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The three-dimensional stability of two-dimensional vortical states of planar mixing 
layers is studied by direct numerical integration of the Navier-Stokes equations. 
Small-scale instabilities are shown to exist for spanwise scales at which classical linear 
modes are stable. These modes grow on convective timescales, extract their energy 
from the mean flow and exist at moderately low Reynolds numbers. Their growth 
rates are comparable with the most rapidly growing inviscid instability and with the 
growth rates of two-dimensional subharmonic (pairing) modes. At high amplitudes, 
they can evolve into pairs of counter-rotating, streamwise vortices, connecting the 
primary spanwise vortices, which are very similar to the structures observed in 
laboratory experiments. The three-dimensional modes do not appear to saturate in 
quasi-steady states as do the purely two-dimensional fundamental and subharmonic 
modes in the absence of pairing. The subsequent evolution of the flow depends on 
the relative amplitudes of the pairing modes. Persistent pairings can inhibit three- 
dimensional instability and, hence, keep the flow predominantly two-dimensional. 
Conversely, suppression of the pairing process can drive the three-dimensional modes 
to more chaotic, turbulent-like states. An analysis of high-resolution simulations of 
fully turbulent mixing layers confirms the existence of rib-like structures and that 
their coherence depends strongly on the presence of the two-dimensional pairing 
modes. 

1. Introduction 
Free shear flows, like those of mixing layers and jets, differ from wall-bounded flows 

in that they typically have inflexional mean velocity profiles and, hence, are subject 
to inviscid instabilities. Thus, it may be thought that the process of transition to 
turbulence in free shear flows would be directly amenable to analysis. Indeed, 
observations by Winant & Browand (1974), Brown & Roshko (1974), Wygnanski et 
al. (1979), Ho & Huang (1982), Hussain (1983a) and others show the central role 
played by two-dimensional dynamic processes, at least through transitional regimes, 
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in these flows. While three-dimensional small scales are observed (Miksad 1972 ; 
Bernal et al. 1979), they may not necessarily destroy the large-scale two-dimensional 
structures (Browand & Troutt 1980,1985). I n  contrast, studies of wall-bounded flows 
have emphasized the central role of three-dimensional effects in the breakdown to 
turbulence. 

In  this paper, we investigate the interaction between linear and nonlinear two- and 
three-dimensional flow states that  can arise during the early stages of evolution of 
a temporally growing turbulent mixing layer. It is shown that certain two- 
dimensional, nonlinear states (coherent, spanwise vortical modes) are strongly 
unstable to small, three-dimensional perturbations, and that these perturbations can 
evolve into streamwise, counter-rotating vortices similar to those observed experi- 
mentally (Bernal 1981 ; Bernal & Roshko 1986) and modelled analytically (Pierre- 
humbert & Widnall 1982; Lin & Corcos 1984). We find that the two- or three-dimen- 
sional character of the early stages of the mixing layer depends crucially on the 
initial conditions, as there is close competition between the various modes of 
instability. 

The approach followed here is similar to that used by Orszag & Patera (1980,1983) 
in their study of secondary instabilities in wall-bounded flows. The parallel laminar 
flow is perturbed initially by either a linear or a finite-amplitude two-dimensional 
disturbance that is allowed to evolve and to saturate in a quasi-steady state. The 
stability of this finite-amplitude vortical state to  both subharmonic (pairing) 
two-dimensional modes and smaller-scale three-dimensional modes is then studied by 
numerical solution of the full three-dimensional time-dependent Navier-Stokes 
equations. To relate these simulations to the evolution of a turbulent mixing layer, 
we also examine the interaction between the evolving two-dimensional modes in their 
linear and nonlinear states and a broadband, three-dimensional background noise 
spectrum. 

The character of the pairing instability was first explained theoretically by Kelly 
(1967), and numerically by Patnaik, Sherman & Corcos (1976) and Collins (1982) for 
stratified flows, and by Riley & Metcalfe (1980) and Pierrehumbert & Widnall(l982) 
for unstratified flows. The nature of the two-dimensional vortical pairing as well as 
a model for streamwise vortical motion have been investigated numerically and 
theoretically (Corcos & Sherman 1984; Corcos & Lin 1984; Lin & Corcos 1984). 
Experimentally, coherent pairing of large-scale vortical structures in turbulent 
mixing layers at high Reynolds numbers was identified by Brown & Roshko (1974). 
Significant secondary three-dimensional instabilities in these flows have been 
observed by Breidenthal (1981), Bernal (1981) and Bernal & Roshko (1986). The 
importance of these instabilities and their sensitivity to upstream perturbations has 
been demonstrated experimentally by Hussain & Zaman (1978), Oster & Wygnanski 
(1982) and Ho & Huang (1982) among others. There is an excellent and comprehensive 
review of the very extensive literature on this topic by Ho & Huerre (1984). 

Pierrehumbert & Widnall (1982) examined the linear two- and three-dimensional 
instabilities of a spatially periodic inviscid shear layer in a study closely related to  
the present one. They considered the stability characteristics of the model family of 
two-dimensional vortex-modified mixing layers with velocity fields 
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(Stuart 1967) for 0 < p < l,t and studied subharmonic pairing instabilities and a 
‘translative ’ three-dimensional instability. In  contrast, we consider here both the 
linear and nonlinear stability characteristics of time-developing viscous shear layers. 
The three-dimensional secondary instability that we study is both the analogue of 
the translative instability and a generalization of the instability analysed by Orszag 
& Patera (1983) for wall-bounded flows. I n  the nonlinear state, this instability is 
manifest as the streamwise, counter-rotating vortices (Bernall981 ; Bernal & Roshko 
1986) or ‘ribs ’ (Hussain 1983a) seen in laboratory experiments. 

2. Numerical methods 
The Navier-Stokes equations are solved in the form 

a0 
= u x o - v 7 t + v v 2 u ,  (2.1) at 

w * u  = 0, (2.2) 

- 

where o = V x u is the vorticity and 7t = p + i l ~ 1 ~  is the pressure head. Periodic 
boundary conditions are applied in the streamwise x and spanwise y directions, where 

while the flow is assumed quiescent ( u - t  U ,  2; U ,  const.) as z - t  & 00. Note that the 
assumed periodicity length B is 4x/a (or 8 x / a )  to accommodate both the fundamental 
mode, with x-wavenumber a, and its subharmonic, with x-wavenumber !p (or $a). 

Pierrehumbert & Widnall (1982) point out that  Floquet theory implies that the 
Navier-Stokes equations linearized about a flow periodic in x admit solutions of the 
more general form v(x, y, z )  = eiyxV(x, y ,  z ) ,  where V is periodic in x with the same 
periodicity as the basic flow and y is arbitrary. However, Pierrehumbert & Widnall 
consider only the subharmonic and fundamental cases. The analysis, which has not 
yet been done for more general y ,  may be able to address more precisely such 
phenomena as the ‘collective interaction’ described in experiments by Ho & Nosseir 
(1981). Indeed, Busse & Clever (1979) point out the importance of these general 
y-modes in BBnard convection. The present study is restricted t o y  being a half-integer 
multiple of the fundamental wavenumber because our code has the periodicity 
condition (2.3). Numerical simulations (Corcos & Sherman 1984) with values of y 
different from ours indicate that the longest wave allowed by the grid will eventually 
dominate, although the details of the ‘pairing’ process may differ. 

Our simulations are of a temporally growing mixing layer. By avoiding the 
requirement of imposing inflow-outflow boundary conditions, which is essential in 
simulations of a spatially growing flow, a faster, more efficient code can be written. 

t Note tha t  for p << 1, the basic flow state  (1.1) is of the form t a n h z f + p  Re [eiuZV(z)]. At 
wavenumber a = 1, there are no fundamental two-dimensional instabilities that  can compete with 
the subharmonic (a = t )  and secondary instabilities. This flow state is an inviscid neutrally stable 
perturbation of the mixing layer tanhzf .  I n  contrast, the results to  be reported in 93 involve 
unstable fundamental perturbations to the mixing layer. 
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Thus, the temporally evolving mixing layer can be simulated at  higher Reynolds 
numbers and with better resolution than the spatial flow for a given level of computer 
resources. As will be shown later, there are very important linear and nonlinear 
dynamic features that are common to the two flows, so a detailed analysis of 
numerical simulations of a temporally growing flow can yield important insight into 
the evolution in the spatial case. There are also significant differences between the 
flows, which should be addressed by future simulations using inflow-outflow 
boundary conditions (cf. Lowery, Reynolds & Mansour 1987). 

We have used two independently written numerical codes for the simulations 
described in this paper. In the first, the dynamical equations are solved using 
pseudospectral methods in which the flow variables are expanded in the series 

P 

v ( z , y ,  z ,  t )  = C Z C u(m, n , p ,  t )  eimaz einau Tp(Z), (2.4) 
l rn I<pf  JnlcpJ p-0 

where n and p are integers, while m is a half-integer when one pairing is allowed and 
a whole integer if all pairing modes are excluded. Here Z = f(z) is a transformed 
z-coordinate satisfying Z = & 1 when z = k 00. Two choices off(z) have been studied : 

and 

(2.5) 
Z 

Z = tanh- (121 < co, 121 c 1) 
L 

where L is a suitable scale factor. A variant of the first transform method has been 
successfully applied to mixing-layer simulations by Cain, Ferziger & Reynolds 
(1984). With these mappings, derivatives with respect to z are evaluated pseudo- 
spectrally using the relations 

av i av  _ -  - -(l-ZZ)- 
a2 L az’ 

a Z  L az 
av - = - ( l - Z ) z -  i 2 1 

for (2.5) and (2.6), respectively. 
Time-stepping is done by a fractional-step method in which the nonlinear terms 

are marched in time using a second-order Adams-Bashforth scheme while pressure 
head and viscous effects are imposed implicitly using Crank-Nicolson differencing. 
This scheme is globally second-order-accurate in time, despite time splitting (Orszag, 
Israeli & Deville 1986), because the various split operators commute in the case of 
quiescent boundary conditions a t  z = k 00. 

There is one further technical detail regarding this numerical method that should 
be discussed here. Various Poisson equations, like 

(m2+n2)17= g(z)  (121 c a), 
d217 
dz2 
-- 

are solved by expansion in the eigenfunctions of d2/dz2 : 

d2 
- e  ( z )  = h k e k ( z )  dz2 (121 c 00) .  (2.10) 
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x-wavenumber a 

L 

0.5 
1 
2 
4 
8 

16 

0.5 
1 
2 
4 
8 

17 

1.534 
0.959 
0.635 
0.612 
0.539 
0.202 

0.699 
0.591 
0.600 
0.597 
0.542 

Number of Chebyshev polynomials (P+ 1) 
33 85 17 33 65 17 

Hyperbolic map (2.5) 
1.375 1.238 0.579 0.501 0.457 0.160 
0.820 0.746 0.383 0.360 0.351 0.141 
0.614 0.605 0.344 0.342 0.342 0.137 
0.598 0.597 0.324 0.342 0.342 0.041 
0.597 0.597 0.115 0.322 0.342 S 
0.526 0.596 S S 0.321 S 

Algebraic map (2.6) 
0.588 0.599 0.345 0.346 0.342 0.131 
0.599 0.597 0.344 0.342 0.342 0.137 
0.597 0.597 0.342 0.342 0.342 0.136 
0.597 0.597 0.325 0.342 0.342 0.371 
0.597 0.597 0.009 0.322 0.342 S 

33 

0.150 
0.138 
0.137 
0.136 
0.045 

S 

0.138 
0.137 
0.137 
0.136 
0.043 

0.25 0.5 0.75 

65 

0.150 
0.137 
0.137 
0.137 
0.136 
0.046 

0.137 
0.137 
0.137 
0.137 
0.136 

TABLE 1. Growth rates (Im(c)) of the Orr-Sommerfeld eigenfunctions for the mixing layer 
Vo(z)  = V ,  tanh(z/ai). Here the Reynolds number is VoS,/v = 100 and the eigenvalue is the 
complex wave speed c for a temporal mode of the form $(z) etu(z-ct). For the most rapidly growing 
mode listed here, Re (c) = 0. S indicates that all modes are stable with the indicated parameter 
values. 

Thus, if 

then (2.11) 

We remark that this technique gives spectrally accurate solutions, despite the fact 
that the continuous version of the eigenvalue problem (2.10) has only a continuous, 
and hence singular, spectrum. Also, note that all the eigenvalues hk are real and 
non-positive; for both mappings (2.5) and (2.6), there are precisely three zero 
eigenvalues A,, A,, A,. One of these zero eigenmodes is physical, viz. el@) = 1, but the 
other two are highly oscillatory and unphysical. Indeed, since the spectral (Cheby- 
shev) derivative of T! (Z)  vanishes except at  2 = f 1, e,(Z) = T!(Z)  is a zero 
eigenfunction of d2/dz2 ; T’(2,) = ( -  1)’ at the Chebyshev collocation points 
2, = cosnj/P. The third zero eigenmode oscillates and grows roughly like z. When 
m = n = 0, the incompressibility constraint (2.2) requires that this mode of the 
z-velocity field vanish identically so there is no difficulty with zero-pressure eigen- 
values A,, A,, A,. 

Comparisons of the behaviour of linear OrrSommerfeld eigenmodes obtained using 
mappings (2.5) and (2.6) show that (2.6) gives a superior representation of these modes 
unless L is fine tuned, which is not convenient in the nonlinear dynamic runs. Some 
representative results are given in table 1. Notice that as a increases, the optimal 
choice of map scale L decreases. Also, notice that the accuracy of the eigenvalue is 
much more sensitive to L for the hyperbolic tangent mapping (2.5) than for (2.6). 

There is one case in which it seems that the hyperbolic tangent mapping (2.5) is 
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more convenient than the algebraic mapping (2.6). This flow is the generalized 
Taylor-Green vortex flow that develops from the initial conditions 

I u(x, y, z, 0 )  = sin x cos y/cosh2 z, 

w(x, y, z, 0 )  = - cosx sin y/cosh2 z ,  

w(x, y, Z , O )  = 0. 

(2.12) 

The evolution of this flow seems best studied, either by power series or initial value 
methods, using (2.5) with L = 1 .  The time evolution of this free shear flow is 
remarkably similar to that of the periodic Taylor-Green vortex (Brachet et al. 1983). 

This nonlinear, time-dependent Navier-Stokes code has been tested for the 
generalized Taylor-Green vortex flow (2.12) and also for linearized eigenfunction 
behaviour, with satisfactory agreement being achieved with power series in t (Brachet 
et al. 1983) and linear behaviour, respectively. 

The second code used in the simulations is similar to  the one just described, except 
that  sine and cosine expansions in z were used instead of Chebyshev polynomials 
(2.4). Thus, the transverse domain extent is finite, and care must be taken to identify 
possible interference effects. Comparisons with results from the first simulations as 
well as simulations performed on varying size domains has verified that such effects 
are small for the cases presented here. Aside from details of the input/output 
buffering routines and the size of the arrays used in the computations, the basic code 
structure is similar to that described in Orszag & Pao (1974). 

3. Two-dimensional instabilities 

velocity fields of the form 
I n  this and the following sections, results are reported for the evolution of initial 

~ ( 2 ,  y, z , o )  = u,(z) 2 + A , ,  u , , ( Z )  cos [a(x + ell + A ~ ,  , ui, ,(z) cos (+ax) 

+A, ,  v,,(z) cos[a(x+$)l sinby, (3.1) 

where 0 is the phase shift between the fundamental and subharmonic modes, and 
is the corresponding phase shift of the spanwise mode. The laminar mean profile is 
assumed to be U,(z) = U, tanhz/Si, an approximation to the mixing-layer profile, 
and w&) is normalized so that rnax,lvij(z)l = 1 .  Here, S, is the initial mean vorticity 
thickness. 

The initial functions vij(z) are normally chosen as the most unstable eigenfunctions 
of the linear Orr-Sommerfeld equation for the appropriate wave-numbers given in 
(3.1) (Michalke 1964). It should be noted that the Reynolds numbers of the flows 
discussed below, while modest, are much greater than that of the onset of linear 
instability (RCrit x 0) ,  so that even the linear modes are effectively inviscid. I n  this 
case, damped modes may lie only in the continuous spectrum (Drazin & Reid 1981) 
and so are singular. Whenever (3.1) calls for such a singular contribution to the initial 
condition (3.1), we choose instead the flow component w,, = wl0 of the fundamental 
mode (with u,, and vnm determined by incompressibility). I n  this representation, 
A,, is the amplitude of the fundamental two-dimensional component, A ,  is the 
amplitude of its subharmonic or pairing mode, and A,, is the amplitude of the primary 
three-dimensional wave with a spanwise wavelength equal to  that of the fundamental 
two-dimensional mode. Time is non-dimensionalized by 2 U,/Si and space scales by 
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A 10 

- 0.01 -.- 0.125 
0.25 
0.50 

--- -..- 

1 

FIQURE 1. A plot of El,(t)  versus t for runs with At , ,  = A,, = 0 and A,, = 0.5, 0.25, 0.125, 0.01. 
Here the Reynolds number is R = 400, the spectral cutoffs in (2.4) are M = 8, N = 1 ,  P = 32 
(resolution 8 x 1 x 32 with no subharmonic modes), the 2-wavenumber is a = 0.4, and the time-step 
is At = 0.02. Note that the flow saturates into a vortical state nearly independent of the initial 
perturbation. Before such saturation occurs, the perturbation grows linearly like an Orr- 
Sommerfeld eigenfunction. 

Si. The initial conditions are typically chosen so that 4, ,, A,, 6 A,, and A,, = 0.25. 
The Reynolds number for the undisturbed flow is R = U,Si/v.  

In the absence of subharmonic and three-dimensional perturbations 
(A$, ,  = A,, = 0 ) ,  the two-dimensionally perturbed flow quickly saturates to a 
quasi-steady state. Figure 1 is a plot of the time evolution of the two-dimensional 
disturbance energy E,,(t) for various initial amplitudes Ale. The value for 01 is taken 
to be 0.4446, which is the wavenumber corresponding to the largest growth rate 
predicted by linear theory (Michalke 1964). (The range of inviscidly unstable 
wavenumbers for the tanh z profile is 0 < 01 < 1 .) Here 

where (3.3) 

and u is defined by (2.4). It is apparent that E,,t saturates into a finite-amplitude 
vortical state on a timescale of order 10. The independence of the peak saturation 
amplitude from the initial excitation amplitude except for very high initial ampli- 

t Note that El,  does not precisely correspond to the energy in the fundamental mode at later 
times. For example, the subharmonic mode by itself will develop an El, component as it  rolls up 
(e.g. see figure 17). 
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t 1 
FIQURE 2. Contour plots of spanwise (y) vorticity for the mixing layer at ( a )  t = 8 and ( b )  32 with 
R = 83, 4,0 = 0, A,, = 0.2, M = P = 64 and N = 1. Contour interval is 0.07; and peak contour 
value is (a) -1.12, ( b )  -0.96. 

tudes, which is evident in figure 1 ,  has also been observed experimentally by 
Freymuth (1966). If we define the growth rate as 

dE/dt 
2E ’ 

g=- 

then for linear disturbances of the form 

$ = Re [Hz) eia(z-ct) I,  

(3.4) 

(3.5) 

we have u = act. The theoretically predicted peak growth rate of the most unstable 
linear mode (a = 0.4446) is u = 0.19. Our growth rates, which are given later in the 
text, should be divided by a factor of 2 for comparison with the linear results for act 
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t 

FIQURE 3. Plots of the evolution of E,,(t) and the two-dimensional subharmonic mode energy 
Et,,,(t). Here R = 400, A,, = 0.25, AI , ,  = 3 x lop4, M = 8, N = 1, P = 32, a = 0.5, At = 0.02 and 
8 = n/2a (phase difference between the two modes). 

given by Michalke (1964) to reflect the different choice of U,. In analysing these 
growth rates, it  should be recalled that an important aspect of the saturation process 
is the growth in the thickness of the mixing layer as the fundamental mode rolls up. 
This has the effect of reducing the growth rate (based on linear theory) of a 
disturbance with the wavelength of the fundamental. In  fact, in our simulations, 
saturation occurs at  approximately the time at  which the mixing-layer thickness has 
doubled, and the mode corresponding to El,  would no longer be linearly unstable. 

Figure 2 is a plot of the instantaneous spanwise vorticity distribution in the 
developed two-dimensional flow for a run similar to that shown in figure 1. Note that 
while roll-up is occurring by t = 8, in the absence of a subharmonic mode, Ai, ,, pairing 
does not take place, and the flow evolves into the nonlinear, quasi-equilibrium state 
shown in figure 2 ( b ) .  This absence of pairing is analogous to that artificially induced 
by upstream forcing in experiments by Miksad (1972), Hussain & Zaman (1978), Oster 
& Wygnanski (1982), Ho & Huang (1982) and others. In these experiments, the forced 
mode is amplified without also amplifying its subharmonic. Thus, roll-up of the forced 
mode is achieved without pairing, creating a region in the flow characterized by 
large-scale, spanwise-coherent, non-pairing modes. This produces countergradient 
momentum fluxes, interruption in the growth of the mixing-layer thickness, and a 
reversal in the sign of the Reynolds stresses (Patnaik et al. 1976; Riley & Metcalfe 
1980). That these phenomena are also observed experimentally makes this nonlinear, 
quasi-equilibrium state of interest in analysing the physics of the laboratory flows. 

The saturated two-dimensional flow state discussed above can be unstable to 
subharmonic perturbations, At, ,  in (3.1), for suitable a (Kelly 1967). In figure 3, we 
plot the evolution of the subharmonic perturbation energies Ei,,(t) as well as the 
fundamental two-dimensional energy E,,(t). Here we choose A,, = 0.25 and 
Ai, , = 3 x In figure 3, the phase difference 6 /a  between the two modes is in:, 
so that pairing occurs. Values of 6 / a  other than integral multiples of n: result in 
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FIGURE ~ ( u - c ) .  For caption see facing page. 
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-0.05 J 
0 1 2 3 4 

nla 

FIGURE 6. (a-d) Plots of the Reynolds stress at t = 8, 16,24, 32 respectively for the runs with both 
fundamental and subharmonic present (figure 4). (a) Contours are from -0.032 to 0.104 and the 
contour interval is 0.008; ( b )  -0.05 to 0.11,O.Ol; (c) -0.08 to 0.1,O.Ol ; (d )  -0.072 to 0.036, 0.006. 
(e) A plot of the horizontally averaged Reynolds stress with and without pairing at different times. 

z 

pairing, while pairing is temporarily inhibited when 8/a is near Nn? with Nan integer. 
The cases 8/01 = Nn are anomalous, resulting in the ‘shredding interaction’ (Patnaik 
et al. 1976) which is rarely seen experimentally. (See Riley & Metcalfe (1980) or Ho 
& Huerre (1984, p. 382) for additional plots and a more detailed discussion of phase 
differences.) This subharmonic instability of the saturated two-dimensional vortical 
states is inviscid in character, as its growth rate asymptotically approaches a fmite 
limit as R increases. The growth rate cri, of the amplitude of the subharmonic mode 
is quite significant; at R = 200, cr+,o x 0.1 when a = 0.4, while x 0.2 for a = 0.8. 
These are not significantly different from the corresponding linear inviscid growth 
rates of Orr-Sommerfeld modes (Michalke 1964), which are q 0  x 0.14 and 0.19, 
respectively . 

The evolution of the spanwiae vorticity distribution during pairing instability is 

8 F L M  184 
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shown in the contour plots in figure 4 (from Riley & Metcalfe 1980). There is strong 
similarity between these figures and flow visualizations of mixing layers, such as those 
of Winant & Browand (1974). Note that in two spatial dimensions, the lines of 
constant vorticity act as fluid markers much like the dye used in experiments. The 
evolution of the pairing process is strongly dependent on the relative initial 
amplitudes of the unstable modes. When Ai, , x A,,, the fundamental mode rolls up 
first owing to its higher growth rate and shorter saturation timescale. The subhar- 
monic continues growing after the fundamental saturates, during which time the 
vortex cores generated by the roll-up of the fundamental are merged into the 
subharmonic core. In  this simulation (figure 4), the subharmonic mode At, ,  will 
become saturated after about t = 24, since there is no second subharmonic mode 
(A!, ,) with which i t  can pair. 

Some insights into the dynamics of this process can be gained from comparing 
figures 4 and 5. Figure 5 is a series of velocity vector plots a t  the same times as those 
in figure 4. At t = 8, the vortical motion of the fundamental cores dominates the flow 
and there are four nodal points: two a t  the centres of the vortex cores and two 
stagnation points a t  the centres of the braids. By t = 24, the vorticity peaks 
corresponding to  the fundamental are still present (figure 4c), although they are no 
longer as dynamically significant as earlier (cf. figure 5a, c ) .  At this point, there are 
basically two nodal points in the flow : one a t  the centre of the subharmonic core and 
the other in the region of high strain a t  the centre of the braid. By t = 32, the 
subharmonic mode has saturated and the vortex core collapsed into a quasi- 
equilibrium, nonlinear state like that for the unpaired fundamental (figure 2b). 

As has been previously noted (e.g. Patnaik et al. 1976; Corcos & Sherman 1984), 
the importance of the pairing process to the dynamic evolution of the flow is clearly 
demonstrated by examining plots of the Reynolds stresses, --uW (figure 6). From the 
dynamic equation for the integrated mean kinetic energy E M ,  

(neglecting viscous effects), it can be seen that a positive Reynolds stress implies 
gradient momentum transport (since a U/az > 0) and a feed of energy from the mean 
flow into the perturbation field, while negative Reynolds stress produces counter- 
gradient momentum flux and feeds energy from the fluctuations back into the mean. 
During the early stages of pairing, the Reynolds stress is predominantly positive. 
However, by t = 24 (figure 6c), large negative regions (denoted by dashed lines in the 
figures) have developed, and by t = 32 (figure 6 4 ,  the Reynolds stress has become 
predominantly negative. The relevance of the pairing mode is summarized in the 
results for the horizontally averaged Reynolds stress as a function of z presented in 
figure 6 ( e ) .  Without the subharmonic pairing mode, the Reynolds stress changes sign 
by t = 16. With the subharmonic present, however, the net Reynolds stress is still 
positive at  t = 16. Thus, the suppression of pairing, whether caused by forcing, as 
in laboratory experiments (Hussain & Zaman 1978; Oster & Wygnanski 1982; Ho 
& Huang 1982), or by eliminating the subharmonic mode, as in the numerical 
simulations, is associated with a reversal in the sign of the Reynolds stress. 

This phenomenon is apparent in figure 3, in which the energy in the fundamental 
El,  reaches saturation by about t = 10 and then begins to  decay. At this point, the 
Reynolds stress changes sign, and a countergradient momentum flux develops. I n  the 
absence of other disturbances, this flow will then evolve into an oscillatory state 
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FIQURE 7. A plot of the components yM, yzD, y, (see (3.8)) of the growth rate vi,, of the subharmonic 
mode amplitude as functions of time for a run with R = 200, A,, = 0.25, At,,  = 3 x M = 16, 
N = 1, P = 32, a = 0.43 and At = 0.01. 

characterized by an alternating energy exchange between the mean flow and the 
perturbation fields. 

In terms of turbulence models, the presence of pairing is essential to maintain the 
positivity of transport coefficients (such as eddy viscosity). Since the eddy viscosity 
Veddy is related to the Reynolds stress by 

it follows that suppression of the pairing corresponds to a negative eddy viscosity. 
This suggests that accurate simulations of flows with inhibited pairing may require 
the direct calculation of large-scale structures. 

The energetics of the pairing instability is revealing. Energy transfers to and from 
the subharmonic mode may be decomposed as 

where yM involves the nonlinear interaction of the subharmonic mode with the mean 
flow, yZD the nonlinear interaction of the subharmonic mode and all other two- 
dimensional modes and y, the viscous dissipation of pairing energy. Here yM and yZD 
involve Sums over nonlinear terms in the NavierStokes equations but are unaffected 
by pressure; y, is proportional to the enstrophy in the subharmonic mode. These 
transfer terms are plotted in figure 7 as a function of time. It appears that the 
subharmonic mode extracts most of its energy from the mean flow and that there 
is little net energy transfer between it and the fundamental mode. In  addition, its 
average growth rate differs little from that in the absence of the fundamental, which 
is CT x 0.14. Thus, the presence of the saturated two-dimensional fundamental does 

8-2 
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not turn off the subharmonic mode, and the growth rate of this latter mode is close 
to that of the fundamental two-dimensional instability. These results imply that even 
a small subharmonic perturbation will quickly achieve finite amplitude after the 
fundamental mode saturates, unless the amplitude of the fundamental is artificially 
amplified by forcing. I n  this simulation, the subharmonic mode saturates at t x 90 
at  which time the growth rate becomes negative. It should be noted here that in 
attempting to compare these results for growth rates of the fundamental and 
subharmonic modes with experiments, it is necessary to  account for the dispersion 
of the subharmonic modes (cf., for example, figure 2 ( b )  in Ho & Huerre 1984), which 
is present in the spatially growing but not in the temporally growing mixing layer. 

Corcos & Sherman (1984) find that the presence of the fundamental inhibits the 
subharmonic growth, while Pierrehumbert & Widnall(l982) find an enhancement of 
growth. We find that the growth rate of the subharmonic is modulated with a period 
related to the oscillation timescale of the nonlinear, quasi-equilibrium fundamental 
mode. However, the net effect on the growth of the subharmonic due to the 
fundamental is to  decrease m o  slightly, from about 0.16 to  0.14. While these 
conclusions do agree qualitatively with those obtained by Kelly (1967) using 
perturbation theory, they show that the effect is quantitatively quite smal1.t 

4. Three-dimensional instabilities 
The saturated two-dimensional flow is also subject to three-dimensional instabil- 

ities. While the laminar flow is inviscidly unstable only for a2 +p2 < 1 (Drazin & Reid 
1981), the finite-amplitude two-dimensional flow can be unstable for large B a t  high 
Reynolds numbers. I n  figure 8, we plot the average three-dimensional growth rate 
v3,, versus /3 of the three-dimensional disturbance energy, 

for various Reynolds numbers when a = 0.4, for a three-dimensional linear pertur- 
bation to a saturated, two-dimensional quasi-equilibrium flow. The behaviour of 
these spanwise perturbations to the full nonlinear, quasi-equilibrium flow state is 
qualitatively similar t o  that found in the multiple timescale analysis of Klassen & 
Peltier (1985). Analysis of these results suggests the conjectures that, as R increases, 
for a fixed p, rZD approaches a finite limit (so the secondary instability discussed is 
inviscid in character) and that the instability turns off for 

(4.2) 

Although the mean flow, tanh z, is both viscously and inviscidly stable for /3 > 1, the 
saturated, two-dimensional disturbed flow is strongly unstable at these scales, with 
disturbances growing at rates near those of the inviscid two-dimensional subharmonic 
instability, as shown in figure 9. When the two-dimensional modes saturate, the 
three-dimensional modes can achieve finite amplitudes on convective timescales and 
thereby modify significantly the later evolution of the flow. 

Like the two-dimensional modes, the three-dimensional modes evolve into vortical 
states at large amplitudes. One important manifestation of these instabilities is the 
counter-rotating vortices, or ‘ribs’, that  develop in the braids between the two- 

P ’ Pcrit = m 

t Recently, Z. s. She (private communication) has developed a global theory of two- 
dimensional vortex coalescence. 
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FIGURE 9. A plot of the computed subharmonic growth rate u and three-dimensional growth rate 
us,, as a function of a at R = 400 and p = 0.8. Note that t k  wavenumber of the pairing mode 
is ia. 
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FIQURE 10. A three-dimensional perspective plot of surfaces having a value equal to 50 '% of the 
peak of the sum of the absolute values of all three vorticity components for a run with R = 56 (at 
t = 12), M = N = P = 64, a = 0.4446, At = 0.05, A,, = 0.22, = 0, A, ,  = 0.003, /? = 0.8892 at 
t =  12. 

dimensional vortex cores. I n  figure 10, we show a three-dimensional perspective plot 
of surfaces having a value of 50 yo of the peak of the sum of the absolute values of 
all three vorticity components. The data are from a simulation with A,, = 0.22, 
A t o  = 0, A,, = 0.003, R = 28, a = 0.4446 and /3 = 0.8892 a t  t = 12. The saturated, 
two-dimensional vortex cores are shown spanning the domain, and the two pairs of 
counter-rotating, streamwise vortices (/3 = 2a), which have evolved from a low- 
amplitude, linear perturbation, have developed in the high-strain braid region. These 
are very similar to  the structures seen experimentally by Breidenthal (1981) and 
Bernal (1981; Bernal & Roshko 1986) and modelled by Lin & Corcos (1984) and 
Nagata & Busse (1983) for a bounded shear flow ; they will be discussed in more detail 
in $5 .  I n  this and subsequent simulations, the choice $/a = in (equation (3.1)) was 
made. The choice $/a = Nn appeared to produce anomalous behaviour in the 
evolution of the ribs, somewhat analogous to  the two-dimensional shredding inter- 
action when $/a = NIL 

The cutoff as /3+Pcrit (4.2) is mainly due to  increasing viscous damping, as 
nonlinear transfers are less dependent on /3. This point is suggested by the results 
plotted in figure 11,  which shows the contributions to  the growth rate mgD: 

Here yM involves the nonlinear interaction of the three-dimensional and mean flows, 
and yzD the interaction of the three-dimensional and two-dimensional energy. The 
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FIQURE 11.  A plot of the components yM, yzD, y, (see (4.3)) of the three-dimensional growth rate 
v3,, as functions of time for R = 400, a = 0.4, A,, = 0.25, A,, = (a) = 4, ( b )  6. 

jitter in the plots is due to numerical inaccuracy in the evaluation of the nonlinear 
transfer terms, so only the trends in the data should be considered significant. It is 
suggested from the data in figure 11 (a)  that, for ,3 < Pcrit, yv and yzD 4 yM 
(asymptotically as R becomes large) so that the three-dimensional mode derives its 
energy from the mean flow with the two-dimensional disturbance acting as a catalyst 
for this transfer. 

On the other hand, the results plotted in figure 11 ( b )  show that when ,3 x Pcrit, 
yv is quite significant. The three-dimensional instability seems to be turned off at  a 
large cross-stream wavenumber ,3 by increased dissipation rather than by any 
significant qualitative change in nonlinear transfers from the mean and two- 
dimensional components. 
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FIGURE 12. A plot of the evolution of the energies El,, Ed,,, E,, versus t for a run with R = 400, 
a = 0.4, /j = 0.2, M = 8, N = 4, P = 32, and initial conditions A,, = 0.25, A;,, = 3 x 
A,, = 10-3. The three-dimensional mode initially dominates the subharmonic mode. 
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FIGURE 13. Same as figure 12, except that the initial conditions are A,, = 0.25, At, , = 4 x 
A,, = 3.3 x 
three-dimensional mode is stopped when the subharmonic reaches a nonlinear amplitude. 

Here, Ei, = lo-, x E,, from figure 12. Note that the linear growth of the 
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The nature of the competition between two-dimensional pairing and three- 
dimensional instability is illustrated by the results plotted in figures 12 and 13. In 
both figures, we have plotted the results of runs with R = 400, a = 0.4 and /3 = 0.2. 
Figure 12 shows the evolution of the instabilities when the initial three-dimensional 
perturbation is much larger than the subharmonic mode. In this case, the pairing 
instability is nearly unaffected by the three-dimensional instability before finite 
amplitudes are reached. In  figure 13, the initial conditions are chosen so that the 
subharmonic mode perturbation is much larger than that of the three-dimensional 
perturbation; it seems that the pairing process and roll-up inhibit the three- 
dimensional instability near t = 72, where c~~ actually becomes negative. Note that 
the growth rate of E3D is identical for the two cases (figures 12 and 13) until A?,, 
reaches finite amplitude. 

5. Instability: dependence on initial conditions 
The flows that develop from the three-dimensional secondary instability do not 

appear to saturate in ordered states like those of the fundamental and subharmonic 
two-dimensional instabilities. However, the presence of additional pairing modes can 
significantly enhance the overall coherence of the flow. Experiments have shown that 
extremely low levels of forcing can generate changes in the flow of order 1 (e.g. 
Gutmark & Ho 1983). This has raised concerns that unintended forms of weak 
excitation due to natural resonances in an experimental apparatus, or pressure 
feedback effects, could be modifying the evolution of the flow field (Hussain 1983b). 
An important difference between our numerically simulated temporally growing flows 
and the spatially growing flows in laboratory experiments is that influences of 
downstream events on the earlier stages of evolution are possible in the latter but 
not the former. 

In  figure 14(a) we plot results that show the effect of the absence of a subharmonic 
pairing mode on the evolution of the modal energies. In the absence of the 
subharmonic, the fundamental quickly rolls up, a process that inhibits the growth 
of the low-amplitude three-dimensional disturbance. Once the fundamental reaches 
its saturated quasi-equilibrium state (t x 20), the three-dimensional modes resume 
their rapid growth. By about t = 50, the three-dimensional modes dominate the flow 
field. The perspective plot given in figure 14(b) shows this domination even a t  later 
times. Further growth of the three-dimensional perturbation energy is inhibited by 
the collapse of the mixing layer due to the absence of the subharmonic. With the 
subharmonic present, the evolution of the three-dimensional modes is dramatically 
different. The results plotted in figure 14(c) are from a simulation identical with the 
previous one except for the inclusion of the subharmonic mode. The three-dimensional 
modal growth (at amplitudes in the linear range) is now slowed both by the 
fundamental roll-up (t  x 5-10) and by the subharmonic pairing (t x 20-35). Thus, 
the flow is more coherent than in the absence of the subharmonic (compare figure 
14b and d ) .  After the subharmonic has reached its saturated state and no further 
pairing takes place, the three-dimensional growth rate increases substantially. 

To determine whether the model used to initiate the three-dimensional instabilities 
in the simulations described thus far was realistic, we performed several simulations 
initialized with a broad range of three-dimensional modes. We used an uncorrelated, 
random-phase velocity field having a Gaussian-shaped energy spectrum. This field 
was convolved with a function so that the relative turbulence intensity levels were 
consistent with those of experimental mixing-layer data. However, the initial peak 
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FIGURE 14(a,b) .  For caption see facing page. 
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FIGURE 14. (a) A plot of the evolution of the modal energies as functions of time. 
Es = E,,+E,,+E,,, i.e. the three lowest spanwise modes with the same s-wavelength as the 
fundamental. R = 100, a = 0.4446, A,, = 0.22, At , ,  = 0 and A,, = M = N = P = 64. ( b )  A 
three-dimensional perspective plot of the vorticity field as in figure 10 at t = 96. (c) As (a) but 
4,, = 0.14. (d )  As ( b )  but 4,@ = 0.14. 
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FIQURE 15(a,b). For caption see facing page. 
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FIGURE 15. (a) A plot of the evolution of the modal energies as functions of time. Ez = energy in 
all modes with k, + 0. R = 100. Random noise initial field with peak r.m.8. velocity mO.01. 
M = N = P = 64. (b )  A three-dimensional perspective plot of the vorticity field as in figure 10 at 
t = 48. (e) As ( a )  but at t = 96. 

intensity level was about 3 orders of magnitude below the experimental values, so 
the initial disturbance growth was in the linear regime. 

In figure 15(a) we plot the evolution of the flow field with broadband initial 
excitation. Neither fundamental nor subharmonic two-dimensional linear eigen- 
function modes were explicitly included in the initial conditions, although there was 
energy in the corresponding wavenumbers defined by the random initialization 
process. Nonetheless, El,  and Ei, ,  grow very rapidly initially, with nl0 = 0.13 and 
m 0  = 0.13 at t = 10 (compared with q 0  = 0.19 and gl,, = 0.14 for linear inviscid 
eigenmodes). E,, which is the energy in all velocity components not having k, = 0, 
has a growth rate of us,, = 0.05 at t = 10. It should be noted that these growth rates, 
while representative, do depend significantly on the particular flow-field initializa- 
tion. In the early stages of the flow evolution, the flow is dominated by the 
three-dimensional modes, and the flow field takes on a less organized, more chaotic 
character (figure 15b). Eventually, the faster growing subharmonic comes to dom- 
inate the flow, changing it into a more ordered state with coherent, large-scale 
structures (compare figure 15b and c). The two most apparent components of these 
large-scale structures are the quasi-two-dimensional subharmonic and the stream- 
wise, counter-rotating vortices. This clearly indicates the dominance of these two 
major modes of instability well into the range of nonlinear interaction. 

Some aspects of the flow evolution are sensitive to Reynolds number. While we 
are under some severe constraints with regard to the maximum Reynolds number 
that can be accurately simulated due to computer resolution limitations, it  is possible 
to examine some of the basic trends. Figures 16(a-c) correspond to figures 15(a-c), 
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FIQURE 16(a,b). For caption see facing page. 
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FIGURE 16. (a-c) As figure 15(a-c) but at R = 150. 
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FIGURE 17. A plot of the evolution of the modal energies as functions of time. EL = energy in 
all modes with k, 9 0. E, = Eol + Ell + Ezl .  R = 100, a = 0.4446, A,, = 0, At, = 0.0014 and 
A, ,  = 10-5. M = N = P = 64. 
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and are from a simulation with initial conditions identical with those in figure 15, but 
with an initial Reynolds number of 150 instead of 100. A comparison between figures 
15(a) and 16(a) shows that, while the qualitative behaviour of most modes is similar, 
the growth rates of the three-dimensional modes are most significantly affected. This 
is consistent with the growth rate behaviour shown in figure 8. The increased 
amplitude of the three-dimensional modes as well as the presence of smaller scale 
instabilities a t  higher Reynolds numbers is apparent in figure 16 (b ,  c).  The Reynolds- 
number effect on the two-dimensional subharmonic mode E;, is much less. It shows 
only a slight increase in growth rate, and still saturates at approximately the same 
amplitude, dominating the latter stages of the flow evolution. 

The inhibition of the three-dimensional modal growth rate by the roll-up and 
pairing of the two-dimensional modes is a function of both the amplitude and the 
wavenumber of the three-dimensional modes. The presence of active pairing or roll-up 
by the coherent two-dimensional modes can actually stabilize low-amplitude three- 
dimensional modes. I n  figure 17, we plot the evolution of the modal energies as 
functions of time for a simulation with the same initial conditions as in figure 16 but 
with A;,o = 0.0014. As seen in this figure, when the subharmonic reaches nonlinear 
amplitudes ( t  x 25), the three-dimensional growth is stopped completely. Since there 
was essentially no energy initially in the fundamental mode (i.e. A,, = 0) ,  El ,  here 
represents approximately the harmonic energy component of the subharmonic mode 
(see footnote on page 213). While El,  is generally an order of magnitude or so less 
than E+,o, it becomes most significant just prior to saturation. During the three- 
dimensional stabilization shown in figure 17, the low-/3 modes continue to grow while 
the high-/3 modes decay. This is not unreasonable, since as the scale of the mixing 
layer grows owing to the two-dimensional pairing, the relative scale of the spanwise 
instability also changes. As shown in figure 8 for three-dimensional perturbations to 
two-dimensional saturated modes, cr3D depends strongly on p. One mechanism that 
may have a significant influence on the suppression of the three-dimensional modal 
growth is the temporal variation of the strain field in the braids between the coherent, 
two-dimensional vortices. I n  the early stages of roll-up, a very high strain develops 
in the braids. This has a tendency to stretch the ribs, intensifying the streamwise 
vorticity. As the two-dimensional modes approach saturation, however, the strain 
rate decreases substantially, so that this vortex stretching mechanism is weakened. 

6. The secondary instability in a turbulent flow 
We have performed high-resolution (64 x 64 x 64 mode) simulations of a fully 

turbulent mixing layer, and i t  is instructive to relate the evolution of these flows to 
the class of instabilities discussed so far. These simulations were performed on a 
computational domain sufficiently large to allow two complete pairings (periodicity 
length 8n/cc). The initialization procedure was similar to that discussed in $5, but 
the amplitudes of the initial fields were higher. Details of the numerics are given in 
Riley, Metcalfe & Orszag (1986). 

The spanwise vorticity field after two complete pairings shows clear evidence of 
large-scale structures (see figure 18a, b) .  A comparison of the vorticity plots a t  two 
different spanwise locations indicates a strong spanwise coherence for this particular 
realization, although details of the structures are different. As previously noted, the 
secondary instabilities in the mixing-layer flow are characterized by streamwise, 
counter-rotating vortices that tend to form in the braids. Figure 19 is a contour plot 
of w, in a plane at the middle of the mixing layer ( z  = 0). The solid and dashed lines 
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FIGURE 18. Spanwise vorticity at (a) y = 4x/a  and ( b )  6x/a.  The computational domain size B is 
8n/a. R = 154 and t = 72. Random noise initial field with peak r.m.8. velocity x 0.13. The initial 
Reynolds number is R = 28. M = N = P = 64. 



236 R.  MetcuZfe, S.  Orszag, M .  Brachet, S. Menon and J .  Riley 

3 
'E 

i 

: 
v) 

x Streamwise 

FIGURE 19. Streamwise vorticity at z 5 0 for the same run as in figure 18. Arrow indicates 
plane of figure 20. 

indicate positive and negative vorticity, respectively. Figure 20 is a similar plot a t  
a streamwise location 2xla  from the left boundary in figure 19. These two plots clearly 
indicate the presence of such vortices, although they are irregularly spaced. 

One of the best laboratory visualizations of coherent, three-dimensional structures 
in a turbulent mixing layer was performed by Bernal & Roshko (cf. Bernal.1981; 
Jimenez, Cogolles & Bernal 1985 ; Bernal & Roshko 1986). Using laser fluorescein dye 
techniques, they were able to illuminate the flow at a fixed streamwise location. The 
most striking characteristic of these photographs is the appearance of mushroom- 
shaped features on the braids between the two-dimensional vortex cores (figure 21 a) .  
Excellent experimental visualizations of these structures also appear in recent work 
by Lasheras, Cho & Maxworthy (1986). We have been able to simulate this technique 
by employing a numerical code developed to  study a chemically reacting mixing layer 
(Riley et al. 1986) in which the advectiondiffusion equations for a binary chemical 
reaction are solved along with the Navier-Stokes equations. Figure 21 (b)  is a contour 
plot of the concentration of one of the chemical species on the same plane as in figure 
20, and figure 21 (c) corresponds to  the concentration of the other chemical species. 
A comparison of figures 20 and 21 ( 6 )  shows that the counter-rotating vortex pairs 
tend to pump fluid through the braid between their cores, increasing the reaction 
surface area and creating the mushroom-shaped structures in the flame front, which 
is defined by the region of overlap between figure 21 (b ,  c). Such features were also 
noted in the model proposed by Lin & Corcos (1984). Counter-rotating streamwise 
vortical structures are a key feature of tertiary instability studied by Nagata & Busse 
(1983). 

The structure of the streamwise, counter-rotating vortex tubes is made clearer by 
isolating the streamwise vorticity component of the flow. Figure 22 is a three- 
dimensional perspective plot of surfaces a t  which Iw,I equals 50 yo of its peak value. 
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FIQURE 20. Streamwise vorticity at x = 2n/a for the same run as in figure 18. 

This figure was from the same realization and at the same time as figures 18, 19 and 
21 (b ,  c). The large-scale, spanwise-coherent structures do not show up in this plot 
since they consist mainly of spanwise vorticity, wy. Comparison with figures 18 (a and 
b) shows that the ribs do form on the braid between the large-scale two-dimensional 
vortex cores. This structure is consistent with the model proposed by Bernal(l981; 
Bernal & Roshko 1986) although the irregular spacing of the ribs suggests that the 
modification of this model proposed by Hussain (1983a) is more realistic. The effect 
of increased coherence of the two-dimensional pairing modes on the rib structure is 
shown in figure 23, which is from a simulation like the previous one but to which 
two-dimensional modes have been added in the initial conditions: A,, = 0.1, 
A;, ,  = 0.06, At , ,  = 0.025 (equation (3.1)). The resulting ribs are more coherent and 
more aligned in the streamwise direction. As was the case with the simulation in figure 
16, the presence of the pairing mode tends to increase the coherence of the 
three-dimensional perturbation field. 

The extreme sensitivity of the ribs to the initial or upstream flow conditions makes 
direct quantitative comparisons between the simulations and laboratory experiments 
difficult. In  the simulations that we have performed so far, there have been significant 
variations in the amplitudes and spanwise spacing of the ribs. Likewise, in the 
experiments of Bernal (1981; Bernal & Roshko 1986), there was substantial scatter 
in the measurements of the rib spacing. In addition, he found that the spanwise 
position of the ribs appeared to be related to disturbances originating upstream in 
the settling chamber. Our stability analysis (figure 8) has shown that there is a broad 
range of spanwise wavenumbers that are unstable. Some representative values for 
the simulation shown in figures 18-22 are as follows: the peak spanwise vorticity 
normalized by the peak mean velocity gradient is about 2, while the peak streamwise 
vorticity is slightly higher, about 3. At the Reynolds numbers of our simulations, the 
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FIGURE 21 (a ,b) .  For caption see facing page. 
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FIUURE 21. (a) Laser sheet/fluorescein dye visualization of the braid of a turbulent mixing layer 
in water (from Bernal 1981). (a) Contour plot of the species concentration field a t  the same time 
and location as in figure 20. (c) Contour plot of the second species concentration field at  the same 
time and location aa in (a). 

FIGURE 22. Three-dimensional perspective plot of surfaces at which 10,1 equals 50% of its peak 
value for the same run as in figure 18. 
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FIGURE 23. Plot of Iwzl as in figure 22 but for a simulation to which two-dimensional modes have 
been added in the initial conditions: A,, = 0.1, A;,o = 0.06 and A+, ,  = 0.025 (equation (3.1)). 

spanwise vorticity amplitudes are similar to filtered experimental data (Metcalfe et 
al. 1987), while the streamwise vorticity amplitudes are somewhat higher than in 
other computed realizations. The rib spacing (estimated from figure 19) is about the 
same as the wavelength of the most unstable fundamental two-dimensional mode. 
This is in the range of values reported by Bernal (1981 ; Bernal & Roshko 1986). A 
more detailed analysis of these simulations, using experimental data to refine these 
comparisons, is now in progress. 

7. Discussion 
We have shown that small-scale three-dimensional instabilities exist in free shear 

flows a t  moderately low Reynolds numbers. It is now clear that these modes can be 
responsible for the initial development of three-dimensionality in these shear flows. 
At high amplitudes, these instabilities manifest themselves mainly as counter- 
rotating, streamwise vortices, or ribs, that form on the braids between the spanwise- 
coherent, two-dimensional pairing modes ; they are responsible for the generation of 
the mushroom-shaped features seen in laboratory experimental visualizations 
(Bernal 1981 ; Bernal & Roshko 1986). While the instabilities share some features of 
a classical inflexional instability, including phase locking with the fundamental 
vortex, inflexional instabilities are preferentially two-dimensional, whereas the 
present instabilities are not. We have not yet been able to determine the precise 
relationship between the three-dimensional instabilities appearing in our simulations 
and the elliptical vortex-core instability studied by Pierrehumbert & Widnall(l982). 
An elegant quasi-analytical theory of this instability (Bayly 1986) shows that it is 
essentially a Floquet instability. Nonetheless, a careful analysis of our simulations 
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shows evidence of strong three-dimensionality within the spanwise vortex cores 
themselves. It is not yet clear whether the ribs are generated from an instability 
originating within the spanwise vortex cores, or whether other instability mechanisms 
come into play. 

The roll-up and pairing of the two-dimensional modes has a stabilizing effect on 
the higher wavenumber spanwise modes and on the overall three-dimensional growth 
rate when the amplitude of the three-dimensional modes is small, while the absence 
of pairing (saturation) can enhance the three-dimensional growth rate. The suppres- 
sion of the low-amplitude three-dimensional instabilities by pairing could explain 
the strong two-dimensionality of the flow near the splitter plate in many laboratory 
experiments. Once the three-dimensional modes reach a finite amplitude and/or the 
Reynolds number increases with downstream distance, the growth suppression effect 
is reduced, and the flow becomes more three-dimensional. 

The results of these simulations suggest that, with respect to the growth of 
three-dimensional disturbances, there are several important flow states possible in 
an evolving mixing layer. First, there is pairing and roll-up of the two-dimensional 
modes, which is characterized by a suppression of low-amplitude three-dimensional 
modal growth a t  least a t  low Reynolds numbers. Secondly, in the presence of forcing, 
there is the saturated, two-dimensional, quasi-equilibrium, non-pairing state, which 
is highly unstable to three-dimensional perturbations. Our simulations show that, 
even from highly chaotic, three-dimensional flow states, more rapidly growing, 
large-scale, two-dimensional modes can eventually emerge and reorganize the flow 
in a manner consistent with that suggested by Lesieur, Staquet & Le Roy (1987). 

It seems that the mechanics of transition in the free shear flows studied here may, 
in a sense, be rather more complicated than in the case of wall-bounded shear flows. 
In the latter case, linear instabilities are often viscously driven and, therefore, weak, 
so they cannot be directly responsible for the rapid distortions characteristic of 
transition. On the other hand, free shear flows are subject to a variety of inviscid 
instabilities, so there may be many paths to turbulence. We have shown that the 
choice of paths in any individual flow may depend on the results of competition 
between fundamental, subharmonic and three-dimensional instabilities, all of which 
are convectively driven and, therefore, strong with comparable growth rates. Thus, 
the evolution of free shear flows in transitional regimes depends significantly on the 
past history of the flow, including the relative amplitudes of all competing modes, 
the mechanism of their generation and the external environment in which the flow 
is embedded. 
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