Few-body problem

Dmitry Petrov

Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

Few-body problem in ultracold gases?

Microscopic level

Three-body recombination
Structure of molecules

Atom-dimer scattering

Dimer-dimer scattering

- compressibility, analysis of collapse or phase separation?
- equation of state and test for Monte-Carlo calculations

Macroscopic level

Path towards many-body case

Exact account of few-body correlations, cluster expansion, virial coefficients...

Size of configuration space

N-body problem in 3D

3N (degrees of freedom)

- 3 (translational invariance)
- 3(2) (rotational invariance)
$=3 \mathrm{~N}-6(5)$
2-body \quad Single coordinate. Radial Schrödinger equation. Not enough accuracy for realistic potentials

3-body
3 coordinates. Involved numerics with simple model potentials.

4-body $\quad \square$
6 coordinates. Reliable solution impossible even for simple model potentials

Fortunately, many interesting few-body problems can be solved in an elegant way by using the short-range character of interparticle forces

Bethe - Peierls boundary conditions

Bethe and Peierls (1934), "Quantum theory of the diplon"

Diplon (deutron) is a weakly bound dimer with $R_{e} \approx 10^{-13} \mathrm{~cm}, a \approx 4.5 \cdot 10^{-13} \mathrm{~cm}$

$$
\frac{(R \psi(R))^{\prime}}{R \psi(R)}=-\frac{1}{a} \Longleftrightarrow \psi(R) \underset{R \rightarrow 0}{\rightarrow} \frac{1}{R}-\frac{1}{a}
$$

Thomas effect

Thomas (1935), "The interaction between a neutron and a proton and the structure of ${ }^{3} \mathrm{H}$ "

Decrease the range of the proton-neutron potential keeping their binding energy constant

The trimer binding energy tends to infinity!
 Thomas effect or Thomas collapse

Example: three ${ }^{4} \mathrm{He}$ atoms form much deeper bound molecule than two ${ }^{4} \mathrm{He}$ atoms

Neutron-deuteron scattering

Skorniakov and Ter-Martirosian (1957) derived an integral equation for the neutron-neutron-proton 3-body problem in the zero-range approximation. They calculated the neutron - deuteron scattering length.

Exact in the limit $\quad R_{e} \ll a$
This results are more applicable for the field of ultracold gases because

Nuclear matter:

$$
R_{e} \approx 10^{-13} \mathrm{~cm}, a \approx 4.5 \cdot 10^{-13} \mathrm{~cm}
$$

Ultracold atoms:

$$
R_{e} \sim 0.5 \cdot 10^{-6} \mathrm{~cm}, \quad a>10^{-5} \mathrm{~cm}
$$

Borromean binding

Borromean binding

... in nuclear physics to represent halo nuclei

Not a big surprise. Three bosons attracting each other via this potential could form a trimer state

Efimov effect

Efimov state - weakly bound trimer state

Discrete scaling symmetry: three-body observables depend on R_{e}, but if $R_{e}^{\prime}=R_{e} \exp \left(\pm \pi / s_{0}\right)$, they do not change

For three identical bosons $s_{0} \approx 1.00624$. This number depends on the symmetry (Fermi, Bose) and on the masses of particles

Few-ultracold-atom physics after 1995

BEC of atoms is metastable. Increasing density leads to enhanced 3-body recombination

3-body recombination to a weakly bound state
Theoretical papers:
Fedichev, Reynolds, and Shlyapnikov (1996)
Nielsen and Macek (1999)
Esry, Greene, and Burke (1999)
Bedaque, Braaten, and Hammer (2000)

$$
\alpha_{r e c} \sim \hbar a^{4} / m
$$

MIT (1999) BEC + Feshbach resonance \quad Strong losses
Difficult to reach strongly interacting regime with bosons! Efimov states are not stable because of the relaxation to deep molecular states

New era: BCS-BEC crossover, molecules

Need Efimov physics in a stable system?

Fermionic Li and K mixtures are stable, but there are no weakly bound trimer (Efimov) states. Reason - Fermi statistics:

Can we have Efimov states and stability? Yes
We need:

- protective fermionic statistics at short distances (high energies)
- resonant interactions at large distances (low energies)

Consider fermionic heteronuclear mixtures with large mass ratio

Born-Oppenheimer approximation

Effective interaction between heavy fermions is provided by exchange of the fast light particle. Born-Oppenheimer approximation.

Light atom wavefunction: $\quad \psi(\boldsymbol{r})=\frac{\exp (-\kappa|\boldsymbol{r}-\boldsymbol{R} / 2|)}{|\boldsymbol{r}-\boldsymbol{R} / 2|}+\frac{\exp (-\kappa|\boldsymbol{r}+\boldsymbol{R} / 2|)}{|\boldsymbol{r}+\boldsymbol{R} / 2|}$
Bethe-Peierls boundary condition gives: $\quad \frac{1}{a}-\kappa+\frac{\exp (-\kappa R)}{R}=0$

$$
\begin{aligned}
& R \ll a \longmapsto \kappa \approx \frac{0.567}{R} \\
& U_{e f f}(R)=-\frac{\hbar^{2} \kappa^{2}}{2 \mathrm{~m}} \approx-0.16 \frac{\hbar^{2}}{m R^{2}}
\end{aligned}
$$

$$
\begin{gathered}
R \gg a \longmapsto \kappa \approx \frac{1}{a} \\
U_{e f f}(R) \approx-\frac{\hbar^{2}}{2 \mathrm{ma}^{2}}=-\left|\epsilon_{0}\right|
\end{gathered}
$$

$$
\left[-\frac{\hbar^{2}}{M} \frac{\partial^{2}}{\partial R^{2}}+\widetilde{U}_{e f f}(R)\right] \chi(R)=E \chi(R)
$$

Solving the Schrödinger equation for the heavy atoms we take into account their fermionic statistics:

$$
\widetilde{U}_{e f f}(R) \approx U_{e f f}+\frac{\hbar^{2} l(l+1)}{M R^{2}}
$$

$$
\text { Symmetry } \Longrightarrow l=1,2,3 \ldots
$$

$$
\widetilde{U}_{e f f}(R) \approx \frac{\hbar^{2}}{M R^{2}} \underbrace{l(l+1)-0.16 \frac{M}{m}}_{\beta})
$$

$$
\begin{aligned}
& R \ll a, E=0 \longmapsto\left(-\partial^{2} / \partial R^{2}+\beta / R^{2}\right) \chi(R)=0 \\
& \chi(R)=R^{v} \quad \nu_{ \pm}=1 / 2 \pm \sqrt{\beta+1 / 4}
\end{aligned}
$$

Critical mass ratio

$$
\begin{aligned}
R \ll a, E=0 \longmapsto(- & \left.\partial^{2} / \partial R^{2}+\beta / R^{2}\right) \chi(R)=0 \\
& \chi(R) \propto R^{v} \quad \nu_{ \pm}=1 / 2 \pm \sqrt{\beta+1 / 4}
\end{aligned}
$$

$$
\beta=l(l+1)-0.16 \frac{M}{m}
$$

$$
M / m<13.6 \Rightarrow \beta>-1 / 4
$$

$$
M / m>13.6 \Rightarrow \beta<-1 / 4
$$

$$
\chi(R) \propto R^{v_{+}}
$$

$$
\chi(R) \propto \sqrt{R} \cos \left(s_{0} \log R / r_{0}\right), s_{0}=\sqrt{-1 / 4-\beta}
$$

Unique wavefunction without zeros \Longrightarrow no trimer states. Centrifugal barrier is stronger than the induced attraction
"Fall of a particle to the center in R^{-2} potential". Infinite number of zeros of the wavefunction. Infinite number of trimer states. Efimov effect

Li-Li, K-K and K-Li mixtures are stable, since the mass ratio is smaller than the critical one. No Efimov states as well

K-Li mixture in an optical lattice

On the other hand, the relaxation to deeply bound molecular states is a local processes and it is insensitive to the lattice potential

Optical lattice increases the effective mass of K atoms. We need only a factor of 2

Efimov trimer states

Exactly what we want:
Efimov physics in a stable system

At distances smaller than the optical
lattice constant the atoms "remember"
their natural mass ratio $(6.7<13.6)$

Interaction of heteronuclear molecules

Why different isotopes?

- Way toward dipolar gases

Weakly bound molecules

- For fermionic mixtures qualitatively different physics of the BCS-

BEC crossover for large M / m, gas-crystal transition

Scattering length for Fermi-Fermi molecules

Born-Oppenheimer approximation

Tunneling probability $P \propto \exp (-$ const $\sqrt{M / m})$ can be completely neglected for $M / m>100$

Formation of trimers

"Dangerous" trimer state

Hybrid Born-Oppenheimer approximation

$$
\Psi(\boldsymbol{R}, \boldsymbol{r})=\sum_{\boldsymbol{R}^{\prime}, \mu} f_{\mu}(\boldsymbol{R}) f_{\mu}^{*}\left(\boldsymbol{R}^{\prime}\right) f\left(R^{\prime}\right)\left[\frac{\exp \left(-\kappa_{\mu}\left|\boldsymbol{r}-\boldsymbol{R}^{\prime} / 2\right|\right)}{4 \pi\left|\boldsymbol{r}-\boldsymbol{R}^{\prime} / 2\right|}-\frac{\exp \left(-\kappa_{\mu}\left|\boldsymbol{r}+\boldsymbol{R}^{\prime} / 2\right|\right)}{4 \pi\left|\boldsymbol{r}+\boldsymbol{R}^{\prime} / 2\right|}\right]
$$

$$
\begin{aligned}
& H_{0} f_{\mu}(\boldsymbol{R})=\epsilon_{\mu} f_{\mu}(\boldsymbol{R}) \\
& \kappa_{\mu}=\sqrt{2 \mathrm{~m}\left(\epsilon_{\mu}-E\right) / \hbar^{2}}
\end{aligned}
$$

Integral equation for f

Summary

- Efimov effect in ultracold gases is difficult to observe due to the relaxation to deeply bound states
- It might be possible with fermionic mixtures in an optical lattice. One can also study the mass dependence of few-body observables
- In this respect Li-K mixture is promising
- Hybrid Born-Oppenheimer approach simplifies life in the case of large mass ratios

Collaboration with:
Bout Marcelis (TUE, Netherlands)
Gora Shlyapnikov (LPTMS, Orsay)
Christophe Salomon (LKB, ENS)
Servaas Kokkelmans (TUE, Netherlands)

