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Introduction
Objectives:
e Review the physics,
e To give an idea of the mathematics involved

(1+1)D liquids: systems with spectral gaps and
no local order parameter.

However, I will start with a model which has a
local order parameter in one of its phases, - the

Quantum Ising model.

Because

e it encompasses most of the relevant physics

and

e is one of the simpliest models of strong

correlations.



Quantum Ising model

H=> [-Jojo; , +hop]

o”,0% are Pauli matrices. By Jordan-Wigner
transformation (1928)

= FrFE, —1/2, o2 =(F. +F,)exp |in Z FF

I<n

where {F,,, Ft'} = 0,,,, it is transformed into a

model of free fermions:

H = Z (p)EfFy, p=2rN/L

where N - integer J > h, half-integer J < h.

e(p) = \/(J — h)2 + 4Jhsin*(p/2)




Duality: h — J,0 — u

Ising model can be recast in terms of dual

variables

z

n
z - X X _ <
Pnt1/2 = nga Ppt1/2 = On419n
J

which are also Pauli matrices, but living on the

dual lattice:

H = Z [_hﬂz_1/2N7i+1/2 + J 19

Ordered Disordered
<0> <p>

O o
0 h-.

At T = 0 the Zs symmetry of the Ising model is
spontaneously broken. At h < J it is broken
explicitly (local order parameter), at h > J the

order is hidden.



Continuum limit: |J — h| << J,|p| << 1. Then

the excitation spectrum is relativistic:

e(p) = \/(J— h)2 + 4Jhsin?(p/2) ~ /M2 4 v2p?
where M = (J — h),v = Jh.

E




Excitations are solitons (domain walls) separating
vacua with different sign of (o) (or (u) if we are
in the disordered phase!):
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SIGN of M! - For the fermions the only difference
is in boundary conditions, for the spins the

difference is dramatic.

Qualitative picture of correlations at T' = 0

(h < J):

(o) # 0, all correlation functions decay
exponentially in Matsubara time and space:

({o(r,2)3(0,0))) ~ exp (~2M /72 + (w/v)?)

There is only one energy scale: spectral gap
M = |h—J|.




At T # 0 the order is destroyed by solitons and
antisolitons.

A new scale emerges: the average distance
between domain walls

&~ (TM) 2 exp (%)

T
Problem: slow dynamics of o at T' # 0.

This problem is complicated only for ¢* which is
nonlocal in fermions.

For 0* = FTF — 1/2 there is no problem: the

dynamical correlation functions are ballistic! The

heat transport in Ising model is ballistic.



Non-trivial correlation functions.
The formfactor approach.

A convenient parametrization of the spectrum:
pv = M sinh @, ¢ = M coshé

so that €2 — (pv)? = M?. Parameter 0 is called

rapidity.

Let us set v = 1. Ising model Hamiltonian:

Jr = / d0M cosh 02+ (0)Z(0)

2T
where Z(0) = [M cosh §]'/2F(p = M sinh ).
{Z7(0),2(0")} = 6(0 - 0)

Excited state of particles with rapidities
(91, (92, Qn 18
01,05, ...0,,)

has energy £ = M > cosh;.



Example: T=0 correlation function
of o’s

The matrix element of the o* operator

(0]0*(0)|61, 62, ...6,) = CM*® | [ tanh [(6; — 6;)/2]

>k
where C' ~ 1 and n = 2N for h < J and
n=2N +1 for h > J.

The Lehmann expansion for
x(7,z) = ((o%(7,2)0%(0,0))) :

N
1
Zﬁ/Hd9j|<0\0(070)\91,...9N>|2 X
n | j=1

eXp(—]T|MZCOSh6’j + ixMZsinth)

Do Fourier transformation and continue

1w, = w + 10.



The imaginary part of the retarded Green’s
function is

Smx(w > 0,q) =

N
1
> 1 [ TLa6,1000.0)11,.0n) =
N J=1

O(w — MZCOSth)(S(q — MZSinhﬁ)

For a given frequency the sum contains only ~
w/M terms.

Let h > J (disordered phase). The expansion
starts with N =1 term:

§(w— /g% + M?)
\/q2_|_M2

Smy(w < 3M,q) = CM~3/4



In the ordered state (s = w? — ¢?):

Smyx(w < 4M, q) =

5(w — v/q? + 4M?2 cosh? )

CM4V4/}wtmﬂﬂe
V@2 + 4M?2 cosh? 0

2M
s

—CM”4(

) VG2~ 1

Disordered
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M 3M 5= w2- ¢ )2

Ordered
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2M



Matrix elements between excited states:

(U, ...um|o?(0)|v1, ...vn) = CMY* x
[ 15 p tanh [(u; —ug)/2] ]}, tanh [(v; —vg) /2]

[ 1,5 tanh [(u; — vi)/2]

Singularities (annihilation poles) appear when

Uj; — Vg

These are signs of T' = 0 15¢ order phase
transition. Summing them up one obtains the
blue peaks on Figs.



Part 2. Integrable models. General
features.



Integrable models.

Suppose there is a Lorentz invariant integrable
model with spectrum consisting of particles with
masses M ;. Particles carry isotopic index a. The
spectrum is

E = ZMj coshf,,, P = ZMj sinh 6,
j7aj j)aj
Rapidities 6, are conserved quantities. The
eigenstate

|91,CL1; ...Qn,&n> = ZC_L‘_1 (91)Z;_n‘0>

In integrable systems all interactions are encoded

in the commutation relations
(Faddeev-Zamolodchikov algebra):

Z(61)Z°(82) = S27(61 — 02) Z°(62) Z° (61)
ZH (002, (02) = Sip (01 — 02) 2] (05) 2 (01)
Z9(01)Z;f (02) = Sy2 (01 — 02) 27 (02) 2°(61) +
+6°5(012)

where S(#12) is the 2-particle scattering matrix.



The S-matrix satisfies the Yang-Baxter equations:

which are the associativity conditions for FZ

algebra.

S-matrix also possesses

e Unitarity: its eigenvalues are phase factors:

expli®(f12)], where ® is real.

e Crossing symmetry (CPT invariance):
Sa,E _ ab,ay-
a,b(e) = 5; a(m —0)

where red are indices obtained by charge

conjugation.



SU(N) Chiral Thirring model

Hamiltonian density
H =i(—R0.R; + LT9,L;) — g(R L;)(L; Ry)
where 5,k =1,...N.

This is a model of Charge Density Wave. In 3D it
would have a 2nd order phase transition into a

state with

A=) (R;LT)#0

Bosonized version:

1 2 2 g
H= [(47T1;)2 + (0,®;)?] — Tras)? jz;cos@j — dy)

where [(I)],Hk] = 15]k
(R7 L)j —

3 i L[
\/2;70 exp {5 [icbj(x) + 4 /_OO dyﬂj(y)] }
where {&;, &k} = 20.




Field
d = N"1/2 Z OF
J

does not participate in the interaction and

remains gapless.



The interaction scales to strong coupling if g > 0.
At large N it is instructive to use
1 /N-approximation:

J =

/ DA*DADRTYDRDL™T DL exp{— / drdzL}

2 0, — i0, A R;
L = ‘_l + <R‘|‘ L-I-) 1 g
29 A* 0, +i0, L;

Integrating over fermions we get the action for

A:

Or — 10, A

\A|2
S= | drde—— — NTrln
A* 0, + 10,

The gradient expansion of this action produces
the following Lagrangian density:

N (%A*(?MA 5 |A|?
£_87r[ N + |A| ln<M2 + ...




The saddle point fixes
Al =~ M = (ao)_lgl/N exp(—27/Ng)

A = |Ale!®

the phase ® remains critical.
N
S = 8_7'('/de$<8“(1))2

The total charge and current densities are

1/2

N

J

j=)Y (RfR;— LfL;)= NI

j
The transport is ballistic (sliding Charge Density
Wave):

o(w) =2t N6(w)

The conductance of a finite wire is length
independent:

e
G=—N
h



What can we say about other fields? Besides the
gapless mode ® the spectrum contains N — 1

massive particles with masses

sin(mj /N)
sin(/N)

M; =M j=1,2,..N -1

They are bound states of the fundamental
particle 5 = 1.
From the bosonization formula we deduce
R, =e“R;, L, =e¢ 'L,
where
<ei¢(7,x)e—i¢(0,0)> = (1 —iz)" YN
<eiag(7,x)e—iaz(o,0)> = (1 +izg) /N

and R, L annihilate particles from the massive
sector. They have Lorentz spin

S=(1-N"1)/2

Electron consists of charge and spin parts with

different spectra: spin-charge separation.



(R,L)7|0) = F;~(61,...00) Z (61)...Z (6,,)]0)
where from the Lorentz invariance
(01, ...00) = =3O 00)/n E5({0,,))
The lowest state is
(0I(R, £)]0) = AM/2e*50 (1)
where A ~ 1 is a numerical coefficient,
S=(1-1/N)/2.

The contribution to the single-electron Green’s

function :

((R;j(r,2)R](0,0))) =
A

(7_ _ IZC) (MT)(l_l/N)K(l—l/N) (MT>

where r2 = 72 4+ 2.



Part 3. We continue about the
Thirring model

It is remarkable that the interactions generate a
spectral gap, though, contrary to what happens in

D > 1, no local order parameter is formed:
(RLT) =0

This agrees with Mermin-Wagner theorem: the
U(1) symmetry in the charge sector is continuous

and continuous symmetry cannot be broken in

1D.
Notice that (RLT) = 0, but solely due to the

charge sector, since

(ewe_i&) =0



From the Green’s function one can extract

Tunneling Density of States

o [ el
0 (w/M — cosh z)(1=1/N)

p(w) = m {/eiQTG(T, r = O)dT}
iQ—>w—|—iO
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Figure 1: p(w) for N=3,4,6,10.



From now on we’ll concentrate on N=2 case.

In the bosonized version the Lagrangian density is

[ — 1 {U—1<¢))2 —|—’UC<895(I))2} X

cos P,

—_
_|_
)

v (@) —|—U(6$(I)8)2} - (27ag)?

D+ Dy & D — Dy
v2 o V2

and I deliberately made the charge and spin

D

velocities different. This is achieved by adding
9 [((RTR;)* + (LT Ly)?]
to the original Hamiltonian.

The vacuum ®, = 0 mod 27w. At T' = 0 the system
is in one of these vacua, the discrete symmetry

O (x) = Py(x) + 21N

1s broken.



The average
(cos (®s/2)) ~ M

depends on the choice vacuum, but the operator
is nonlocal with respect to the fermions!
Therefore it signifies a hidden order. The local

order parameter

1 .
_ +7. 10 /2
A= Ej R;L; = B O)e cos (O /2)

has only quasi long range order:
ao AQ
V (0eT)? + 22 ’

(A(T,2)A™(0,0)) ~




At T # 0 the the dynamical correlation function
at |z| >> M1
'l
V/sinh[rT(z /v, — t)] sinh[rT (z /v, + t)]

d 0
M? exp [— —pe_e(p>/T|x - t—g(p) |]
™ p

X

where € = /M?2 + (pv)2.
At t =0 at large x

~ e_|x|/£’ 5_1 — 7TT/'UC + @e—e(p)/T
7

The spectral function at T=0 is

w+’ch
Grr(w,q) ~ X
2 wp—w -
2 )2 — 2) _ c )2
[(M+¢M T (0eq)? —w?) = W o veq)



Figure 2: The spectral intensity for v./vs = 0.4
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Figure 3: The spectral function as a function of

momentum at v. /v, = 0.4



Figure 5: The spectral function as a function of

momentum at v, = vs.
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Figure 6: Spectral function for T=0 and T = 0.05A
[Essler, Tsvelik (2002)]



