INTRODUCTION TO ATOMIC QUANTUM GASES
Experimental existence since 1995 for bosons (Cornell and
Wieman, JILA: Ketterle, MIT), since 1999 for fermions
(Jin, JILA). Up to a few 10° trapped atoms, at tempera-
tures of a fraction of uK (T /T =~ 0.1).

What are the interesting features 7

e dilute systems: mean interparticle distance p_l/ 3 =

0.2pum < interaction range b = 5 nm

e well isolated systems: in conservative traps; decoherence
from three-body losses (drawback of metastability)

e adjustable interactions: s-wave scattering length a tuned
from —oo to +00 by magnetic Feshbach resonance

What are the challenges 7
e Solve new and still open fundamental questions

¢ Find some real application
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OUTLINE

e Description of the problem
e Framework: Bogoliubov theory
e Spatial coherence

e Temporal coherence

— IN fluctuates
— NN fixed, E fluctuates: Canonical ensemble

— N fixed, F fixed: Microcanonical ensemble



DESCRIPTION OF THE PROBLEM



A single-spin state Bose gas prepared at equilibrium:

e Spatially homogeneous, periodic boundary conditions.

e Prepared with IN atoms, in well-Bose-condensed regime
T KL Tk.

e Interactions with a s-wave scattering length a > 0.

e Weakly interacting regime (pa3)1/ 2 & 1.

e The gas is totally isolated in its evolution.

Spatial coherence of the gas:

e Determined by the measured first-order coherence func-
tion, g1(r) = (PT(r)¥(0)) (Esslinger, Bloch, Hinsch,
2000).

e Expected: In thermodynamic limit, g; tends to conden-
sate density pg > 0 at infinity.

e This is long-range order.



Coherence time of the condensate:

e Defined as the decay time of the measurable condensate

mode coherence function, (ag(t)aO(O)), where ag is the
annihilation operator in mode k = 0.

e At zero temperature, no decay, (a,(];(t)a,o(O)) ~ (No)ei“ot/h,
coherence time is infinite

e What happens at finite temperature T' > 07 To our
knowledge, the problem was still open in 1995.

e One expects infinite coherence time in thermodynamic
limit.

e For finite size: By analogy with laser, one expects finite
coherence time due to condensate phase diffusion.



FRAMEWORK: BOGOLIUBOV THEORY



Bogoliubov theory

e Lattice model Hamiltonian:
~ ~ gO AL AL A A
H = Z b° [¢Th0’¢ + E¢T¢T¢¢
r

e Spatially homogeneous case: hg = —5—-Ay.

—1

3
e Bare coupling constant g, = = g—l _ fFBZ (d E m

27)3 1i2k2’ g —
Arh?a/m. Gives gg = g/(1 — C3a/b). Here 0 < a < b.
e Expansion of Hamiltonian around pure condensate:
P(r) = p(r)ag + P (r)
with ¢(r) = 1/L3/2. Key point: Eliminate amplitude ag
in condensate mode:
fg=N — N|
with g = alag and N = 3, 631 | .




Elimination of the condensate phase

e Modulus-phase representation (Girardeau, Arnowitt, 1959):
dg = ean(l)/z
with hermitian operator 0, [fig, 0] = i.
e Cf. position £ and momentum p operator of a particle:
2, p) = ih => eP¥"z) = |z — a)

[0, 0] = i => e®|ng: §) = |ng — 1: ¢)
then ag has the right matrix elements.

e This gets crazy when the condensate mode is empty:

0 71
el0: ¢) = | —1: ¢)
e Redefinition of non-condensed field (Castin, Dum; Gar-
diner, 1996) ; remains bosonic, but conserves IN :

Ar) = e 4 (r)



e Expansion of H to second order in ¢ :

b> |A'(hg — A —A —A 2ATA
T3 —I—Z: [ (ho — o)A + no SAT+ AT+

HBog —

e Formally grand canonical for non-condensed modes, with
chemical potential ug = ggp.

e Elastic interaction C' — NC': Hartree-Fock
C,0+ NC,k — C,04+ NC,k

e Inelastic interaction C — NC' : Landau superfluidity
C,0+C,0— NC,k+ NC, —k

Not forbidden by energy conservation.



Normal form for the Hamiltonian:

e Hp,e quadratic, hence linear equations of motion:

(1) = (" gt o) (a1) =2 (x7)

e £ “hermitian” for scalar product of signature (1, —1).

e Elxpansion on eigenmodes of eigenenergies T¢y :
A_ eik’I‘ Uk R e_'ik'r Vk "1‘
(AT>_ZLd/2<Vk>bk+ 1.d/2 (Uk>bk

1/4
h2k?/2m /
2u0+h2k2/2m )

with UZ — V2 = 1, Uk+Vk=<

e A grand-canonical ideal gas of bosonic quasi-particles:

i 12k2 [ h2K2 '
Hpog = Eo+ »  ebby with €f = ( + 2,1,0>

k20 _2m 2m

1/2



Bogoliubov spectrum
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SPATIAL COHERENCE



Consistency check

In thermodynamic limit:

e Non-condensed fraction:

(N1) (ATA)y 1 [ &3

(172 2
U+ Vi

N p p) (2m)3

ePer — 1

+ V2

e No ultraviolet (k — oo) divergence: V2 = O(1/k%)
e No infrared (kK — 0) divergence: U,%, Vk2 = O(1/k).
e Small for T < T, and (pa®)/2 « 1.
e First order coherence function g1(r) = (¢T(r)1(0)):

d3k
(2m)3

g1(r) = p —

(1 — cosk-r)

(172 2

eBer — 1

tends to the condensate density for »r — oc.

+ V2




In lower dimensions:

eIn 2D for T' > 0 and in 1D VT, the non-condensed frac-
tion has infrared divergence. No BEC in thermodynamic
limit (Mermin, Wagner, 1966; Hohenberg, 1967).

¢ Quasi-condensate (weak density fluctuations, weak phase
gradients) (Popov, 1972). One can save the idea of Bo-
goliubov by applying it to a modulus-phase representa-
tion of the field operator 1ﬁ

o g]130g(r) — —oo at infinity, but remarkably (Mora, Castin.
2003):

QC gy % (r)
97 (r) = pexp |ZL—2 —1].



TEMPORAL COHERENCE



GENERAL CONSIDERATIONS

o If weak fluctuations of fyg:
(al)(t)ao(0)) = (fg) (e~ 00
o If phase change 0(t) — 6(0) has Gaussian distribution:
(ah(t)ao(0))| = (Rg)e~ Var P(O-0()]/2

e In terms of correlation function C(t) = (0(¢)0(0))—(6)2 :

Var [6(t) — 0(0)] = 2t /t dr C(1) — 2 /t dr C(T)

0 0
ballistic regime diffusive regime
lim, 1 C(T) #0 C(r) = o(1/71)

_ ) _ T—>—|—AOO
Var [6(t) — 6(0)] ~ At? | Var 60(t) — 6(0)] ~ 2Dt




TWO CASES DEPENDING ON C(t — +00)

C(t)

C(t)

>

00

Diffusive.  A®>~2t( C(1) dt

70

\\Banistic: Ad” ~ At




GENERAL CONSIDERATIONS (2)
Previous studies at T > O:

e Zoller, Gardiner (1998), Graham (1998-2000): Diffusive.
e Contradicted by Kuklov, Birman (2000): Ballistic.

e Sinatra, Witkowska, Castin (2006-): Clarification and
quantitative studies.

Two key actors:

e Bogoliubov procedure eliminating the condensate mode
from the Hamiltonian:

H:E()(N)—I— Zeki?;r{i?k‘l‘ﬂi’,‘l‘
k=£0
where €, is the Bogoliubov spectrum. Hamiltonian Hj

is cubic in field A. It breaks integrability and plays cen-
tral role in condensate dephasing (Beliaev-Landau pro-



cesses):

H; = gop'/2 3 B3AT(A + ADA
r

e Time derivative of condensate phase operator:

.1 90 .
= E[ea H| >~ —pp_o(N)/h — e > (Ug + Vi) iy,

with ny, = IA)IT{IA)k This contradicts Graham, 1998 and
2000.



Case of a pure condensate

e One-mode model, with g = N : Hype mode = %NZ

e Evolution of the condensate phase:

: 1 gN -
0(t) = E[ga Hone mode] = _m = —p(N)/h
e No phase spreading if fixed IN.
e Ballistic spreading if N fluctuates (Sols, 1994; Walls,
1996; Lewenstein, 1996; Castin, Dalibard, 1997)

2
Var [0(t) — 0(0)] = (t/h)? (%) Var N

e Experiments: Seen not for (azr)(t)ao) but for (a;r)(t)bo(t))
by interfering two condensats with common ¢t = 0 phase
[Bloch, Hansch (2002); Pritchard, Ketterle (2006); Re-
ichel, 2010.]



T > 0 gas prepared in the canonical ensemble

By analogy with previous case (Sinatra et al, 2007) :
e As N, the energy FE is a constant of motion.

e Canonical ensemble = statistical mixture of eigenstates,
Var E # 0 but Var E < E? for a large system

e O(t) ~ —pmc(H)t/E and weak fluctuations of H :

dptme
dE

2
Var [0(t) — 0(0)] ~ (t/h)? [ (E)] Var E



From quantum ergodic theory

e Time average:
. . e BEX .
((8(£)6(0)))t = ) Z ((TA10]®))?
A

e Deutsch (1991) : eigenstate thermalisation hypothesis.
Mean value of observable O in one eigenstate ¥, very
close to microcanonical value:

(TA|O|¥y) ~ Omc(E = Ey)

¢ O = 6§ in Bogoliubov limit : 0 me = —ftme/Fi.

e Linearize around mean energy due to weak (relative)
energy fluctuations:

_ _d
pmc(Ey) = pme(E) + (Ex — E)—o2e

dE

(E)



Implications of previous result (canonical ensemble)

e The correlation function C(7) of 8 does not tend to zero
when 7 — 400. Neither does the one of ng.

e This qualitatively contradicts Zoller, Gardiner, Graham.
In qualitative agreement with Kuklov, Birman.

e Ergodicity ensured by interactions (cf. Hg) among Bo-
goliubov quasi-particles.

e Approximating H with integrable Hp,o, as eventually
done by Kuklov and Birman, gives incorrect coefficient
of t2.

A. Sinatra, Y. Castin, E. Witkowska, Phys. Rev. A 75,
033616 (2007)



Why failure of master equation method of Zoller-Gardiner 7

C(t) = 3 AyAy (57 (£) 5y (0))
k,k/
Master equation + quantum regression theorem:
e System = Bogoliubov modes k and k/. Other modes =
reservoir. Born-Markov approximation:

(5’fbk(t)5ﬁk/(0)> — 5kk’ﬁk(1 + T_Lk)e_rkt
so C(t) — 0 and phase has diffusive spreading...

t— o0
But reservoir not truly infinite:

e From ergodic theory:

) ) exni(ng + 1) eprnys(nyr + 1) 1
(0ny(t)on,(0)) — o= LSl S X —

and double sum: C(t) /~0.

t— o0




Illustration with a classical field calculation

Kuklov, Birman
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Figure 1: For a gas prepared in canonical ensemble, correlation function of 0 for the classical field. The equation of motion is the non-linear
Schrodinger equation. A. Sinatra, Y. Castin, E. Witkowska, Phys. Rev. A 75, 033616 (2007).



Gas prepared in the microcanonical ensemble: phase diffusion

e The conserved quantities IN, EE do not fluctuate. One

finds C(7) = O(1/73) and Var [0(t) — 6(0)] ~ 2Dt.

e One needs the full dependence of C(7) to get D.
e In the Bogoliubov limit, Setting ny = bl Bk :

—hH(T) wT— O(N) ‘|— —a Z (Ug, + Vk) iy (7)
k=20

C(7) can be deduced from all the (n(7)n,/(0)).

e The gas is in a statistical mixture of Fock states quasi-
particles |{nq}). One simply needs ({nq}|n(7)|{nq})-

e The evolution of the mean number of quasi-particles is
given by quantum kinetic equations including the Beliaev-
Landau processes due to Hs.



The quantum kinetic equations

: g%p +k|\ 2
Na =73 2 dgk{ nqnk — ng1x(1 + nk + ng) (Af,lq |)
X0(eq + €, — €|q—|—k|)}
2
gp 3 2
_2hﬂ2 d k{ [nq(l + ny + nq_k) — nknq_k} (Aq,|q kl)

X0(€p + €lqg—k| — eq)}
with the Beliaev-Landau coupling amplitudes:
Al b = UqUrUps + VgVieViy + (Ug + Vo) (ViUyy + Ug Vi) -

E. M. Lifshitz, L. P. Pitaevskii “Physical Kinetics”, Lan-
dau and Lifshitz Course of Theoretical Physics vol. 10,
chap. VII, Pergamon Press (1981)



Diffusion coefficient of the condensate phase
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Figure 2: Universal result in Bogoliubov limit (weakly interacting, T' < T¢).

A. Sinatra, Y. Castin, E. Witkowska, Phys. Rev. A 80,
033614 (2009)



Summary of results for the phase spreading

2
Var [0(t)—0(0)] , = Var (E) [‘;’; I;;C(E)] t2+2Dt+c+O(%)

e Existence of a t? term first in Kuklov, Birman, 2000.

e Coefficient of t? depends on the ensemble. First ob-
tained with quantum ergodic theory (Sinatra, Castin,
Witkowska, 2007) but also with quantum kinetic theory
(from existence of undamped mode of linearized kinetic
equations due to energy conservation). Interpretation:

0(t) —0(0) , ~ —u(H)t/h

e Diffusion coefficient D is ensemble independent. AD L3 /g
function of kT /pg (Sinatra, Castin, Witkowska, 2009).

e Ensemble independent ¢ # 0: Cpc(t) not a Dirac.



AN EXAMPLE FOR kT = 10pg

C(t) [V h°E)]
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Our publications on the subject

e A. Sinatra, Y. Castin, E. Witkowska, “Nondiffusive phase
spreading of a Bose-Einstein condensate at finite tem-
perature”, Phys. Rev. A 75, 033616 (2007)

e A. Sinatra, Y. Castin, “Genuine phase diffusion of a
Bose-Einstein condensate in the microcanonical ensem-

ble: A classical field study”, Phys. Rev. A 78, 053615
(2008)

e A. Sinatra, Y. Castin, E. Witkowska, “Coherence time of
a Bose-Einstein condensate”, Phys. Rev. A. 80, 033614
(2009)



More on kinetic theory

e For large system sizes, kinetic equations may be lin-
earized around mean occupation numbers 7 (coarse
graining argument).

—

e Collecting coefficients appearing in 0 in a vector A,

A U V)
k = th( K+ Vi)

e Collecting the unknowns in a vector & (t),

2i(t) = 3 A (S (t)3i(0))
k/£0

e Then one solves .
Z(t) = MX(t)
where M results from linearisation of the quantum ki-
netic equations around the mean occupation numbers.



The initial condition can be expressed analytically in
canonical, microcanonical and more general ensembles.

e Then correlation function of the time derivative of the
phase is

C(t) = A-Z(t).

e Crucial point: M is not invertible because of energy
conservation:
‘tMe=0.
Zero frequency eigenvector of M is ay o< dng/dT. Then
splitting .
B(t) = va + X (t)
with
dptmc
dE
~ is time independent whereas X (t) — 0 at long times.

hy = Var (E) (E).



