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Atom-photon interaction
Scattering amplitude  f(q,f) 

Cross-section  s(q,f) = |f(q,f)|2 

Total cross-section  s=òò  s(q,f) dW 

s» (0.1 nm)2 except near atomic resonances

Recoil effect for an atom scattering a photon 
(typically few mm/s)

For a Rayleigh scatterer (point dipole scatterer without internal 
structure, e.g. a                                atomic transition), the scattering 
amplitude near a resonance is:
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Resonant character:  d=wL – w0  detuning from resonance 
 G:  width of the resonance (inverse of atomic lifetime)

Resonant cross-section

of the order of  l2 
>> size of the atom
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Atom-photon quasi-resonant interaction

Resonant cross-section ~ 1mm2 , 8 orders of magnitude larger than 
geometric cross-section.
Wigner time delay at scattering:

Very sensitive to motion of atoms (Doppler effect)  G/k ~ m.s-1

Easily saturable because of huge cross-section (few mW/cm2)

p

Cross-section  

s(w) 
Phase-shift  f(w) 

0

 w0 » 1015
 Hz 

Resonance width
      G~107 Hz

at resonance (typically 10-100 ns)¿Wigner =
dÁ

d!
= ¡¡1
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Multiple scattering and transport

transport and diffusion

Microscopic scale
(scattering amplitude, 
cross-section...)

Intermediate scale  
Multiple scattering
Disordered medium

Macroscopic scale
Transport properties
Radiative transfer equation
Boltzmann equation
Diffusion approximation...

From microscopic to macroscopic:

Interference effects (beyond Boltzmann/RTE equation) may survive in 

the multiple scattering regime => mesoscopic regime



Important length scales
Microscopic length scales: 

size of the scatterers  and of scattered particles

mean distance between scatterers  n–1/3 

Intermediate length scales:
Scattering mean free path 
n : density of scatterers

 s : scattering cross-section

Transport mean free path
(Boltzmann mean free path)
distance traveled before the direction of propagation is randomized. 

It is directly related to the diffusion constant (v is the particle velocity), 

itself related to macroscopic quantities such as the conductance:

Macroscopic length scale: size of the medium L

`S =
1

n¾

`B =
`S

1¡ hcos µi

DB =
v`B
3

n¡1=3 ¿ `S; `B ¿ LUsually:



Additional length scales for “wave” particles

Wavelength (de Broglie wavelength for matter waves)  l 

Phase coherence length of the wave Lf . Beyond Lf , interference 

effects are washed out. 
Dense medium 

Effective continuous medium
Index of refraction...

Dilute medium:
Interference effects may survive at the intermediate length scales, 
even in the presence of strong spatial disorder:

Visible at the macroscopic scale if    

n¸3 À 1

¸¿ n¡1=3 ¿ `S ; `B ¿ L

mesoscopic regime



Why atoms?

Very well known elementary scatterer
Large cross-section at resonance (monodisperse sample)
Atom-atom interaction is small in dilute gases (no BEC)

The elementary scattering process is “very quantum”
   

Recoil velocity =          = few mm/s                   : laser wavenumber    M : atomic mass
 

Doppler effect is small, but not negligible in cold atomic gases

Non-linear behaviour (saturation of the atomic transition)
Internal structure (Zeeman sublevels)

Some complications

~kL
M

kL =
2¼

¸

kLvatom ¿ ¡ vatom ¿ 1m=s

Doppler shift Width of the atomic resonance

=>



Naive view on single scattering
The scattered intensity results from the 
coherent addition of scattering by each 
particle. For identical scattering particles:

Ordered particles => constructive interference in some direction 
(Bragg diffraction).

Disordered densely packed system (nl3>>1) => interference terms 
are washed out.
Disordered dilute system => random interference (SPECKLE)

Configuration averaging over disorder 
realizations: all interference terms  

                                                                                                    vanish for  i ¹ j .

~kin

~kout

exp[i(~ri ¡ ~rj):(~kout ¡ ~kin)]

vanishes
survives

I(~kin;~kout) =

¯̄
¯̄
¯̄
X

i=1;N

f exp [i~ri:(~kout ¡ ~kin)]

¯̄
¯̄
¯̄

2



Naive view on multiple scattering
A scattered photon can be rescattered. The total scattering 
amplitude is a sum of terms:

single scattering

scattering amplitude
free propagation

~kin

~kout
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Naive view on multiple scattering
A scattered photon can be rescattered. The total scattering 
amplitude is a sum of terms:

Even in a dilute system where the lengths of the multiple scattering 
paths are >> l, interference between different paths cannot be 
neglected (shadowing of long paths by shorter ones).
Less naive approach: introduce an effective medium in which the 
photon propagates between consecutive scattering events => 
diagrammatic mesoscopic approach. Must take into account both 
index of refraction and attenuation (NO ABSORPTION).
Configuration averaging is easy.
Price to pay: requires various equations for the propagation of field, 
intensity, correlations...

single scattering triple scatteringdouble scattering

scattering amplitude
free propagation

~kin

~kout

~kin ~kin

~kout ~kout



Diagrammatic methods in the weak scattering regime
Hamiltonian                                    with V a fluctuating potential
Compute the average Green's function                                  (averaged 
over disorder realizations) from the unperturbed Green's function for  

H0 and correlations function of the fluctuating potential

Dyson equation (definition of the self-energy S)

Transition operator T:
The Dyson equation can be written 

The self-energy is computed perturbatively using irreducible diagrams

ImS represents the attenuation of a coherent mode propagating inside 
the medium. It is essentially the inverse of the mean free path

H = H0 + V (r)

+ : : :



Bethe-Salpeter equation (intensity diagrams)
Intensity requires product of field and complex conjugate, thus 
product of one advanced and one retarded Green's functions.
Requires the introduction of a irreducible vertex U, obeying the 
Bethe-Salpeter equation:

U can be computed perturbatively using diagrams

S and U are related by the Ward identity (flux conservation, 
equivalent of optical theorem for single scattering) => truncation of 
the expansions must be done consistently on all quantities. 

average propagator

Im§(!) =
X

k0
U(k;k0;!) ImG(k0)



Multiple scattering expansion
Expansion in terms of the elementary scattering events (scattering 
amplitude) and the elementary propagation (Green's function) in the 
effective medium. Requires a consistent description of both 
processes.

scattering amplitude (cross-section  s)

propagation in the effective medium
attenuation exp (¡r=`)

` =
1

n¾
Dilute medium:

      : mean free path
s : cross-section
n: density of scatterers

`
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Incoherent transport
If the mean free path ℓ is much larger than the wavelength l of the 
photon, one can neglect interference between different scattering 
paths (washed out by configuration averaging) and keep only the 
“ladder” diagrams (“diffuson”)

Equivalent to Boltzmann or Radiative Transfer Equation
At large distance (much larger than ℓ), the propagation of the 
intensity is diffusive => diffusion approximation. 



Experimental setup

MOT of Rubidium atoms. Large size (few mm). Optical thickness 
up to 40. Labeyrie et al, INLN (Nice Sophia-Antipolis)



Incoherent transport (radiation trapping)

Experimental observation: the 
photons are trapped in the medium 
during a time
                : optical thickness

Random walk of the photon inside 
the atomic medium (no interference)

Deviation at large optical thickness, 
because the residual Doppler effect 
brings photons out of resonance. 

Different optical thicknesses 
of the atomic cloud

¼ b2¿nat = b2¡¡1
b ' L=`

Resonant
excitation

Monte-Carlo

b2 prediction

Labeyrie et al, PRL 91, 223904 (2003)

¿nat = ¡¡1 = 27ns



Theoretical prediction for radiation trapping in 
the dilute regime (n3

≪1)
The multiple scattering paths followed by the photons are diffusive paths 
if L≫ℓ

Interference effects can be neglected if ℓ≫ 
 ⇒ Incoherent transport of radiation in the cold atomic gas  

One can calculate the mean free path and the diffusion constant from 
microscopic parameters:

Mean free path:                     typically 100 mm

Velocity of energy propagation:

                   t: time delay between consecutive scattering events

` =
1

n¾

vE =
`

¿

¿ = ¡¡1 +
`

c
Scattering 
time delay
~ 30ns

Propagation between 
two scattering events
~ 10ps
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` =
1

n¾

vE =
`
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`
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Scattering 
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two scattering events
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Theoretical prediction for radiation trapping in 
the dilute regime (n3

≪1)
The multiple scattering paths followed by the photons are diffusive paths if 
L≫ℓ

Interference effects can be neglected if ℓ≫ 
⇒ Incoherent transport of radiation in the cold atomic gas  
One can calculate the mean free path and the diffusion constant from 
microscopic parameters:

Mean free path:                     typically 100 mm

Velocity of energy propagation:

                   t: time delay between consecutive scattering events

Diffusion constant

Residual Doppler effect makes the photon frequency to perform a random 
walk. Order of magnitude (scattering order N):
Monochromatic approximation valid only if  

` =
1

n¾

vE =
`

¿
¿ ¼ ¡¡1 vE ¼

`

¡
' 104 ¡ 105m/s ' 10¡4c

D =
vE`

3
' 1m2s¡1

¢! = k¹v
p
N = k¹vb

k¹vb¿ ¡
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Coherent backscattering (CBS)
In general, the interference between multiple scattering paths 
produces a random pattern: speckle. 

When averaged over disorder (several spatial configurations), the 
speckle disappears, except in the backward direction => coherent 
back scattering (CBS).

sample Experimental observation (far-field)

N.B.: frozen disorder
polystyrene scatterers,
not atoms!

Peak around q=0!



2

3

1

The physics of Coherent Back Scattering 

CBS comes from the interference between pairs of reverse multiple 
scattering paths:

Phase difference between the two contributions:

Scattered intensity:

: direct path
Scattering amplitude

: reverse path
Scattering amplitude

f (123)(~kin;~kout)

f (321)(~kin;~kout)

¢Á = (~kin + ~kout):(~r3 ¡ ~r1)

~kin

~kin

~kout

~kout

µ

I(µ) =

¯̄
¯̄
¯̄
X

paths p

fp

¯̄
¯̄
¯̄

2

=
X

p 6=p0
fp ¹fp0 +

X

p

jfpj2
Diffuse (incoherent) intensity

Washed out by disorder, EXCEPT if p'=reverse(p)



The physics of Coherent Back Scattering
After configuration averaging:

CBS is a 2-wave interference effect (like Young slits)  the ⇒
maximum enhancement factor is 2, obtained only when the two 
interfering amplitudes are equal (requires good polarization channel).
Any pair of direct/reverse paths produces a periodic modulation 
(interference fringes) of the scattered intensity. All these 
contributions are maximum (bright fringe) at back-scattering q=0.

 q (angle from exact backscattering)q=0

Oscillatory contribution
from a given pair of paths

Width of the
CBS cone ≈1/kℓ Cone shape resulting from the

addition of oscillatory contributions

I(µ) =
X

p

¡
jfpj2 + jf¹pj2 + fp ¹f¹p + ¹fpf¹p

¢



Crossed diagrams 
The dominant interferential contribution when ℓ>>l comes from 
the “most crossed diagrams” (also known as “cooperon”):

When reciprocity is satisfied, one can turn left-right the crossed 
diagrams and recover the ladder diagrams => optimal interference 
contrast, enhancement factor equal to 2
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Experimental observation of CBS
“Classical” dipole scatterers

Dilute gas of cold Rubidium atoms

Backscattered
signal

Angle from exact backscattering (mrad)

Enhancement factor
at exact backscattering ~ 2

TiO
2
 particles

in water

Enhancement factor
at exact backscattering ~ 1.04G. Labeyrie et al, 

Europhys. Lett. 
61, 327 (2003)

h//h polarization 
channel



Role of the internal atomic structure
The ground and excited states of Rubidium are degenerate. When a 
photon is elastically scattered, the internal atomic state (Zeeman 
sublevel) may remain unchanged (Rayleigh  transition) or may 
change by 1 or 2 units (degenerate Raman  transitions).

     

Raman transitions do contribute  to the CBS signal. The two 
interfering direct and reverse amplitudes are associated with the 
same changes of Zeeman sublevels.
In general, the two interfering amplitudes are not equal => contrast 
of the two-wave interference is reduced.
Everything can be calculated analytically, in simple geometries 
(semi-infinite medium).
Monte-Carlo calculation for more complicated geometries.

C. Mueller et al, PRA 64, 053804 (2001) 

Rayleigh Raman



Schematic view of the Monte-Carlo calculation

Internal structure taken into account exactly in the atomic scattering  
vertex (assuming all Zeeman sublevels equally populated).
Geometrical factors (shape of the atomic cloud, laser beam...) easily 
incorporated in the Monte-Carlo calculation.
If necessary, residual Doppler and recoil effects can be incorporated.



Experimentally observed atomic CBS cones

Rubidium atom : J=3  J=4 closed transition→
Spherical atomic cloud (Gaussian density) 
Optical thickness ≈26
No adjustable parameter in the Monte­Carlo calculation

lin⊥lin

lin//lin

h⊥h

h//h (best channel for
point dipole scatterers!)

Experimental points
Monte
­Carlo

The excellent 
agreement shows 
that all important 
effects are taken 
into account and 
proves that the 

internal structure is 
the most important 

ingredient

G. Labeyrie et al, 
Europhys. Lett. 61, 
327 (2003)



How to get rid of the internal structure?
Simple solution: use an atom with no internal structure in the 

ground state, that is a  J=0 ® J=1 atomic transition.  

Backscattered 
signal

Strontium atom

Monte-Carlo 
calculation

Experimental 
observation

Back to an enhancement factor ~ 2!

Angle from exact backscattering (mrad)

Y. Bidel et al, PRL 88, 203902 (2002)



How to get rid of the internal structure?
A magnetic field splits the degenerate atomic transition (Zeeman effect). 
If the Zeeman effect µB is larger than the width  of the atomic 
resonance, only a single atomic transition (J,m)(J',m') may be resonant 
with the incoming frequency  ⇒ effective two-level atom.

Unusual situation where breaking time-reversal symmetry increases 
interference effects!
Completely different from previous studies on massive materials:

Magnetic field of the order of few Gauss instead of Teslas;
The scatterers themselves are affected rather than the effective 
medium;
Highly nonlinear in B.

Very complicated situation:
Raman scattering changes the frequency of light;
Very large number of possible transitions, i.e., complicated variations 
of the index of refraction with frequency;
The medium is no longer isotropic  the polarization changes during ⇒
propagation;
Optical pumping may take place in the medium.



Restoration of the CBS interference induced by a magnetic field

From the Monte-Carlo calculation, 
extract the coherence length of the 
light in the cold atomic medium. 
The interference term/background 
ratio decreases like exp(-n/N

coh
)

n: number of scattering events
N

coh
: coherence “length”.

Study N
coh

 versus magnetic field. Full contrast of the CBS interference 
is restored at large magnetic field

O. Sigwarth et al,
Phys. Rev. Lett. (2004)

Dramatic increase of the 
enhancement factor from 1.05 
to 1.33 for only few Gauss

E
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m
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r

Magnetic field (Gauss)

Monte-carlo

Experiment 
(Rb atoms)

Magnetic field (Gauss)co
he
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e 
“l
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h”
 N
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h

Experiment



Effect of the residual velocity of the atoms
Doppler effect  the scattered photon is not at the same frequency ⇒
than the incoming photon.

Recoil of the atom is small, but not completely negligible.

On a pair of direct/reverse paths, the backscattered photons have the 
same frequency (≠from the incoming frequency) and thus still 
interfere. Intermediate frequencies (deep inside the scattering paths) 
are different.

Imbalance between the two interfering amplitudes => interference 
terms and CBS are reduced.

Scattering cross­section and
phase shifts are different along 
the direct and reverse paths

During the “free” propagation in
the medium, the optical length 
and attenuation are different along 
the direct and reverse paths



Effect of a small residual atomic velocity
Basic mechanism: frequency redistribution, which is diffusive at small 
atomic velocity                                 , with N  the scattering order.
Compute interferential and non-interferential terms by averaging over 
the frequency diffusion.
As long as                          , frequency redistribution is smaller than , 
the non interferential term is not affected;
The interferential term is reduced, because the various phase shifts 
along the scattering path destroy phase coherence. Loss of contrast is:

Phase coherence length: 

Very severe restriction for any experiment on weak or strong 
localization of light in a cold atomic gas..

¢!2 = Nk2¹v2

exp

µ
¡k

2¹v2N3

12¡2

¶

k¹v
p
N ¿ ¡

L© = `

µ
3

2

k¹v

¡

¶¡1=3



Destruction of CBS by the atomic motion
Temporal point of view: atoms move between the arrival of the 
direct and the reverse photons.

Experimental observation:
Loss of phase coherence
is fast.

At low velocity, better 
agreement with Lorentzian
velocity distribution.

Time delay at atom 1 ~ 2 ­1

Time delay at atom 3 ~ -2 ­1

exp

Ã
¡
X

i=1::N

h(~qi:¢~ri(ti))2i
2

!Loss of contrast is:

Time delay at atom 2 ~ 0

velocity = Doppler velocity/5

Labeyrie et al, PRL (2006)
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Scattering of matter waves by an optical potential
Exchange roles of light and matter.
Scatter matter waves by an optical potential. Example: diffraction 
of matter waves by a periodic optical potential.
A disordered optical potential can be created using reflection of a 
far-detuned laser beam off a rough surface (speckle) or a suitable 
phase mask.

Use mesoscopic diagrammatic expansions to 
compute transport properties (mean free path, 
diffusion constant, weak localization, CBS...)

Major hypothesis: no atom-atom interactionMajor hypothesis: no atom-atom interaction



Typical “speckle” optical potential

Peaks can be turned into potential wells by changing 

the sign of the detuning  dL  : V (r)! ¡V (r)



Properties of the optical potential
The effective potential seen by the cold atoms is disordered, but with 
specific correlation functions.

Effective potential                                                 

Mean value: V
L ; 

Correlation function (in 2D): 

                                                                               : laser wave vector
                                                                                    J1 : Bessel function

with a the numerical aperture of the device imaging the speckle, typically 

 a=0.1 

V (~r) =
~¡
8

¡

±L

I(~r)

Is

hV (~r0)V (~r0 + ~r)i = V 2L
µ
1 + 4

J21 (®kLr)

®2k2Lr
2

¶
kL

dL : detuning
I

S
 : saturation intensity

typical size : correlation length

³ =
1

®kL



Beyond Hamiltonian dynamics
Coupling with other modes of the electromagnetic field (reservoir) 
=> spontaneous emission breaks the phase coherence of the matter 
wave.
Rate is given by:

Small far from resonance

Coherence length:

LÁ =

s
DB
¡Á

ballistic regime

diffusive regime

¡Á ¼
¡

±L

V (r)

~

LÁ =
vatom
¡Á



Statistical properties of the optical potential

Important length scale: correlation length of the potential

Associated correlation energy:

Typical orders of magnitude (Rubidium atom):
Recoil velocity : few mm/s
Recoil energy : few kHz (1 mK)
Correlation energy : few tens Hz (few nK)

³ =
1

®kL
typically few mm

E³ =
~2

m³2
= 2®2ER with                             the recoil energyER =

~k2L
m



Diagrammatic methods in the weak scattering regime
Unusual features:

Non Gaussian fluctuations of the optical potential (=intensity)
Spatial correlations of the field and the intensity

Requires to take into account additional diagrams

field correlationfree propagator

average propagator

intensity correlation



Energy scales

Correlation energy  Ez 

Potential strength V
L

Total energy of the atom 
 

Dimensionless parameters:

The weak scattering condition (~ dilute regime) for applicability of 
the diagrammatic expansion is:

E =
~2k2

2m

´ =
VL
E³

¢ =
V 2L
E E³

¢¿ 1



Weak scattering approximation
Two interesting limiting situations:

(a) Large potential fluctuations   >1. Weak scattering implies 
E>>V

L
: the atom flies well above the potential fluctuations. The de 

Broglie wavelength resolves all the details of the potential => 
essentially classical motion.
(b) Small potential fluctuations  <1. Weak scattering condition can 
be satisfied even if E<V

L
, i.e. when atom energy lies below the 

average potential height. The matter wave averages out the short-
range fluctuations of the potential => quantum regime.

VL

VL



Calculation of the mean free path
Straightforward calculation in the weak scattering approximation 
(Born approximation):

with                                                         the Fourier transform of the 
correlation function of the optical potential 

Similar expression for transport mean free path:

Boltzmann diffusion constant:

Similar expressions in 3 dimensions

1

k`S
=

´2

k2³2

Z
d­

2¼
P(k³; µ)

P(jk¡ k0j) = ³2P(k³; µ)

P(r) =
·
2J1(r=³)

r=³

¸2

1

k`B
=

´2

k2³2

Z
d­

2¼
(1¡ cos µ)P(k³; µ)

DB(k) =
~k
2m
`B(k)



Scattering cross-section
Isotropic at low energy
Peaked in the forward direction when energy increases 

E ¿ E³ k³ ¿ 1

Low energy k=0.4
High energy k=1.4

Maximum 
scattering angle

Phase function (2D)



Incoherent (diffusive) transport of matter waves
Scattering mean free path 
Impossible to make a short mean free path at large energy => ultra-
cold atoms (sub-recoil energy) are needed!

 

weak scattering regime

`S

´ = VL=E³ = 0:4 ´ = VL=E³ = 1:2

Sc
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/
q
E=E³

Kuhn et al, PRL 
95, 250403 (2005)



Incoherent (diffusive) transport of matter waves
Transport mean free path   ̀ B

´ =
VL
E³

= 0:2Kuhn et al, New J. Phys. 9, 161 (2007)
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Weak localization
Effect similar to coherent backscattering, but in the bulk of the 
medium.
Constructive interference between pairs of time reversed scattering 
paths starting and ending at the same point.

weak localization                coherent backscattering
 

Increased probability of return (compared to diffusive non-
interferential transport) => decreased probability to leave. The 
diffusion constant is smaller than the Boltzmann diffusion constant.

The relevant (small) parameter is 
 

Depends on the dimension of the system.

1

k`B



Weak localization

Position

Diffusive behaviour

Weak localization correction
(size of the order of l)Spatial probability

 density



Weak localization
More generally, closed loops slow down the transport => weak 
localization:

Relevant parameter

Associated diagrams

In two dimensions

with

¸

`B
» 1

k`B

D = DB

µ
1¡ 2

¼k`B
log
L?
`B

¶

1

L2?
=

1

L2Á
+

1

L2

size of the mediumphase coherence length



Weak localization of matter waves
Using diagrammatic expansions, one can compute the weak localization 
correction to the Boltzmann (incoherent) diffusion constant                       
                         
                                                                  : transport mean free path
                                                           Lf: coherence length in the medium

`B

Example for Rb atoms

Detuning d=106
Speckle size=2cm

Laser power (in units of saturation intensity)

Weak localization 
correction can be 
large!

±D

DB
=

2

¼

log(LÁ=`B)

k`B

Kuhn et al, New J. Phys. 9, 161 (2007)

k³ = 2:0

k³ = 1:0



Weak localization for non-monochromatic atoms
Assume Gaussian distribution of atomic velocity, with average 
momentum k

0
 and variance s

k
.

Compute spatial spreading of an initially well localized cloud.  

Visible if  k
0
 and  s

k
 are slightly smaller than 1.



Weak localization of matter waves

In 3 dimensions 

Example for Rb atoms

Detuning d=104
Speckle size=2cm

Laser power (in units of saturation intensity)

Weak localization 
correction can be 
large!

Kuhn et al, New J. Phys. 9, 161 (2007)

±D

DB
=

3

¼

1

(k`B)2

k³ = 0:6

k³ = 1:8



Atom-photon interaction
Multiple scattering, transport and diffusion
Incoherent transport (radiation trapping)
Coherent transport, coherent backscattering, weak 
localization
Coherent backscattering of light by cold atoms
Multiple scattering of matter waves
Weak localization of matter waves
Towards strong localization of matter waves



Strong localization of matter waves
Strong (Anderson) localization is when the diffusion constant 
vanishes.

1D: always strong localization, for any disorder
2D: critical case, exponentially long localization length
3D: delocalized for weak disorder, localized for strong disorder

Rough criterion: strong localization takes place when the weak 
localization correction is 100% (self-consistent theory)

In two dimensions: 

Onset of strong localization 

In the localized regime, the localization length  x
loc

 is given by

                                                              where 

±D

DB
=

2

¼

log(L?=`B)

k`B

L? = `B exp
³¼
2
k`B

´

1

L2?
=

1

L2Á
+

1

L2
+

1

»2loc
L? = `B exp

³¼
2
k`B

´



Example of strong localization in 2D
Rubidium atom, detuning d=106, velocity=recoil velocity/8.

 
Laser power 
(unit: saturation intensity)

Medium size

Localization length

Phase coherence length
(spontaneous emission)

Transport mean free path

Boltzmann 
transport mean free path

Kuhn et al, PRL, 95, 250403 (2005) and New J. Phys. 9, 161 (2007)



Strong localization in 3D
Onset of strong localization (infinite system, perfect phase 
coherence)

Rubidium atom, detuning d=104, velocity=1.1 recoil velocity

 

Laser power 
(unit: saturation intensity)

Localization length Phase coherence length
(spontaneous emission)

Transport mean free path

Boltzmann 
transport mean free path

k`B =

r
3

¼
Ioffe-Regel criterion



Localization in one dimension
Strong transverse confinement of cold atoms (see Ph. Bouyer's 
talk).
Generic behaviour: exponential localization at any energy, for 
arbitrary small and correlated disorder.
Because the Fourier transform of the potential has compact support, 
the localization length diverges at lowest order of the Born 
approximation if k>1 (see L. Sanchez-Palencia's talk).
Using transfer matrix method, it is easy to numerically compute the 
localization length.

1/localization length

1/system size

k

Breakdown of first order 
Born approximation

=0.1



Localization in one dimension
At larger height of the optical potential , nothing spectacular 
happens at k=1

1/localization length

k

=0.5

B.Grémaud, private communication



Experimental results?
Several experiments performed with quasi-1D ultra-cold atomic 
gases in a disordered optical potential:

Orsay (Bouyer et al)
D. Clément et al, PRL 95, 170409 (2005)
D. Clément et al, NewJournal of Physics 8, 165 (2006)
L. Sanchez-Palancia et al, cond-mat/0612670 and 0610389 

Florence (Inguscio's group)
J.E. Lye et al, PRL 95, 070401 (2005)
L. Fallani et al, cond-mat/0603655

Hannover (Ertmer's group)
T. Schulte et al, PRL 95, 170411 (2005)

The three experiments are in the regime where atom-atom 
interaction is dominant.
A BEC (Bose-Einstein condensate) in the weak interaction regime, 
in the mean-field approach can be described by a single 
wavefunction obeying a non-linear Gross-Pitaevskii equation:µ
p2

2m
+ V (r) + gjÃ(r)j2

¶
Ã(r) = ¹Ã(r)

Interaction term
m: chemical potential



Thomas-Fermi regime
For large atom-atom interaction, the kinetic energy is negligible
µ
p2

2m
+ V (r) + gjÃ(r)j2

¶
Ã(r) = ¹Ã(r)

jÃ(r)j2 = ¹¡ V (r)
g

for m>V(r), 0 otherwise

jÃ(r)j2

V (r)

m

Thomas-Fermi approximation fails here

In the presence of disorder, the 
condensate accumulates at the 
potential minima and the 
interaction term smoothes out 
short range potential fluctuations 
=> “trivial localization”

No tunneling, no de Broglie wavelength, no quantum effect!



Summary and perspectives
Cold atoms can be used for studies of transport and localization in 
complex disordered systems. Advantages: good control, convenient 
time and length scales...
Light propagation in a cold atomic gas:

Radiation trapping (no interference). Slowing down of photons 
because of highly resonant interaction.
Interference effects may survive in disordered systems: coherent 
backscattering, (weak localization)...
Various phenomena limit the phase coherence: internal atomic 
structure, residual atomic velocity. Observation of strong localization 
is not straightforward.

Matter wave in disordered optical potential:
Independent atoms: (almost) everything can be calculated. 
Observation of weak localization would require ultra-cold atoms.
Strong localization should not be much more difficult.
With atom-atom interaction: more difficult problem. 
Work in progress when interaction is a perturbation. 



Atomic dynamics

For simplicity, consider a two-level atom:  |gñ and  |eñ 

Interaction with a monochromatic (NOT single mode) laser field,  

E(r) cos w
L

 t  close to  |gñ ® |eñ resonance.

Hamitonian is (D is the dipole operator):

Far from resonance                                         the coupling with the 
reservoir can be neglected.
Rotating wave approximation and write 

H =
p2

2m
+ ~!0jeihej ¡D:E(r; t) +HR ¡D:ER(r)

Atomic 
kinetic 
energy

Excited 
state 
contribution

Interaction 
with laser field

Interaction with other modes 
of the electromagnetic field 
(reservoir)

±L = !L ¡ !0 À ¡

jÃi = Ãgjgi+ Ãe exp(¡i!Lt)jei



Atomic dynamics
Then

   with

Low intensity (no saturation) 

 yg(r) obeys an effective Schrödinger equation with:

Optical potential:

i~@tÃg = ¡
~2

2m
r2Ãg +

~­¤(r)
2

Ãe

Rabi frequency

i~@tÃe = ¡
~2

2m
r2Ãe +

~­(r)

2
Ãg ¡ ~±LÃe

Hg =
p2

2m
+
~j­(r)j2
4±L

I
s
 : saturation intensity

I(r) : laser intensity
V (r) =

~j­(r)j2
4±L

=
~¡
8

¡

±L

I(r)

Is

Ãe(r) ¼ Ãg(r) ­(r)=2±L

d = hejDjgi~­(r) = ¡d:E(r)


