
Gaz quantiques
23 avril - 20 juillet 2007

Centre Emile Borel

Boris Altshuler
Physics Department, Columbia University and  NEC Laboratories America

Disordered Quantum Systems

Part 1: Introduction

Collaboration: Igor Aleiner , Columbia University

Part 2: BCS + disorder



Disorder + Interactions in a Disorder + Interactions in a 
Fermi LiquidFermi Liquid

ZeroZero--dimensional Fermi Liquiddimensional Fermi Liquid
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1. Disorder  (×impurities)
2. Complex  geometry }
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Realizations:Realizations:
• Metallic clusters
• Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
• Carbon nanotubes
•
•

3. e-e interactions

chaotic
one-particle
motion



1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
e r

gy L is the system size;

d is the number of
dimensions

L

g = ET / δ1

OneOne--particle problem (particle problem (Thouless, 1972)) Energy 
scales



The same statistics of the 
random spectra and one-
particle wave functions 

(eigenvectors)

g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Ν  × Ν
Random Matrices

Quantum Dots with
dimensionless 
conductance g

Ν→ ∞ g→ ∞

Thouless Conductance and
One-particle Quantum Mechanics



Zero Dimensional Fermi LiquidZero Dimensional Fermi Liquid
Finite Thouless
System energy ET

ε << ET 0Ddef

At the same time, we want the typical energies, ε , to 
exceed the mean level spacing, δ1 :

TE<<<< εδ1
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TEg
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Matrix 
Elements αβγδM

Diagonal Diagonal - α,β,γ,δ are equal pairwise
α=γ and β=δ or α=δ and β=γ or α=β and γ=δ

Offdiagonal Offdiagonal - otherwise

It turns 
out that
in the limit

• Diagonal matrix elements are much bigger
than the offdiagonal ones

• Diagonal matrix elements in a particular 
sample  do not fluctuate - selfaveraging

loffdiagonadiagonal MM >>

∞→g



Ψα (x) is a random 
function that 
rapidly oscillates

as long as
T-invariance 
is preserved

|ψα (x)|2           

Toy model:Toy model: Short range e-e interactions

( ) ( )rrU rr δ
ν
λ

= λ is  dimensionless coupling constant 
ν is  the electron density of states

( ) ( ) ( ) ( )rrrrrdM rrrrr
δγβααβγδ ψψψψ

ν
λ

∗∗= ∫
( )rrαψ

one-particle
eigenfunctions

x

ψα

electron
wavelength
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ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

determines the charging 
energy 

describes the spin 
exchange interaction

determines effect of BCS-
like pairing

Ec

J

λBCS

Three 
coupling 
constants
Selfaveraging!
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Example 1: Coulomb Blockade

valley peak
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CONCLUSIONS
One-particle chaos + moderate interaction of the electrons a
to a rather simple Hamiltonian of the system, which can be 
called Zero-dimensional Fermi liquid.
The main parameter that justifies this description is the 
Thouless conductance, which is supposed to be large
Excitations are characterized by their one-particle energy, 
charge and spin, but not by their momentum.
These excitations have the lifetime, which is proportional to 
the Thouless conductance, i.e., is long.
This approach allows to describe Coulomb blockade 
(renormalization of the compressibility), as well as the 
substantial renormalization of the magnetic susceptibility and 
effects of superconducting pairing  



Anderson theorem and beyondAnderson theorem and beyond

I. Superconductor – Insulator 
transition in two dimensions

BCS + Disorder



0

0
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z x

Anderson spin chain P.W. Anderson: 
Phys. Rev. 112,1800, 1958
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Anderson spin spin chain 

∑∑ ↓↑
+

↓
+

↑
↓=↑

+ +=
βα

ββαα
σα

ασασα λε
,,,

ˆ aaaaaaH BCSBCS

↓↑
−+

↓
+

↑
+

↓=↑

+ ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑ αααααα

σ
ασασαα ε aaKaaKaaK z ˆˆ1

2
1ˆ

,

∑∑ −+

↓=↑

+=
βα

βα
σα

αα λε
,,,

ˆˆˆˆ KKKH BCS
z

BCS

αε

BCS 
(paired)

xz

αε



ANDERSON  THEOREM
Neither superconductor order 
parameter Δ nor transition 
temperature Tc depend
on disorder, i.e. on g

Provided that
Δ is homogenous in space

This is just the universal limit !!
i.e. the limit ∞→g



ANDERSON  THEOREM

Ovchinnikov 1973,
Maekawa & Fukuyama 1982
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Tcτ < h

Neither superconductor order 
parameter Δ nor transition 
temperature Tc depend
on disorder, i.e. on g

Provided that
Δ is homogenous in space

This is just the universal limit !!
i.e. the limit ∞→g

Corrections
at large, but finite g

!



1. Offdiagonal matrix elements are random and small:
a) zero average b) fluctuations

2. Diagonal matrix elements - corrections O(g-1)
a) average b) fluctuations

Large, but finite g

3. In two dimensional system (pancake) of the size L

l is mean free path
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Interpretation : Tc = θD exp −
1

λBCS
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SC temperature
Debye temperature

Dimensionless
BCS coupling 

constant

λBCS = ln Tc
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Tcτ < h

λeff = λBCS 1 +
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Pure BCS interaction

(no Coulomb repulsion):
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Interpretation continued: “weak localization” logarithm

λeff = λBCS 1 +
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Q: Why logarithm?

A: Return probability
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λBCS = ln Tc
θD
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•In the universal (g=∞) limit the effective coupling 
constant equals to the bare one - Anderson theorem

•If  there is only BCS attraction, then disorder 
increases Tc and  Δ  by optimizing spatial 
dependence of Δ. !
Problem in conventional superconductors:

Coulomb Interaction

Tc and Δ reach maxima at the point of Anderson localization



Interpretation continued: Coulomb Interaction

  
λeff = λBCS −
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Anderson theorem - the gap is homogenous in space.

Without Coulomb interaction adjustment of the gap to the 
random potential strengthens superconductivity.

Homogenous gap in the presence of disorder violates 
electroneutrality; Coulomb interaction tries to restore it 
and  thus suppresses superconductivity

Perturbation theory:
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Finkelshtein (1987) 
renormalization group

Aleiner (unpublished) 
BCS-like mean field

CONCLUSION:
Tc and Δ both vanish at
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QUANTUM PHASE TRANSITION
Theory of Dirty Bosons

Fisher, Grinstein and Girvin 1990
Wen and Zee 1990
Fisher 1990
Only phase fluctuations of the order parameter are 
important near the superconductor - insulator transition

CONCLUSIONS
1. Exactly at the transition point and at T 0 conductance 

tends to a universal value gqc

2. Close to the transition point magnetic field and 
temperature dependencies demonstrate universal scaling

24 6 ??qc
eg K
h

= ≈ Ω



Granular Superconducting Films

EJ – Josephson energy

Ec – charging energy

EJ > Ec superconductor

EJ < Ec insulator

Problem: Ec is renormalized



Important parameter:
tunneling conductance between grains

gt

Ambegoakar & 
Baratoff (1963)

EJ = gtΔ
Small gt : vortex energy ~ EJ

quasiparticle energy ~ Δ >> EJ

It is easier to create vortices than quasiparticles
dirty boson model might be relevant

Large gt ?



Ambegaokar, Eckern &
Schon (1982, 1984)

Fazio & Schon (1990)

Albert Schmid (1983)

Chakravarty, Kivelson, 
Zimani & Halperin(1987)

Conductance near 
the transition

When tunneling conductance gt exceeds unity, 
charging energy gets renormalized - SCREENING !
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Ambegaokar, Eckern
& Schon

Ambegaokar & Baratof

Therefore

Q: How to match this result with 
Finkelshtein’s formula for 
homogenous films

t
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c g

E Δ
≈ Δ≈ tJ gE

J
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c EE ≈ 1≈tg



Charging energy of 
a grain or a 
Josephson junction
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This is an analog of 
the RPA result in 
the continuous case

Indeed Ec
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Schon result



+

e

e e

e

e

e

dynamical
screening

Ueff q,ω( )=
U0 q( )

1+U0 q( )ν Dq2

−iω + Dq2

DISSIPATION
or

DYNAMICAL SCREENING



2
1

1
1

ln

ln

g

eff

gg
g

gg

δ

δ
δ

⎡ ⎤⎛ ⎞− ⎜ ⎟⎢ ⎥Δ⎝ ⎠Δ = ⎢ ⎥⎛ ⎞+⎢ ⎥⎜ ⎟Δ⎝ ⎠⎣ ⎦

Δ
<<

Δ
>>>>

ΔΔ

⎯⎯ →⎯

+Δ
+

= >>

c
tc

c
t

t
g

t

tc

ceff
c

EgE

Eg
g

g
gE

EE t
1

1

1

#1

δ

δ



THREE REGIMES

δ1
Ec

m
et

al

superconductor

insulator

gt*

log2 δ1

Δ
⎛ 
⎝ 

⎞ 
⎠ 

Ec
Δ

Δ
3

2

1

Mean level spacing Charging energy
Gap in an 
isolated grain 

1≈



superconductor - metal
transition1.

T

R

Rq<<Δ< δ1;     
gt *>>1

superconductor - insulator
transition2.

Rq

R

T

δ1 < Δ < Ec
gt *≈1

R

T
Rq

superconductor -insulator
transition3. Ec << Δ

Ec ≈ EJ ;  EJ = gT Δ

gt* = Ec / Δ <<1









I. Theory:

1. Homogenous  films - Finkel’shtein’s theory is 
relevant;  g* >> 1

2. Granular films - three regimes
If  δ1 < Δ < Ec, then the critical conductance is 
of the order of the quantum conductance.

3. Universalities ???

II. Experiment

If all of the three energy scales EJ ; Δ and Ec
are of the same order, then the transition is 
nearby



ClogstonClogston –– Chandrasekhar transitionChandrasekhar transition

TunnelinigTunnelinig conductance: finite bias conductance: finite bias 
anomaliesanomalies

II. Superconductor above 
paramagnetic limit

BCS + Disorder







2 2
int c BCS

ˆˆ ˆ ˆˆ ˆH eVn E n JS K K.λ += + + +

ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

Isn’t it a Fermi liquid ?

Fermi liquid behavior  follows from the fact that 
different wave functions are almost uncorrelated



Is there a spin-charge separation?
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The interaction part of the hamiltonian does not mix 
single occupied orbitals with empty or double 
occupied ones – Blocking effect . 
(V.G.Soloviev, 1961)

Commute with the one-particle part of the Hamiltonian
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This single-occupied
states are not effected 
by the interaction. 

They are blocked

The Hilbert space is 
separated into two 
independent Hilbert 
subspaces

Charges and spins ??
Blocking 
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Spin -charge 
separation
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BCSĤ
Normal 
state

BCS 
state
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In terms of the isospins:



Blocking:

0normal

z x
αε

0BCS 

xz
αε

Therefore:
Blocking reduces the BCS gap



BCSĤ
BCS 
state

paramagnetic 
state

+ + ZeemanZeeman splittingsplitting EZ (small size or || magn. field):

First pair breaking: Energy loss 2Δ
Energy gain EZ

But as a result the gap 
becomes smaller and it is 
easier to break a new pair 

First order phase 
transition (Clogston
– Chandrasekhar)



First order phase 
transition (Clogston
– Chandrasekhar)

Coexistance of the two phases: Δ<<Δ 2ZE

“True” transition: Δ= 2ZE



Tunneling Tunneling DDensity ensity oof f SStates and its anomaliestates and its anomalies



Tunneling Tunneling DDensity ensity oof f SStatestates

V

1μ

2μ

M1 M2 eV21 =− μμ

bias

( ) ( ) ( ) ( ) const
dV

VIdVG 21 ≈∝≡ μνμν

tunneling
probability

Depends on the bias 
only on the scale of 
the Fermi energy ?



Tunneling Tunneling DDensity ensity oof f SStatestates

V

1μ

2μ

M1 M2 eV21 =− μμ

bias

A charge is created at t=0



First observation of the Zero Bias Anomaly



Zero Bias Anomaly (ZBA)Zero Bias Anomaly (ZBA)
Tunneling conductanceTunneling conductance, Gt , 
is determined by the product of the tunneling probability, W , 
and the densities of states in the electrodes, νt (ε = eV) .

OriginallyOriginally ZBA was attributed to W :
• Paramagnetic impurities inside the barrier (Appelbaum-

Andersdon theory) for the maximum of Gt . 
• Phonon assisted tunneling for the minimum.

Now it is accepted Now it is accepted that in most of cases
ZBA is a hallmark of the interactions between the electrons.ZBA is a hallmark of the interactions between the electrons.

In other words, it is better to speak in terms of anomalies in the tunneling DoS.

In the presence of the disorder In the presence of the disorder ZBA appears already at the 
level of the Hartree – Fock approximation i.e. in the first order 
in the perturbation theory in the interaction.



Effect appears already in the first Effect appears already in the first 
order in the perturbation theory  order in the perturbation theory  

its sign is not determined its sign is not determined 

CorrectionCorrection to the DoS in the disordered case:to the DoS in the disordered case:
BA & A.G. Aronov, Solid St. Comm. 30, 115 (1980).
BA, A.G. Aronov, & P.A. Lee, PRL, 44, 1288 (1980).



  

δν ε( ) =
λd

ε hD ε( )d 2 ∝
− ε d = 3
log ε d = 2
1
ε

d = 1

Effect appears already in the first Effect appears already in the first 
order in the perturbation theory  order in the perturbation theory  

its sign is not determined its sign is not determined 

ε electron energy 
counted from the Fermi 
level

D diffusion constant of 
the electrons

d  # of the dimensions

λ effective coupling 
constant;
λ>0 -repulsion

CorrectionCorrection to the DoS in the disordered case:to the DoS in the disordered case:
BA & A.G. Aronov, Solid St. Comm. 30, 115 (1980).
BA, A.G. Aronov, & P.A. Lee, PRL, 44, 1288 (1980).

ε

ν
••Repulsion Repulsion -- minimumminimum in the DoS;in the DoS;
••DoS DoS divergesdiverges at low dimensions at low dimensions 



Zero Bias Tunneling Anomaly

Gershenson et al, Sov. Phys. JETP 63, 1287 (1986)

The conductivity of the tunnel junctions Al-I-Al (T=0.4K, B=3.5T) 
for 2D films with different R : 1 – 40 Ω, 2 – 100 Ω, 3 - 300 Ω.  
Right panel: comparison with the theoretical prediction for the 
interaction-induced ZBA.



Tunneling Density of States (DoS)Tunneling Density of States (DoS) ν ε( )

K.A. Matveev, D.Yue, and L.I. Glazman Phys. Rev. Lett., v.71, p.3351 (1993)
A.M. Rudin, I.L. Aleiner, and L.I. Glazman; Phys. Rev. v.B71, #15 (1997)

Role of the Friedel OscillationsRole of the Friedel Oscillations
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Tunneling Density of States (DoS)Tunneling Density of States (DoS) ν ε( )

K.A. Matveev, D.Yue, and L.I. Glazman Phys. Rev. Lett., v.71, p.3351 (1993)
A.M. Rudin, I.L. Aleiner, and L.I. Glazman; Phys. Rev. v.B71, #15 (1997)

Role of the Friedel OscillationsRole of the Friedel Oscillations

DoS at a given point          in space is determined by the 
quantum mechanical amplitude to come back to this point

 
r 
R 



Tunneling Density of States (DoS)Tunneling Density of States (DoS)
DoS at a given point          in space is determined by the 
quantum mechanical amplitude to come back to this point

 
r 
R 

ν ε( )

0) No disorder
No interactions 
between the 
electrons

Non of the 
classical 
trajectories 
returns to the 
original point

DoS is a 
smooth 
function of the 
energy

ν ε( ) ∝ ε + εF( )−1+d 2

≈ const(Energy       is counted from the Fermi level)ε

1) Such classical trajectories appear as soon as 
translation invariance is violated (e.g., by disorder):

e
e  

r 
R  

r 
R 



Tunneling Density of States (DoS)Tunneling Density of States (DoS)
DoS at a given point          in space is determined by the 
quantum mechanical amplitude to come back to this point

 
r 
R 

ν ε( )

1) Such classical trajectories appear as soon as 
translation invariance is violated (e.g., by disorder):

e

e

The return amplitude contains the phase 
factor. The phase ϕ = 2kFR is large (if the 
distance between the original point and the 
impurity exceeds the Fermi wavelength). 
The correction to the DoS vanishes when 
averaged over the sample volume

Different trajectories 
are characterized by 
different  phase 
factors

eiϕ
disorder

= 0

Only mesoscopic fluctuations 

  
r 
R 

  
r 
R 



e

Different trajectories have 
different  phase factors

eiϕ
disorder

= 0

Without electron-electron interactions 
(averaged) DoS is not effected by the 
disorder.

Only mesoscopic fluctuations

e

  
r 
R 



Friedel Oscillations
  
δρ

r 
r ( )∝

sin 2kFr( )
r d

Electron density 
oscillates as a 
function of the 
distance from an 
impurity. 

The period of these 
oscillations is 
determined by the 
Fermi wave length. 

The amplitude of the 
oscillations decays 
only algebraically. 

These oscillations are 
not screened



An electron right after the tunneling 
finds itself at a point R. It moves, then

(i) gets scattered  off an impurity at a 
point O,    

(ii) gets scattered off the Friedel 
oscillation created by the same 
impurity (interaction !!!) , and

(iii) returns to the point R .

No oscillations 
in the limit

Phase factor at Phase factor at 
small angle small angle θ ::

Single impurity (ballistic) case
Compensation of Phases
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No oscillations in the 
limit
Phase fluctuates 
only when           , 
where

ZBA !

An electron right after the tunneling 
finds itself at a point R. It moves, then
(i) gets scattered  off an impurity at a 

point O,    
(ii) gets scattered off the Friedel 

oscillation created by the same 
impurity, and

(iii) returns to the point R .

ε → 0

r > rε

rε ≈ vF
ε → ∞

Important:Important: this effect exists already in the first 
order of the perturbation theory in the interaction 
between the electrons (between the probe 
electron and the Friedel oscillation), i.e., in the
Hartree-Fock approximation. As a result the DoS 
correction as well as ZBA can have arbitrary sign.
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“Messy” Friedel oscillations -
combination of the Friedel 
oscillations from different scatterers
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Compensation of Phases

“Messy” Friedel oscillations -
combination of the Friedel 
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Multiple impurity scattering - diffusive case 
Compensation of Phases
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“Messy” Friedel oscillations -
combination of the Friedel 
oscillations from different scatterers

 
δρ

r 
r ( )∝ Aα sin kFLα( )

paths α
∑

Lα total length of this path

α = O1,O2,O3, ...,On ,{ } a path

phase factor at small angle phase factor at small angle θ :: sin kF Lα( )eikLα ≈ exp iεLα
vF

⎛ 
⎝ 

⎞ 
⎠ 

Lα < rε ≈ vF
ε → ∞

Again, oscillations are 
not important as long as
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R 
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θ

O4FO phase factor at small angle phase factor at small angle θ ::

sin kF Lα( )eikLα ≈ exp iεLα
vF

⎛ 
⎝ 

⎞ 
⎠ 

Lα < rε ≈ vF
ε → ∞

Oscillations are 
not important as 
long as

Magnitude of the 
correction to the DoS 
is determined by the 
return probability

If the interaction is not weak, 
the relative corrections to the 
DoS are the same as the 
weak localization corrections 
to the conductivity

Multiple impurity scattering - diffusive case 
Compensation of Phases





paramagnetic 
state

Tunneling into paramagnetic stateTunneling into paramagnetic state

Tunneling of a particle with the “opposite 
spin” unblocks the orbital state!
BCS Hamiltonian mixes this state with other 
unblocked (unoccupied) states.
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state

Tunneling into paramagnetic stateTunneling into paramagnetic state

Tunneling of a particle with the “opposite 
spin” unblocks the orbital state!
BCS Hamiltonian mixes this state with other 
unblocked (unoccupied) states.
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Tunneling of a particle with the “opposite 
spin” unblocks the orbital state!
BCS Hamiltonian mixes this state with other 
unblocked (unoccupied) states.
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Qualitative pictureQualitative picture

BCSĤ

( ) ∑∑ ↓↑
+

↓
+

↑↓
+

↓↑
+

↑ ++= ββααααααα λε aaaaaaaaH BCSBCS
ˆ

ε

0ε
2ZE

Schrodinger eqn
(all energies are measured in 
units of the mean level spacing)
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More accurate calculation More accurate calculation –– other other 
electrons are taken into accountelectrons are taken into account
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