·〉∞ = ∑

σ ·PJB→∞ (σ) ≈ ∑
σ ·PJtrue (σ). It naturally generalizes to the q-state Potts case:

D(PJtrue ||PJB ) =(SB − S∞) +
N∑

i=1

q∑
a=1

hB
i (a)(〈σia〉B − 〈σia〉∞) +

N∑
k,l=1
k<l

q∑
c,d=1

JB
kl (c, d )(〈σkcσld〉B − 〈σkcσld〉∞).

(A8)

The artificial data are in a compressed representation (cf.
Sec. III). The complete inferred parameters are recovered as
explained in Eq. (12).

5. Assignment of fields to zero-frequency states after inference

In Sec. III, we have discussed the decompression method
used in the paper. In particular, we have seen that a pseudo-

count is associated with the unseen states to assign them a
field with respect to the reference of the grouped or the least
probable state and, in principle, this is different than what
is implicitly done when the model is inferred without color
compression. To better understand the difference between the
two approaches, let us consider a simplified example of an
independent-site model. Without color compression, the fields
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TABLE VI. Difference between the fields fixed by regularization
and the one computed with the pseudocount for the unseen Potts
variables in the approximation of independent sites respectively for
the field regularizations γh = 0.01/B used in ACE and γh = 0.1/B
used in PLM.

B h�(ACE)
u hp

u �hu

102 −6.6 −6.9 0.3
103 −8.6 − 9.2 0.5
104 −10.7 −11.5 0.8
105 −12.9 −13.8 0.9

B h�(PLM)
u hp

u �hu

102 −4.7 −6.9 1.5
103 −6.6 −9.2 2.5
104 −8.7 −11.5 2.8
105 −10.7 −13.8 3.1

are obtained as the minimum of

Sind = log
q∑

a=1

ehi (a) −
q∑

a=1

hi(a) pi(a) + γh

q∑
a=1

hi(a)2, (A9)

which, for the unseen colors in the gauge of Z =∑q
a=1 ehi (a) = 1, gives

h�
u = −Lw

(
1

2γh

)
, (A10)

where Lw(y) is the Lambert function solution of xex = y. On
the other hand, the field which we assign to these symbols
during color decompression is, in the same gauge,

hp
u = log

(α

B

)
, (A11)

where we set, as in the rest of the paper, α = 0.1. In this
independent-site approximation, there is then a shift between
the two procedures given by �h = hi(a)� − hi(a)p that de-
pends on the pseudocount α and the value of the regularization
γh. In Table VI, we give these shifts for the two values of
γh used respectively by ACE (γh = 0.01/B) and PLM (γh =
0.1/B).

If, in the approximation of independent sites, the difference
�h is the same in all gauges, the specific values of hi(a)�

and hi(a)p of Table VI are specific of the Z = 1 gauge. To
have a comparison in the consensus gauge, as done in the
rest of the paper, one has to subtract to hi(a)� and hi(a)p

the field of the most common color ci on the considered site.
In the independent-site approximation, this is just hi(ci ) =
log[pi(ci )] and shows that unseen colors of different sites have
different fields.

In Fig. 14, we plot the fields for the unseen symbols with
a color compression f0 = 0.01 (green diamonds) and f0 = 0
(blue squares) versus the one for no color compression for
PLM and ACE (same fields as in Fig. 7 of the main paper), in
the consensus gauge. We can see a systematic shift toward
lower values (at least for PLM, to be checked for ACE).
We can compare this shift with the theoretical shift obtained
with the independent model as described above. Even if we
neglect the terms due to the couplings, we can well reproduce
such shift as the difference between the field obtained with
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FIG. 14. Fields for the unseen Potts symbols for ER05 and B =
1000 in the uncompressed model and the reference model with f0 =
0.01 of Fig. 7. Dotted line x = y. Red line indicates the shift given in
the independent model for γh = 1/10B as the one used with PLM.

the pseudocount with respect to the one obtained with the
regularization, and there is a good agreement between the
observed and theoretical shifts for independent variables. In
particular, the shift is smaller for the regularization chosen by
the ACE procedure.

a. KL divergence for PLM at low L2 regularization as a function
of the sampling depth B and of the color compression threshold f0

In this section, we study what happens with PLM at lower
L2 regularization, e.g., γJ = 1/B, than the one used for ACE,
when the threshold for color compression is varied. Without
color compression, the performance obtained for γJ = 1/B
becomes significantly worse; see Table III.
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FIG. 15. KL divergence between the true model and the one
inferred with γJ = 1/B averaged over 10 realizations for several
sample sizes B at different color compression thresholds f0 (full line).
Error bars are standard deviations over the 10 realizations. Horizontal
dashed lines are there for comparison and correspond to the KL
values obtained with γJ = 50/B without color compression.
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FIG. 16. ACE and PLM interaction graph reconstruction and PPV curve for one realization of ER graph. Left: contact maps. Upper
triangular: contact map with real contacts (black empty squares), inferred true positive (full circles in empty squares), and inferred false positive
(full circles) in consensus gauge without average product correction (APC). Lower triangular: Frobenius norm of the inferred parameters in
consensus gauge with color scale on the right. Right: positive predicted value (PPV) curve in consensus and zero-sum gauge with and without
APC. Top: no color compression. Bottom: f0 = 0.01.

Figure 15 shows the average KL divergence between the
true model and the inferred one for several color compression
frequencies at low L2 regularization (γJ = 1/B). For all the
sample sizes, we observe the existence of an optimal value of
f0. Especially at small sampling depth B � 1000, large color
compression leads to a very significant decrease in the KL
divergence. However, in spite of the improvement due to color
compression, the KL divergences do not reach the minimal
values obtained with strong L2 regularizations (dashed lines
in Fig. 15), showing that a good choice of the regularization is
always essential.

6. Graphical reconstruction: Contact maps and Fscore for
spACE graph reconstruction as a function of color compression

In Fig. 16, we compare the real contact maps with the heat
map of the Frobenius norms of the couplings inferred by ACE
and PLM with no color compression and f0 = 0.01 for the
reference data (ER05, B = 1000). Results at different color
compressions are very similar, such as the identification of
largely coupled sites by ACE and PLM.

To encompass both the precision and the recall in a single
measure, it is possible to use the F score, which is the

harmonic mean between the two:

F score = 2
TP(Npred )

Npred + N0
, (A12)

where T P is the number of true predicted contacts, Npred is
the number of predicted contacts, and N0 is the number real
contacts. The F score for ACE inference is plotted in Fig. 17.
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FIG. 17. F score for ACE inference. Points and error bars are
averages and standard deviations obtained on 10 ER realizations. All
quantities are computed in the consensus gauge with (dotted line)
and without (full line) APC.
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7. Definition of positive predicted value and
average product correction

The positive predicted value (PPV) curve is defined as

PPV(n) = TP(n)

n
, (A13)

where TP(n) is the number of true predicted edges in the top
n pairs. The average product correction (APC) [18,23,41] is

F APC
ij = Fij − Fi. F. j

F..

. (A14)

Here the dot indicates the average over the corresponding
variables; e.g., Fi,. is the average of Fij over the second index j.

8. Reweighting procedure

To reduce sampling bias, we decrease the statistical weight
of sequences having many similar ones in the MSA. More
precisely, the weight of each sequence is defined as the inverse

number of sequences within Hamming distance dH < xL,
with an arbitrary but fixed x ∈ (0, 1):

wm = 1

||{n|1�n�M; dH
[(

an
1, . . . , an

L

)
,
(
am

1 , . . . , am
L

)]
�xL

}||
(A15)

for all m = 1, . . . , M. The weight equals one for isolated
sequences and becomes smaller as the sampling around a se-
quence is denser. Note that x = 0 would account for removing
double counts from the MSA. The total weight

Meff =
M∑

m=1

wm (A16)

can be interpreted as the effective number of independent
sequences.
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