APPENDIX

For the $\mathbf{2}$ lectures of Claude Cohen-Tannoudji on "Atom-Atom Interactions in Ultracold Quantum Gases"

Purpose of this Appendix

1 - Demonstrate the orthonormalization relation

$$
\begin{equation*}
\left\langle\varphi_{\boldsymbol{k}^{\prime} m^{\prime}} \mid \varphi_{k l m}\right\rangle=\delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \delta_{I I^{\prime}} \delta_{m m^{\prime}} \tag{A.1}
\end{equation*}
$$

- The wave function

$$
\begin{equation*}
\varphi_{k l m}(\vec{r})=\sqrt{\frac{2}{\pi}} \frac{\boldsymbol{u}_{k l}(\boldsymbol{r})}{\boldsymbol{r}} \boldsymbol{Y}_{l m}(\theta, \varphi) \tag{A.2}
\end{equation*}
$$

describes, in the angular momentum representation, a particle of mass μ, with energy $E=\hbar^{2} k^{2} / 2 \mu$, in a central potential $V(r)$

- The radial wave function $u_{k l}(r)$ is a regular solution of

$$
\begin{gather*}
{\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} \boldsymbol{r}^{2}}+\boldsymbol{k}^{2}-\frac{2 \mu}{\hbar^{2}} \boldsymbol{V}_{\mathrm{tot}}(\boldsymbol{r})\right] \boldsymbol{u}_{\boldsymbol{k} \boldsymbol{l}}(\boldsymbol{r})=0 \quad \boldsymbol{V}_{\mathrm{tot}}(\boldsymbol{r})=\boldsymbol{V}(\boldsymbol{r})+\frac{\hbar^{2}}{2 \mu} \frac{\ell(\ell+1)}{\boldsymbol{r}^{2}}} \tag{A.3}\\
\boldsymbol{u}_{\boldsymbol{k} l}(0)=0 \tag{A.4}
\end{gather*}
$$

which behaves, for $r \rightarrow \infty$, as:

$$
\begin{equation*}
\boldsymbol{u}_{\boldsymbol{k l}}(\boldsymbol{r}) \underset{\boldsymbol{r} \rightarrow \infty}{\simeq} \sin \left[\mathbf{k r}-\boldsymbol{l} \pi / 2+\delta_{l}(\boldsymbol{k})\right] \tag{A.5}
\end{equation*}
$$

- There are other (non regular) solutions behaving, for $r \rightarrow \infty$, as:

$$
\begin{equation*}
\boldsymbol{u}_{\boldsymbol{k l}}^{ \pm}(\boldsymbol{r}) \underset{r \rightarrow \infty}{\simeq} \exp [\pm \boldsymbol{i}(\boldsymbol{k} \boldsymbol{r}-\boldsymbol{l} \pi / 2)]=(\mp \boldsymbol{i})^{l} \exp (\pm \boldsymbol{i} \boldsymbol{k} \boldsymbol{r}) \tag{A.6}
\end{equation*}
$$

$\underline{\text { 2- Calculate the Green function of: } \quad \boldsymbol{H}=\boldsymbol{p}^{2} / 2 \mu+\boldsymbol{V}(\boldsymbol{r}), ~\left(r^{\prime}\right)}$ with outgoing and ingoing asymptotic behavior

$$
\begin{equation*}
(\boldsymbol{E}-\boldsymbol{H}) \boldsymbol{G}^{(\pm)}\left(\overrightarrow{\boldsymbol{r}}, \overrightarrow{\boldsymbol{r}}^{\prime}\right)=\delta\left(\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right) \quad \boldsymbol{E}=\hbar^{2} \boldsymbol{k}^{2}, 2 \mu \tag{A.7}
\end{equation*}
$$

- Show that:
$\boldsymbol{G}^{(\pm)}\left(\overrightarrow{\boldsymbol{r}}, \overrightarrow{\boldsymbol{r}}^{\prime}\right)=-\frac{2 \mu}{\hbar^{2}} \frac{1}{\mathbf{k r \boldsymbol { r } ^ { \prime }}} \sum_{l m} \exp \left(\pm \boldsymbol{i} \delta_{l}\right) \boldsymbol{Y}_{\boldsymbol{l m}}^{*}(\theta, \varphi) \boldsymbol{Y}_{\boldsymbol{l m}}\left(\theta^{\prime}, \varphi^{\prime}\right) \boldsymbol{u}_{\boldsymbol{k l}}\left(\boldsymbol{r}_{<}\right) \boldsymbol{u}_{k l}^{ \pm}\left(\boldsymbol{r}_{>}\right)$
where $r_{>}\left(r_{<}\right)$is the largest (smallest) of r and r '
- Introducing the Heaviside function:

$$
\begin{align*}
\theta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) & =+1 \text { if } \boldsymbol{r}>\boldsymbol{r}^{\prime} \tag{A.9}\\
& =0 \quad \text { if } \boldsymbol{r}<\boldsymbol{r}^{\prime}
\end{align*}
$$

(A.8) can also be written:

$$
\begin{align*}
\boldsymbol{G}^{(\pm)}\left(\overrightarrow{\boldsymbol{r}}, \overrightarrow{\boldsymbol{r}}^{\prime}\right) & =-\frac{2 \mu}{\hbar^{2}} \frac{1}{\boldsymbol{k} \boldsymbol{r} \boldsymbol{r}^{\prime}} \sum_{l m} \exp \left(\pm \boldsymbol{i} \delta_{l}\right) \boldsymbol{Y}_{\boldsymbol{l m}}^{*}(\theta, \varphi) \boldsymbol{Y}_{\boldsymbol{l m}}\left(\theta^{\prime}, \varphi^{\prime}\right) \times \\
\times & {\left[\theta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \boldsymbol{u}_{\boldsymbol{k l}}\left(\boldsymbol{r}^{\prime}\right) \boldsymbol{u}_{\boldsymbol{k l}}^{ \pm}(\boldsymbol{r})+\theta\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right) \boldsymbol{u}_{\boldsymbol{k l}}(\boldsymbol{r}) \boldsymbol{u}_{\boldsymbol{k l}}^{ \pm}\left(\boldsymbol{r}^{\prime}\right)\right] } \tag{A.10}
\end{align*}
$$

3 - Calculate the asymptotic behavior of these Green functions and demonstrate Equation (2.39) of Lecture 2

Wronskian Theorem

The calculations presented in this Appendix use the Wronskian theorem (see demonstration in Ref. 2 Chapter III-8)

- Consider the 1D second order differential equation:

$$
\begin{equation*}
y^{\prime \prime}(r)+F(r) y(r)=0 \tag{A.11}
\end{equation*}
$$

Equation (A.4) is of this type with:

$$
\begin{equation*}
\boldsymbol{F}(\boldsymbol{r})=\boldsymbol{k}^{2}-\frac{2 \mu}{\hbar^{2}} \boldsymbol{V}_{\mathrm{tot}}(\boldsymbol{r}) \tag{A.12}
\end{equation*}
$$

- Let $\boldsymbol{y}_{1}(\boldsymbol{r})$ and $\boldsymbol{y}_{2}(\boldsymbol{r})$ be 2 solutions of this equation corresponding to 2 different functions $\boldsymbol{F}_{1}(\boldsymbol{r})$ and $\boldsymbol{F}_{2}(\boldsymbol{r})$, respectively. The wronskian of y_{1} and y_{2} is by definition:

$$
\begin{equation*}
W\left(y_{1}, y_{2}\right)=y_{1}(r) y_{2}^{\prime}(r)-y_{2}(r) y_{1}^{\prime}(r) \tag{A.13}
\end{equation*}
$$

- One can show that:

$$
\begin{align*}
\left.W\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)\right|_{a} ^{b} & =\left[W\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)\right]_{r=b}-\left[W\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)\right]_{r=a} \tag{A.14}\\
& =\int_{a}^{b}\left[\boldsymbol{F}_{1}(\boldsymbol{r})-\boldsymbol{F}_{2}(\boldsymbol{r})\right] \boldsymbol{y}_{1}(\boldsymbol{r}) \boldsymbol{y}_{2}(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}
\end{align*}
$$

Demonstration of (A.1)

We consider 2 different values k_{1} and k_{2} of k . According to (A.12):

$$
\begin{equation*}
F_{1}(\boldsymbol{r})-F_{2}(\boldsymbol{r})=\boldsymbol{k}_{1}^{2}-\boldsymbol{k}_{2}^{2} \tag{A.15}
\end{equation*}
$$

(A.14) then gives the scalar product of $y_{1}=u_{k_{1} l}$ and $y_{2}=u_{k_{2} l}$

$$
\begin{equation*}
\int_{a}^{b} \boldsymbol{y}_{1}(\boldsymbol{r}) \boldsymbol{y}_{2}(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}=\left.\frac{1}{\boldsymbol{k}_{1}^{2}-\boldsymbol{k}_{2}^{2}} W\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)\right|_{a} ^{b} \tag{A.16}
\end{equation*}
$$

If we take $a=0,\left[W\left(y_{1}, y_{2}\right)\right]_{r=a}=0$ because of (A.4)
If we take $b=R$ very large compared to the range of $V(r)$, we can use the asymptotic behavior (A.5) of $u_{k_{1} 1}$ and $u_{k_{2} l}$

$$
\begin{equation*}
\int_{0}^{R} u_{k_{1}}(r) u_{k_{2}}(r) \mathrm{d} r=\frac{1}{k_{1}^{2}-k_{2}^{2}}\left[u_{k_{1}}(r) u_{k_{2}}^{\prime}(r)-u_{k_{2}}^{2}(r) u_{k_{1}}^{\prime}(r)\right]_{r=R} \tag{A.17}
\end{equation*}
$$

Using (A.15) and putting $\delta_{l}\left(k_{1}\right)=\delta_{1}, \delta_{l}\left(k_{2}\right)=\delta_{2}$, we get:

$$
\begin{align*}
\int_{0}^{R} \boldsymbol{u}_{k_{1}}(\boldsymbol{r}) \boldsymbol{u}_{k_{2}}(\boldsymbol{r}) \mathrm{d} \boldsymbol{r} & =-\frac{1}{2} \frac{\sin \left[\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \boldsymbol{R}-\ell \pi+\delta_{1}+\delta_{2}\right]}{\boldsymbol{k}_{1}+\boldsymbol{k}_{2}}+ \tag{A.18}\\
& +\frac{1}{2} \frac{\sin \left[\left(\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right) \boldsymbol{R}+\delta_{1}-\delta_{2}\right]}{\boldsymbol{k}_{1}-\boldsymbol{k}_{2}}
\end{align*}
$$

- When $\mathrm{R} \rightarrow \infty$, the first term of the right side of (A.18) vanishes as a distribution, because it is a rapidly oscillating function of $k_{1}+k_{2}$ (k_{1} and k_{2} being both positive $k_{1}+k_{2}$ cannot vanish)
- The second term becomes important when $k_{1}-k_{2}$ is close to zero (we have then $\delta_{1}-\delta_{2}=0$)
- Using:

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \frac{1}{\pi} \frac{\sin R x}{x}=\delta(x) \tag{A.19}
\end{equation*}
$$

we get:

$$
\begin{equation*}
\int_{0}^{\infty} \boldsymbol{u}_{\boldsymbol{k}_{1} I}(\boldsymbol{r}) \boldsymbol{u}_{\boldsymbol{k}_{2} I}(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}=\frac{\pi}{2} \delta\left(\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right) \tag{A.20}
\end{equation*}
$$

- We then have, according to (A.2):

$$
\begin{align*}
\int \mathrm{d}^{3} \boldsymbol{r} \varphi_{k^{\prime} \boldsymbol{m}^{\prime}}^{*}(\overrightarrow{\boldsymbol{r}}) \varphi_{k l m^{\prime}}(\overrightarrow{\boldsymbol{r}}) & =\frac{2}{\pi} \underbrace{\left.\int \mathrm{~d} \Omega \boldsymbol{Y}_{l^{\prime} \boldsymbol{m}^{\prime}}^{*} \theta, \varphi\right) \boldsymbol{Y}_{l \boldsymbol{m}}(\theta, \varphi)}_{=\delta_{H} \delta_{m m^{\prime}}} \underbrace{\int \boldsymbol{u}_{k l}(\boldsymbol{r}) \boldsymbol{u}_{k^{\prime}}(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}}_{=\frac{\pi}{2} \delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)} \\
& =\delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \delta_{l \prime^{\prime}} \delta_{m m^{\prime}} \tag{A.21}
\end{align*}
$$

which demonstrates (A.1).

Demonstration of (A.8)

Let us apply E-H to the right side of (A.8). Using (A.10) and:

$$
\begin{equation*}
\boldsymbol{H}=-\frac{\hbar^{2}}{2 \mu} \Delta+\boldsymbol{V}(\boldsymbol{r})=-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{\boldsymbol{r}} \frac{\partial^{2}}{\partial \boldsymbol{r}^{2}}-\frac{\overrightarrow{\boldsymbol{L}}^{2}}{\hbar^{2} \boldsymbol{r}^{2}}-\frac{2 \mu}{\hbar^{2}} \boldsymbol{V}(\boldsymbol{r})\right] \tag{A.22}
\end{equation*}
$$

we get, using (A.12):

$$
\begin{align*}
& (\boldsymbol{E}-\boldsymbol{H}) \boldsymbol{G}^{(\pm)}\left(\overrightarrow{\boldsymbol{r}}, \overrightarrow{\boldsymbol{r}}^{\prime}\right)=-\frac{1}{\boldsymbol{k} \boldsymbol{r} \boldsymbol{r}^{\prime}} \sum_{l m} \exp \left(\pm \boldsymbol{i} \delta_{l}\right) \boldsymbol{Y}_{l m}^{*}(\theta, \varphi) \boldsymbol{Y}_{l \boldsymbol{m}}\left(\theta^{\prime}, \varphi^{\prime}\right) \times \\
& \quad \times\left\{\left(\boldsymbol{F}(\boldsymbol{r})+\frac{\partial^{2}}{\partial \boldsymbol{r}^{2}}\right)\left[\theta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \boldsymbol{u}_{k l}\left(\boldsymbol{r}^{\prime}\right) \boldsymbol{u}_{k l}^{ \pm}(\boldsymbol{r})+\theta\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right) \boldsymbol{u}_{k l}(\boldsymbol{r}) \boldsymbol{u}_{k l}^{ \pm}\left(\boldsymbol{r}^{\prime}\right)\right]\right\} \tag{A.23}
\end{align*}
$$

To calculate the second line of (A.23), we use:

$$
\begin{align*}
& \frac{\partial}{\partial \boldsymbol{r}_{1}} \theta\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)=-\frac{\partial}{\partial \boldsymbol{r}_{1}} \theta\left(\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right)=\delta\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right) \\
& {\left[\frac{\partial}{\partial \boldsymbol{r}_{1}} \delta\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)\right] \boldsymbol{f}\left(\boldsymbol{r}_{1}\right)=-\boldsymbol{f}^{\prime}\left(\boldsymbol{r}_{2}\right) \delta\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)+\boldsymbol{f}\left(\boldsymbol{r}_{2}\right)\left[\frac{\partial}{\partial \boldsymbol{r}_{1}} \delta\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)\right]} \tag{A.24}
\end{align*}
$$

The second order derivative of the second line of (A.23) gives 3 types of terms: proportional to $\theta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$ and $\theta\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right)$, to $\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$ and to $\partial \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) / \partial \boldsymbol{r}$

- The terms $\propto \theta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$ are multiplied by $\left[\boldsymbol{F}(\boldsymbol{r})+\left(\partial^{2} / \partial \boldsymbol{r}^{2}\right)\right] \boldsymbol{u}_{k l}^{ \pm}(\boldsymbol{r})$ which vanishes because $\boldsymbol{u}_{k l}^{ \pm}(\boldsymbol{r})$ is a solution of (A.3). The same argument applies for the terms $\propto \theta\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right)$ which are multiplied by $\left[\boldsymbol{F}(\boldsymbol{r})+\left(\partial^{2} / \partial \boldsymbol{r}^{2}\right)\right] \boldsymbol{u}_{\mathbf{k l}}(\boldsymbol{r})=0$
- The terms proportional to $\partial \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) / \partial \boldsymbol{r}$ cancel out
- The only terms surviving in the second line of (A.23) are those proportional to $\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$, which gives for this line:

$$
\begin{equation*}
\left[\boldsymbol{u}_{k l}\left(\boldsymbol{r}^{\prime}\right)\left(\partial \boldsymbol{u}_{k l}^{ \pm}\left(\boldsymbol{r}^{\prime}\right) / \partial \boldsymbol{r}^{\prime}\right)-\boldsymbol{u}_{k l}^{ \pm}\left(\boldsymbol{r}^{\prime}\right)\left(\partial \boldsymbol{u}_{k l}\left(\boldsymbol{r}^{\prime}\right) / \partial \boldsymbol{r}^{\prime}\right)\right] \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \tag{A.25}
\end{equation*}
$$

- We recognize in the bracket of (A.25) the Wronskian of $\boldsymbol{u}_{\boldsymbol{k} \boldsymbol{l}}$ and $\boldsymbol{u}_{\boldsymbol{k} l}^{ \pm}$ We can thus use (A.14) with $\boldsymbol{F}_{1}=\boldsymbol{F}_{2}$ since $\boldsymbol{u}_{\boldsymbol{k} l}$ and $\boldsymbol{u}_{\boldsymbol{k l}}^{ \pm}$correspond to the same value of \boldsymbol{k}.
- Equation (A.14) shows that the Wronskian is independant of \boldsymbol{r} when $\boldsymbol{F}_{1}=\boldsymbol{F}_{2}$. We can thus calculate it for very large values of \boldsymbol{r} where we know the asymptotic behavior (A.5) and (A.6) of $\boldsymbol{u}_{k l}$ and $\boldsymbol{u}_{\boldsymbol{k} l}^{ \pm}$
- The calculation of the Wronskian appearing in (A.25) is straightforward using (A.5) and (A.6) and gives:

$$
\begin{equation*}
W\left(\boldsymbol{u}_{k l}, \boldsymbol{u}_{k l}^{+}\right)=-\boldsymbol{k} \exp \left(\mp \mathbf{i} \delta_{l}\right) \tag{A.26}
\end{equation*}
$$

- Inserting (A.26) into (A.25) and then in (A.23) gives:

$$
\begin{equation*}
(\boldsymbol{E}-\boldsymbol{H}) \boldsymbol{G}^{(\pm)}\left(\overrightarrow{\boldsymbol{r}}, \overrightarrow{\boldsymbol{r}}^{\prime}\right)=\frac{1}{\boldsymbol{r}^{2}} \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \sum_{l m} \boldsymbol{Y}_{l m}^{*}(\theta, \varphi) \boldsymbol{Y}_{l m}\left(\theta^{\prime}, \varphi^{\prime}\right) \tag{A.27}
\end{equation*}
$$

- We can then use the closure relation for the spherical harmonics (see Ref. 3, Complement AVI):

$$
\begin{equation*}
\sum_{I m} \boldsymbol{Y}_{I m}^{*}(\theta, \varphi) \boldsymbol{Y}_{I m}\left(\theta^{\prime}, \varphi^{\prime}\right)=\delta\left(\cos \theta-\cos \theta^{\prime}\right) \delta\left(\varphi-\varphi^{\prime}\right) \tag{A.28}
\end{equation*}
$$

to obtain:

$$
\begin{align*}
(\boldsymbol{E}-\boldsymbol{H}) \boldsymbol{G}^{(\pm)}\left(\overrightarrow{\boldsymbol{r}}, \overrightarrow{\boldsymbol{r}}^{\prime}\right) & =\frac{1}{\boldsymbol{r}^{2}} \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \delta\left(\cos \theta-\cos \theta^{\prime}\right) \delta\left(\varphi-\varphi^{\prime}\right) \\
& =\delta\left(\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right) \tag{A.29}
\end{align*}
$$

which demonstrates (A.8).

Asymptotic behavior of \mathbf{G}^{+}

For r very large, only the first term of the bracket of (A.10) is non zero and we get:

$$
\begin{equation*}
\boldsymbol{G}^{(+)}\left(\overrightarrow{\boldsymbol{r}}, \overrightarrow{\boldsymbol{r}}^{\prime}\right) \underset{\boldsymbol{r} \rightarrow \infty}{\simeq}-\frac{2 \mu}{\hbar^{2}} \frac{1}{\boldsymbol{k} \boldsymbol{r} \boldsymbol{r}^{\prime}} \sum_{l m} \mathrm{e}^{i \delta_{l}} \boldsymbol{Y}_{l m}^{*}(\theta, \varphi) \boldsymbol{Y}_{l \boldsymbol{m}}\left(\theta^{\prime}, \varphi^{\prime}\right) \boldsymbol{u}_{\boldsymbol{k} l}\left(\boldsymbol{r}^{\prime}\right) \boldsymbol{u}_{\boldsymbol{k l}}^{+}(\boldsymbol{r}) \tag{A.30}
\end{equation*}
$$

According to (A.6), we have

$$
\begin{equation*}
\boldsymbol{G}^{(+)}\left(\overrightarrow{\boldsymbol{r}}, \overrightarrow{\boldsymbol{r}}^{\prime}\right) \underset{r \rightarrow \infty}{\simeq}-\frac{2 \mu}{\hbar^{2}} \frac{1}{\boldsymbol{k} \boldsymbol{r}^{\prime}} \sum_{l m}(-i)^{l} \mathrm{e}^{i \delta_{l}} \boldsymbol{Y}_{l m}^{*}(\theta, \varphi) \boldsymbol{Y}_{l m}\left(\theta^{\prime}, \varphi^{\prime}\right) \boldsymbol{u}_{\boldsymbol{k l}}\left(\boldsymbol{r}^{\prime}\right) \frac{\mathrm{e}^{i \boldsymbol{k} r}}{\boldsymbol{r}} \tag{A.31}
\end{equation*}
$$

On the other hand, from Eq. (1.46) of lecture 1 and (A.2), we have:

$$
\begin{equation*}
\varphi_{\boldsymbol{k} \vec{n}}^{-}\left(\vec{r}^{\prime}\right)=\frac{1}{\boldsymbol{k}} \sqrt{\frac{2}{\pi}} \sum_{l m}(\boldsymbol{i})^{l} \exp \left(-i \delta_{l}\right) \boldsymbol{Y}_{l m}^{*}(\overrightarrow{\boldsymbol{n}}) \boldsymbol{Y}_{l m}\left(\overrightarrow{\boldsymbol{n}}^{\prime}\right) \frac{\boldsymbol{u}_{\boldsymbol{k} l}\left(\boldsymbol{r}^{\prime}\right)}{\boldsymbol{r}^{\prime}} \quad \overrightarrow{\boldsymbol{n}}=\frac{\overrightarrow{\boldsymbol{r}}}{\boldsymbol{r}} \quad \overrightarrow{\boldsymbol{n}}^{\prime}=\frac{\overrightarrow{\boldsymbol{r}}^{\prime}}{\boldsymbol{r}^{\prime}} \tag{A.32}
\end{equation*}
$$

Using (A.32), we can rewrite (A.31) as:

$$
\begin{equation*}
G^{(+)}\left(\overrightarrow{\boldsymbol{r}}, \overrightarrow{\boldsymbol{r}}^{\prime}\right) \underset{r \rightarrow \infty}{\simeq}-\frac{2 \mu}{\hbar^{2}} \sqrt{\frac{\pi}{2}}\left[\varphi_{\boldsymbol{k} \vec{n}}^{-}\left(\overrightarrow{\boldsymbol{r}}^{\prime}\right)\right]^{*} \frac{\mathrm{e}^{i \boldsymbol{k r}}}{\boldsymbol{r}} \tag{A.33}
\end{equation*}
$$

which demonstrates Eq. (2.39) of lecture 2.

