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The critical behaviour of the Schldgl model is studied using field theoretical methods. It is shown that for the equal time
correlation functions this behaviour is that of the well-known g¢? model.

We shall give here a field theoretical treatment of a well-known model in chemical reactions: the Schlogl model.
The reaction is

k
avax d3x, xds, (1)
ky kq
where the concentrations of A and B are kept constant. In order to make a local study of (1) we establish a master
equation in which we treat the chemical part as a birth and death process and the diffusion contribution as a ran-
dom walk. For the chemical part we impose the extensivity of the transition probabilities. One first divides the
space in cells of volume ¥ and calling N, the number of molecules X in the cell with position vector r one writes down
a multivariate master equation for the probability density P[{N,}, t] [1]. From this master equation one can ob-
tain a functional Fokker—Planck equation for the probability density p [n(r), ¢], where n(r) is now the concentra-
tion at the point 7. That one expects to obtain a correct description of the system below and at the bifurcation
point has been shown in refs. [2,3}. The Fokker—Planck equation is (p[n(r), ¢] is of course a functional of

n(r)):
Bln(), 1] = { J a—nfr—) (k1) - N () — DV2n(r')]
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where in gt — X terms up to O(1/v) should be kept while in u + X these terms can be omitted. Here u(n) is the

probability of death and A(n) that of birth, and D is the Fick diffusion constant. Using the usual parametrization
(which involves fixing the unit of time) one has [4],
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p—A=n3/a2-3n2/a+(B+8n—-(1+6")a, ‘ 3)
utA=n3/a2 +3n2/a+(B+8)n+(1+8")a, (3"
where a is the concentration of A, and & and 8' are dimensionless numbers. The deterministic equation is

dn/dt = \(n) — u(n). 4)

To treat the problem we can now introduce an operator formalism and a functional integral formalism as we have
explained in ref. [5]. Writing the transition probability dens1ty Pn(r), t|n0(r) tol as (n()U(t, ty)Ingy(r)), one ob-
tains for the evolution operator U(z, t;) the equation id U (¢, ¢ "yot = HU(t, t'), U(t, {) = 1, where the “hamiltonian”
H is obtained from eq. (2) by the usual replacements —i6/8n(r) - 7(r), n(r) = 7i(r). These operators satisfy the
usual commutation relations

(@), a@)] = [7(), 76D =0, [A@), 7(¢)] =8 D —r').
The hamiltonian A has a chemical part H, and a diffusion part f?D, H= ﬁc + I;VD, given by
A= [ar,
()
= — [ari@RGE) - GO -5 1 [ dr & 7O RGE) +AGEENISDE - 1),

6
Hp = fdrng =D fdf #(P)V2i(r) — i fdr &' 7))V, V8D - A, ©

where d is the dimension of space. Putting § = 8' > 0 we have from eq. (4) the stationary state n(r) = a which is a
simple root of (A — u)(n) =0 for § >0, and a triple root for § = 0 (the critical point). We are interested in the
field ¢ () = n(r) — a, consequently we make this translation in (5) and (6) to obtain

H, =- fdr #[@3/a® +84] — 3i fdr 72[@3/a2 + 642 /a + (12 + 8)¢ +a(8 +28)] , Q)
Ap = [ dr D[#V2) — i(Vi)2a — i(Vi)2] - (8)

The correlation functions are generated by a functional derivation §/8 j (¢, r) of the generating functional (7;(0)
stands for prepoint discretization [6]):

Z[j,i*] = f Dy Dmexp :{ivfdrdr [a(r, (T, 1)~ H+jp+j*n]}, ©)
71(0)

where K = HK_ + Ay, and is read directly from (7) and (8). Splitting off the quadratic part ¥ in order to generate

the perturbatlon expansion we write K = ¥ +H; with

Ho=DnV2p — dmp — 3ia(8 +28)n? , (10)
Hy = —iaD(Vm)? — iD(Vm)2p — mp3/a? — §in2[03/a® + 692 /a + (12 + 8)y] . 11
The perturbation expansion is generated by writing

Z[j,j*] = exp[-i far drgfl]

with

.Zo[jsj*] ’ (12)
o=(1/D6/8j,m=(1/Ds/6;
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Zolij*1= f(D¢ D exp{i fdr dr [mp — DnV2p + 8mp +ia(4 + 8)72 +jp +]'*1r]} . (13)
We compute Zy [, j*] in order to have the propagators in the stationary case and we obtain:

Zoli,i*] =exp [—% Jax'ax"jo)aG' - x")j6") - fax xS - x")f(x")], (14)
with(k x=t-k-x)

S(k)=@2m)~@+D[ew — iDk2 — i5]!, 15)
A(k) = (2n)~@+1g(8+ 26)/[w? + (5 + DKk2)?] , (16)

where S(x) = f dk exp(ik * x)S(k), A(x) = [ dk exp(ik * x) A(k). In the Feynman rules obtained from (12), (15)
and (16) one should recall that there is a natural cut-off for big |k | due to the finite volume of the original cells.
The correlation function {@(¢', 7' )¢ (¢, )} is given by

@'o)=—[82/8 (¢, F)8)(t, N Z15,7* ] |jujsmg - (a7

One should note that the loop expansion here is an expansion in powers of the dimensionless quantity (aD9/2)~1.
One can easily check by power counting that the critical dimension of the model is d; = 4, and moreover that at
d = 4 — ¢ the only relevant coupling for the infrared behaviour (we are interested in the long range behaviour of
(¢'9)) is —mp3/a2. This means that we can use a new generating functional Z [f, j*] to obtain the dominant in-
frared behaviour. One has

Z[j,i*1 = f Dy (Dwexp{i fd'r dr [79 — DnV2p + 8np +ia(4 + 8)n2 + mp3/a +jo +j*n]}. (18)
This now corresponds to a new Fokker—Planck equation with‘ constant diffusion, which is
Ple. t] = - f dr (3/80(r)[DV2p — 8¢ — ¢3/a% — (8/5¢)a(4 +8)]p[e, 1] . (19)

The conditions of detailed balance are now satisfied by eq. (19) and this implies that the stationary solution can
be computed as a solution of

8p1[v] /80 = [a(4 +8)) -1 [DV2p — 8y — p3/a?] (20)
whose solution is (V is a normalization factor):

Petlo] =Nexp{— [D/a(4 +5) [ dr (3 (Vo) +15D142 + ¢4/4a2m} . @1)
We can still make a scaling of the field ¢ as ¢’ = [D/a(4 + §)] V24 to obtain

Ple1=N exp{— Jar B2 +16D-192 + gy } . (22)

with gg = (4 + 8)/4aD?. This shows then that the critical behaviour of the equal time correlation function (¢(,
r')¢(t, r)) is determined by the known critical behaviour of the ¢4 model [7], a result that has also been obtain-
ed in ref. [1], see also ref. [8]. This means that at the critical point one has a long range correlation function be-
having in dimension 3 as (|F'— #'|1*7)~1, where 7 is 2 known critical exponent. The methods used here can of
course be applied to more general chemical reactions.
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