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Quantum walk hydrodynamics
Mohamed Hatifi1, Giuseppe Di Molfetta2,3, Fabrice Debbasch4 & Marc Brachet5

A simple Discrete-time Quantum Walk (DtQW) on the line is revisited and given an hydrodynamic 
interpretation through a novel relativistic generalization of the Madelung transform. Numerical results 
show that suitable initial conditions indeed produce hydrodynamical shocks and that the coherence 
achieved in current experiments is robust enough to simulate quantum hydrodynamical phenomena 
through DtQWs. An analytical computation of the asymptotic quantum shock structure is presented. 
the non-relativistic limit is explored in the supplementary Material (sM).

Quantum walks (DTQWs) are unitary quantum automata that can be viewed as formal generalizations of classical 
random walks. Following the seminal work of Feynman1 and Aharonov2 they were considered in a systematic way 
by Meyer3. DTQWs have been realized experimentally with a wide range of physical objects and setups4–10, and 
are studied in a large variety of contexts, ranging from quantum optics10 to quantum algorithmics11,12, solid-state 
physics13–16 and biophysics17,18. The aim of this Letter is to show on a simple example, through both literal and 
numerical computations, that QW dynamics can be mapped unto quantum fluid dynamics (QFD) and that QWs 
can thus be used to model and experimentally simulate quantum fluids. In particular, DTQWs are thus natural 
candidates for future laboratory simulation of matter wave interferences in quantum fluids, dispersive hydrody-
namics19 and extreme astrophysical plasmas (see e.g. §3.2.3 and §3.2.4 in20).

We focus on a simple spatially homogeneous and time independent DTQW on the line whose continuous 
limit is identical to the free Dirac equation in flat 2D space-time. We then introduce a new relativistic generali-
zation of the Madelung transform which maps this Dirac equation into a 2D dispersive hydrodynamics for rela-
tivistic quantum fluids. In the non relativistic limit, the two component spinor which obeys the Dirac equations 
degenerates into a single wave-function which obeys the Schrödinger equation, which can also be viewed as the 
continuous space limit of a continuous time quantum walk. The relativistic Madelung transform then becomes 
the usual Galilean Madelung transform. To prove that the hydrodynamical vision goes beyond a mere rewriting 
of the equations, we demonstrate through direct numerical simulations that the DTQW can actually model QFD 
shocks. We also present an analytical computation of the asymptotic Galilean shock structure through Pearcey 
integral commonly used in Optics.

Methods
the DtQW. The Hilbert space of the DTQW is the tensor product  ⊗p s, where p is the discrete line 
with basis n, ∈n  and s  is the ‘spin’-space with basis vectors | 〉 =L (1, 0)T and | 〉 =R (0, 1)T. The evolution is 
controlled by the unitary operator =U TC, where = ∑ | − 〉〈 | + | + 〉〈 |T n L n L n R n R[ 1, , 1, , ]n  is the transla-
tion operator and = θσ−C e i 1 is the quantum coin operator defined from the first Pauli matrix σ1 and an arbitrary 
constant angle θ. The explicit evolution equation of the walk reads:
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where the index l represents the iteration or discrete time.

Continuous Limit. Introduce now two positive real numbers m and ε, choose θ ε ε=m m( , ) , consider that 
Ψ l n( , )L R/  are the values taken by some differentiable functions Ψ t x( , )L R/  at point ε=t ll  and ε=x nn . Equation (1)  
then admits a continuous limit which coincides with the Dirac equation21
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γ ψ ψ∂ − =µ
µi m 0, (2)

where ψ = Ψ Ψ( , )L R
T, γ σ=0

1, γ σ= i1
2 (σ2 is the second Pauli matrix) and  = =c 1. The mass m is thus homo-

geneous to the inverse of a length.
Dirac Eq. (2) can be obtained from the Lagrangian density ψγ ψ ψγ ψ ψψ= ∂ − ∂ −µ

µ µ
µ( ) mi

2
  where 

ψ ψ γ= † 0. The associated particle current is ψγ ψ=µ µj  and the stress energy tensor reads ψγ ψ= ∂ −µν µ νT [i
4

( )]ψγ ψ µ ν∂ + ↔ν µ . Both j and T are conserved i.e. ∂ =µ
µνT 0 and ∂ =µ

µj 0. Note that the above Lagrangian 
density leads to a symmetric canonical stress-energy tensor.

Results
New variables. The definition of j leads to ψ ψ= | | + | |j R L

0 2 2 and ψ ψ= | | − | |j R L
1 2 2. Note that − =j j( ) ( )0 2 1 2

ψ ψ| | | | ≥4 0L R
2 2  so that the current j is necessarily timelike or null. We then introduce ϕ ϕ ϕ= ±± L R where ϕL R/  is 

the phase of ΨL R/  and replace the variables ψ ψ φ φ| | | |( , , , )L R L R
2 2  by ϕ ϕ+ −j j( , , , )0 1 . In particular, the spinor ψ now 

reads
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and ϕ+/2 can be viewed as the global phase of ψ.
In terms if these new variables, the Lagrangian density and the stress energy tensor read  = − µ

µm j j( )1/2

j jcos ( )1
2

ϕ ϕ ε ϕ− ∂ − ∂µ
µ

µν
ν µ− + −  and ϕ ε ϕ µ ν= − ∂ − ∂ + ↔µν µ ν µα

α
ν

+ −T j j( ( ))1
4 , where εµν  denotes the com-

pletely antisymmetric symbol of rank two, with the convention ε ε= − = 101 10 .
The dynamical equations derived from  ϕ ϕ+ −j j( , , , )0 1  are

ε ϕ∂ =µ
α µ

α
µ

µ
−j m j j2 ( ) sin (4)

1/2

ϕ ϕ ε ϕ= − ∂ + ∂µ
µ

µ µ µν
ν− + −m j j jcos 1

2
( ) ( ) (5)

1/2

∂ = .µ
µj 0 (6)

Dirac quantum hydrodynamics. Since j is time-like or null, one can define the density n of the (1 + 1)D 
Dirac fluid by = µ

µn j j( )1/2. We now suppose that j is not null and define the vector =u j n/  as the 2-velocity of the 
fluid, normed to unity. The two variables j0 and j1 can then be replaced by n and u1 i.e. the density and the spatial 
part of the fluid 2-velocity. Equation (5) can then be re-written as ϕ ϕ ε ϕ= − ∂ + ∂µ µ µν

ν− + −m ucos ( )1
2

 and, in this 
form, brings to mind the standard relation ϕ= −∂µ µuw

n
 which links the velocity u of a relativistic potential flow 

to its potential ϕ, the enthalpy per unit volume w and the particle density n. We thus retain ϕ= −w mncos  as the 
enthalpy per unit volume of the (1 + 1)D Dirac fluid. The velocity field u then derives from two potentials. One is 
ϕ+/2 i.e. the global phase of the spinor ψ and contributes to u in the standard way. The other potential is the phase 
differential ϕ−/2 and contributes to u in a non-standard way, by contraction of its gradient with the (1 + 1)D com-
pletely antisymmetric symbol.

Using ((5)), one then finds that

ε ϕ ε ϕ= + ∂ + ∂µν µ ν µα
α

ν µ να
α− −T wu u n u u

2
( ), (7)

to be compared with the stress-energy tensor η= −µν µ ν µνT wu u p  of a relativistic perfect fluid of pressure p. The 
pressure of the Dirac fluid thus vanishes. This is not surprising because classical pressure in spin-0 superfluids is 
generated by non-linearities22–24 in the wave equation and the free Dirac Eq. (2) is linear.

The last two terms on the right-hand side of (7) depend on the gradient of ϕ− and, thus, on the gradient of w/n. 
Indeed, the definition of w leads to ϕ = −− ( )sin 1 w

mn
2 2

 and ϕ ϕ = −− − ( )d dsin w
mn

, so that, if ≠w nm,
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∂
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where σ is the sign of φ−sin . As for relativistic spin 0 superfluids25, the two extra-terms in the above expression of 
the stress-energy tensor thus depend on the gradient of a thermodynamic function (the enthalpy per particle w/n) 
and are therefore best viewed as generalized ‘quantum pressure’ terms. As shown in the SM the two component 
spinor which obeys Dirac equation degenerates, in the Galilean limit, into a single wave-function which obeys the 
Schrödinger equation and the relativistic hydrodynamics degenerates into the standard26–28 Madelung 
hydrodynamics.
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Numerical shock simulation. The above generalization of the Madelung transform strongly suggests that 
the original DTQW can be used to simulate quantum flows. First note that a general positive energy plane wave 
solution of (2) can be written as (see (3–6)) = +j n q10 2 , =j nq1 , ϕ = − + −+ m q t qx/2 ( 1 )2 , ϕ =− 0, 
where q denotes both wave-number and momentum in unit of m (remember = =c 1 ). The spinor

Ψ = + − Ψ = + +φ φq q e q q e1 / 2 1 / 2 (9)L
im

R
im2 2

thus describes, at =t 0, a unit density fluid ( =n 1) in motion with constant velocity u1 given by φ= = ∂ ∂u q x/1 .
In order to simulate quantum flows, we now select the initial conditions of the form (9) but with

φ =
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+ + + .
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q
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x x xcos( ) 1
3

cos(3 ) 1
2

cos(2 0 9) ,
(10)

max

with =q mumax max this choice corresponds to the velocity field = − − + .u u x x x(sin( ) sin(3 ) sin(2 0 9))1
max . 

These initial conditions are inspired by the similar (but somewhat simpler) choice φ = q x mcos( )/max  which has 
already been used in the cosmological context to simulate the dynamics of (i) a non-quantum cosmological fluid?, 
(ii) a Bose-Einstein condensates of axions? Figure 1 shows the evolution of the initial condition (10) through the 
DTQW for various values of m and constant qmax (the larger the mass, the less relativistic the propagation) and 
displays multiple shocks. The evolution of (11) is shown in Fig. 2 (compare Fig. 2a,b), which displays a single 
symmetric shock. Thus, both figures reveal that the DTQW can indeed be used to simulate hydrodynamical 
shocks in a quantum fluid29,30.

Let us stress that the shock is present, not only at high resolutions, but also for resolutions as low as =n 64 (see 
Fig. 2), which is well within current experimental limits31,32.

Analytical shock computation in the Galilean regime. We now present an analytical computation 
which reproduces the shock solution in the Galilean limit where the DTQW becomes a continuous time quantum 

Figure 1. Unitary evolution of density = |Ψ | + |Ψ |j L R
0 2 2 for the DTQW defined in Eq. (1) with initial conditions: 

φ = + + + .q x x x m[cos( ) cos(3 ) cos(2 0 9)]/max
1
3

1
2  where = .m : 25 6, 64, 128 and 512, = .q 51 2max  and 

=u 2max , 0.8, 0.4 and 0.1 (see Eqs (9) and (10)). The grid has =N 212 points, ε π= N2 / .
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walk and the Dirac equation goes, as shown in the Supplemental Material, into the ( = 0) Schrödinger equation 
ψ ψ∂ = − ∂i t m xx

1
2

.
The Green function for the Schrödinger equation reads

π
| =

−
.

−
−G x t x t m

i t t
e( , , )

2 ( ) (11)

im x x
t t0 0 0

0
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0
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0

The single-shock solution ( =t 00  and =u 1max ) thus reads
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In the large-m limit, this integral can be computed by making use of methods that are standard in optics33 and 
involve Pearcey’s integral34 defined by

 ∫= .
−∞

∞ + +I T X dye( , ) (13)
i Xy Ty y( )2 4

To wit, we set in the large-m limit, ψ ≈ −t A t I T t X tx x x( , ) ( , ) ( ( ), ( , )) with =
ε

− −( )T t a( ) t
t
1

2

1
2 , =X tx( , )

−
ε

− ( )a x
t

1
4  and π ε=

ε+ −( )A t e i t ax( , ) (2 )i 1 / 1/2x
t
2

2  where =a m/4! and ε = m1/ . In this way, Pearcey’s integral Eq. 
(13) alone can correctly reproduces the structure of the shock (see Fig. 2c).

Useful asymptotic expansions of I  are given in35,36 and §36.2 of 37. In particular, the steepest descent method 
can be directly used in zone I (see Fig. 2d) where m t x/ 2. It yields the the following asymptotic form:

Figure 2. (a–c) DTQWs with initial conditions φ ∼ xcos( ), = .u 0 2max  and number of grid points =n 64 (a), 
=n 128 (b), =n 256 (c,d) Approximation by Pearcey’s integral in (x, t) space with ε = .0 05 and zones of 

validity of approximations (see text).
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ψ π
≈

−
Φ″

Φt A t i
u

ex x( , ) ( , ) 2
( ) (14)

I
c

i u( )c

where Φ = − +u u Tu Xu( ) 4 2  and the single saddle-point uc obeys Φ′ =u( ) 0c . Near the caustic, in zone II of 
Fig. 2d, 2 new saddle-points appear and the wavefunction can be written in terms of the Airy function 

∫= +
π −∞

∞ ( )Ai x xt( ) dtcos t1
3

3
. Well inside the caustic in zone III, the function can be written as the sum of 3 

interfering contributions (see Fig. 2c,d).
Details of the evolution of the density ψ= | |n 2 and velocity φ= ∂v m/x  of the Schrödinger shock are presented 

in Fig. 3.

Conclusion
We have shown through a novel generalization of the Madelung transform that one of the simplest DTQWs 
on the line can be considered as a minimalist model of quantum fluids. This conclusion has been supported by 
numerical simulations which show that, even within the coherence limit of current experiments, the DTQW 
evolves an initial condition already considered in the literature into a quantum hydrodynamic shock29,30. Thus, 
under current experimental conditions, DTQW can exhibit hydrodynamical behaviour and, therefore, be used 
to simulate quantum fluid dynamics. We have also computed the asymptotic shock structure analytically in the 
non-relativistic limit and proposed an extensive discussion of this limit in the SM.

-3 -2 -1 0 1 2 3
x

-1

-0.5

0

0.5

1

v(
x)

-3 -2 -1 0 1 2 3
x

0.9

0.95

1

1.05

1.1

1.15

n(
x)

-3 -2 -1 0 1 2 3
x

-4

-2

0

2

4

v(
x)

-3 -2 -1 0 1 2 3
x

0

2

4

6

8

10

n(
x)

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

v(
x)

-3 -2 -1 0 1 2 3
x

0

2

4

6

8

10

n(
x)

t=0.1 t=0.1

t=0.9 t=0.9

t=2.5 t=2.5

=0.01

Figure 3. Evolution of velocity ϕ= ∂−v m x
1  (left) and density n (right) for 3 values of time and = .−m 0 011  

obtained from a numerical solution of Schrödinger equation ψ ψ∂ = − ∂i t m xx
1

2
, with ψ ϕ= n iexp1/2  and initial 

conditions ϕ = m xcos  and =n 1.
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Quantum walks have already been linked to with hydrodynamics in38,39, but these earlier results address the 
quantum Boltzmann equation and transport phenomena, and are thus quite different from those presented in 
this Letter.

Note that the quantum fluid described in this article exhibits a non-vanishing quantum pressure but its tra-
ditional pressure vanishes identically because the underlying QW is linear. The results presented in this article 
can be generalised to quantum fluids with non vanishing traditional pressure by working with non-linear QWs 
such as those already considered in40–42. The non-linearity of these walks can be reconciled with the linearity of 
Quantum Physics by viewing the non-linear terms as an effective description of (self-)interaction, generated for 
example by the coupling of QWs through gauge fields21,43–45. Let us note that non-linear QWs can in principle be 
realized experimentally, at least through non-linear optics experiments46,47.

The present work should be extended to higher dimensions and higher spins. Also, classical pressure terms 
should be added by considering non-linear DTQWs41, or DTQWs with site to site interactions. One should finally 
incorporate in the Madelung transform the natural coupling of DTQWs to gauge fields21,44,45,48, thus obtaining 
novel models of superconducting quantum fluids or of quantum fluids in relativistic gravitational fields.
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