APPENDIX

For the 2 lectures of Claude Cohen-Tannoudji
on “Atom-Atom Interactions
In Ultracold Quantum Gases”



Purpose of this Appendix

1 — Demonstrate the orthonormalization relation

(Do | ) = 5K = KIS, 5, (A
- The wave function
_ 2 U, (r
Pim (F) = . 0 )Ylm(é’,gp) A.2)

describes, in the angular momentum representation, a particle of
mass p, with energy E=/#k%/2u, in a central potential (1)
- The radial wave function u,(r) is a regular solution of

& e il—/jv (r)} u,(r) =0 V(1) = V() + j D a3

drz tot tot ZIU r
uk|(0) =0 (A.4)
which behaves, for r—oo, as:
u,(r) = sin|kr -1z /2+6/K)] (A.5)

F—oo

- There are other (non regular) solutions behaving, for r—»«, as:
u:(r) = exp [J_ri (kr—1z/ 2) ] = (Fi)" exp (+ikr) (A.6)

F—o0
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2 — Calculate the Green function of: H = p*/ 2u+V(r)
with outgoing and ingoing asymptotic behavior

(E-H)GY (F.F)=05(F -T) E = n’k*/ 2u (A7)
- Show that:
G® (F, F') = i’z/: k:r Zexp( 16)Y, (0, p)Y, (&', ¢)u, (r)u:(r)
where r, (r.) is the Iargest (smallest) of r and r’ (A-8)
- Introducing the Heaviside function:
O(r—r)=+1if r>r A9
=0 if r<r
(A.8) can also be written:
G™ (F,F) = ;‘2‘ kir Zexp( i )Y, (6, )Y, (6, 9) x
x |0 (r - r') ukl(r)u;(r) +0(r' = r)uy (Nug(r |
(A.10)

3 — Calculate the asymptotic behavior of these Green functions
and demonstrate Equation (2.39) of Lecture 2




Wronskian Theorem

The calculations presented in this Appendix use the Wronskian
theorem (see demonstration in Ref.2 Chapter I11-8)

- Consider the 1D second order differential equation:

y'(r) + F(r)y(r) = 0 (A.11)

Equation (A.4) is of this type with:
F(r) = k* - 2—‘zlvtot(r) (A.12)

h

- Lety,(r) and y,(r) be 2 solutions of this equation corresponding to
2 different functions F,(r) and F,(r), respectively.
The wronskian of y, and y,, is by definition:

W(yl’ yz) = yl(r)y;(r) - yz(r)yl'(l’) (A.13)
- One can show that:

Wy, ) = Wiy, )], — (W, v,
- jab [Fl(r) - Fz(r)] y,(r) y,(r) dr

(A.14)



Demonstration of (A.1)

We consider 2 different values k; and k, of k. According to (A.12):

F(r) - F(r) = kX — k? (A.15)
(A.14) then gives the scalar product ofy, = u,, andy, = u,

ol

b 1
J-a Y,(r) y,(r) dr = K2 _ K2 WCy;, Yz)‘z (A-16)
1 2
If we take a = 0,|W(y,, y,)| =0 because of (A.4)
If we take b = R very large compared to the range of V(r), we can
use the asymptotic behavior (A.5) of u, , and u,,
l 1 2
LR Uy (D U (D dr = o U, (DU (1) = U, (D () (A17)

r=R
1

2
Using (A.15) and putting 6,(k,) = J,, 6,(k,) = &,, we get:

1’ I

" ) 1 sin|(k + k)R =Lz + 8 + 6,
IO UKll(r) UkZI(r) - 2 K, + K, ' (A.18)
1 sin|(k -k )R+ 6 -6,
T2 K — K, 5




- When R—o0, the first term of the right side of (A.18) vanishes as a

distribution, because it is a rapidly oscillating function of k,+k,
(k, and k, being both positive k;+k, cannot vanish)

- The second term becomes important when k;-k, is close to zero
(we have then 6,-5,=0)

- Using: _
lim IsinRX 5(x)
lim —— (A.19)
we get:
jo u,(r)u,(r)dr = %5“(1 - k,) (A.20)

- We then have, according to (A.2):

* — — 2 *
Pro’, (He (H ==1dQY 0. oY (6, » |u,nu, cndr
k'l'm Kim T I'm Im Kl k'l

'

:6”r5mm/ :%é‘(k—k’)

= &k —kHs,.8_ (A.21)
which demonstrates (A.1).



Demonstration of (A.8)

Let us apply E-H to the right side of (A.8). Using (A.10) and:

2 2 2 2
H=-"Aivi=-"12 52 — |2_2 2”V(r) (A.22)
21 ror her h’

we get, using (A.12):
(E-H)GY(F,F) = krr Zexp( i 5) Y (0, p)Y, (0, ¢ x

x {(F(r) + 5—22) [e(r — ') u, (FMug () + 6 (r' —r) uk,(r)u;,(r’)]}

r

To calculate the second line of (A.23), we use: (A-23)
0 0
8_r16)(r1 - rz) - _a_rl‘g(rz - rl) = 5('1 B rz)
9, 0 (A.24)
{—5(r1 = rz)} f(r) =—f(r)s(r, —r,)+ f(r)|—5(r -1,
arl arl

The second order derivative of the second line of (A.23) gives 3 types
of terms: proportional to &(r — r’) and o(r’ — r), to 5(r — r’) and
to 05(r —r') / or



- The terms o O(r — r') are multiplied by [F(r) + (82 / érz)} u,(r)
which vanishes because u,,(r) is a solution of (A.3).

The same argument applies for the terms o &(r' — r) which are
multiplied by [F(r) + (82 / arz)} u,(r) =0

- The terms proportional to 66(r — r’) / or cancel out

- The only terms surviving in the second line of (A.23) are
those proportional to 5(r — r’), which gives for this line:

[uk,(r’) (aufl(r’) / 6r’) — U () (au,, (r) / 6r’)} s(r — ') (A.25)

- We recognize in the bracket of (A.25) the Wronskian of u, and u;,

We can thus use (A.14) with F, = F, since u,, and u;, correspond
to the same value of k.

- Equation (A.14) shows that the Wronskian is independant of r when

F, = F,. We can thus calculate it for very large values of r where we

know the asymptotic behavior (A.5) and (A.6) of u,, and u;,
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- The calculation of the Wronskian appearing in (A.25) is
straightforward using (A.5) and (A.6) and gives:

W(u,,, u,) = —k exp(Fid)) (A.26)
- Inserting (A.26) into (A.25) and then in (A.23) gives:
D) (o 1 , x P
(E - H)G™ (. T) = r—25(r =) Y6, )Y, (0, 9) (a2
Im

- We can then use the closure relation for the spherical harmonics
(see Ref. 3, Complement AVI):

> Y0, )Y, (0, ¢) =5(cos 6 — cos §) 5(p — ¢) (A.28)
Im

to obtain:

(E-H)GY (F ) = riz&r — ') Slcos @ —cos O) S — @
= &T - 1) (A.29)

which demonstrates (A.8).



Asymptotic behavior of G*

For r very large, only the first term of the bracket of (A.10) is non zero
and we get:

ror 2 1 i ' ' N, +
G(+) ( ) r—:>oo_ h/; krr' Z © " YI::(Q’ qa)Ylm(Q » P )ukl(r )ukl(r)

According to (A.6), we have

o 5 1 I , ikr
C5(+)(I’,F)ri0o hl: o Z( I)Ieg'Y (0, )Y, (8, ¢)ukl(r) ;

(A.30)

(A.31)
On the other hand, from Eq. (1.46) of lecture 1 and (A.2), we have:

PnF) Zm' exp (-i5) Y, @ Y, )uk'(r) ; g T

Using (A.32), we can rewrite (A.31) as:

Y /L " 2 _V sk L ikr
G()( )rjoo hél\/;[¢kn( )] er (A55)

which demonstrates Eq. (2.39) of lecture 2.
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