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This paper presents a geometric microcanonical
ensemble perspective on two-dimensional truncated
Euler flows, which contain a finite number of
(Fourier) modes and conserve energy and enstrophy.
We explicitly perform phase space volume integrals
over shells of constant energy and enstrophy.
Two applications are considered. In the first part,
we determine the average energy spectrum for
highly condensed flow configurations and show that
the result is consistent with Kraichnan’s canonical
ensemble description, despite the fact that no
thermodynamic limit is invoked. In the second
part, we compute the probability density for the
largest-scale mode of a free-slip flow in a square,
which displays reversals. We test the results against
numerical simulations of a minimal model and find
excellent agreement with the microcanonical theory,
unlike the canonical theory, which fails to describe the
bimodal statistics.

This article is part of the theme issue ‘Mathematical
problems in physical fluid dynamics (part 2)’.

1. Introduction
Turbulent flows involve a large number of degrees of
freedom, spanning many spatial and temporal scales.
Similarly, in a gas at equilibrium, there is a large number
of degrees of freedom corresponding to all the gas
molecules. In the latter case, it is well known that
equilibrium statistical mechanics provides a description
of drastically reduced complexity. Turbulent flows are,
however, non-equilibrium phenomena [1], since they
involve finite fluxes of energy and other invariants across
scales due to nonlinear interactions. For instance, energy
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is transferred from large to small scales in homogeneous and isotropic three-dimensional
turbulence [2] whereas in two dimensions it flows from small to large scales [3]. At first sight,
this makes the two cases starkly different.

However, despite turbulence being an out-of-equilibrium phenomenon overall, equilibrium
theory does remain relevant under certain circumstances. In three dimensions, this has been
claimed to be the case at scales larger than the injection scale. At these scales, the energy flux
is zero and the system can possibly be modelled using equilibrium dynamics [4–7]. In addition,
understanding equilibrium dynamics is important for systems that display a transition from
a forward to an inverse cascade [8–15]; in these systems, the large scales transition from an
equilibrium state to an out-of-equilibrium state. Another instance of equilibrium properties in
three-dimensional turbulence is the so-called bottleneck, which manifests at the smallest scales of
the inertial range (the range of scales below the forcing scale and above the dissipation scales),
where the power-law spectrum becomes less steep [16–19]. The bottleneck was interpreted as
‘incomplete thermalization’ in [20], where it was argued that the scales involved in the bottleneck
are asymptotically at equilibrium for hyper-viscous flows as the order of the hyper-viscosity goes
to infinity. This prediction was recently shown to be consistent with numerical evidence [21].

Arguably the most successful application of equilibrium statistical mechanics to turbulence
has been the case of two-dimensional flows in finite domains, where energy accumulates in
the mode(s) associated with the largest available spatial scale, forming a so-called condensate
[22–27]. An important property of such two-dimensional turbulent flows is that, in contrast
with three dimensions, the energy dissipation vanishes when the viscosity tends to zero. Thus,
energy fluxes through the system also vanish in that limit [28]. In addition to the energy, two-
dimensional Euler flow also conserves the integral of the square of vorticity, known as enstrophy.
Whether the dissipation of enstrophy vanishes in the zero-viscosity limit of the two-dimensional
Navier–Stokes equations is known to depend on the choice of forcing mechanism for forced two-
dimensional turbulence [29,30]. For instance, monochromatic and constant-injection-rate forcing
leads to vanishing enstrophy dissipation as viscosity goes to zero. For decaying two-dimensional
turbulence, the answer depends on the initial conditions having finite enstrophy or not [31,32].
In either case, at scales larger than the forcing scale both energy and enstrophy fluxes vanish at
steady state [22]. Thus these scales may be considered to be in equilibrium.

Two main approaches from statistical physics can be considered to describe such flows, which
will be described in more detail below. Firstly the microcanonical ensemble, which applies to
closed systems, and secondly the canonical and grand canonical ensembles, which apply to open
systems subject to fluctuations of energy and other quantities (typically particle number) around
a mean value. The first attempt in this direction was undertaken by Onsager in 1949 [33], who
formulated a microcanonical description of idealized (singular) point-vortex flow to explain the
self-organization of two-dimensional turbulence (see [34] for a review of Onsager’s contributions
to turbulence). Since Onsager’s initial contribution, the statistical mechanics of singular point
vortices has continued to attract a great deal of attention [34–43]. A generalization of the point-
vortex statistical description was proposed by the celebrated Robert–Sommeria–Miller (RSM)
theory proposed in the early 1990s [24,34,44–47]. The full two-dimensional Euler equations
conserve vorticity for every fluid parcel. Hence the integral of any power of vorticity is conserved,
not only the enstrophy. This implies an infinite family of conserved quantities (known as Casimir
invariants), which was taken into account. A detailed description of RSM theory and its further
developments can be found in [26], a concise introduction is also given in [34]. The basic object of
the theory is a local ‘microscopic’ distribution function n(σ , r), the probability density associated
with vorticity ω(r) lying between σ and σ + dσ at the space point r. The idea is that after evolving
for a long time, the vorticity field develops very fine scales so that a small neighbourhood of the
point r will contain many values of the vorticity with levels distributed according to n(σ , r). From
this distribution, a maximum principle for a generalized entropy leads to a mean-field equation
for the ‘macroscopic’ stream function, whose solution yields the equilibrium flow configuration.
Specifically, RSM theory has been successfully applied to Jupiter’s Great Red Spot [48], ocean
rings and currents [49] and zonal flows [50].
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Here we follow an alternative equilibrium statistical description of turbulence, which can be
obtained by considering the equilibrium state of the truncated (incompressible) Euler equations
(TEE). The TEE retain only a finite number of Fourier modes [51–54]. When the Euler equation
is studied numerically, for instance with periodic boundary conditions, these are precisely the
equations which pseudo-spectral numerical codes solve. In 1952, Lee [51] investigated this system
and showed that the TEE satisfy Liouville’s theorem of conservation of phase space volume. In
three dimensions, assuming ergodicity, Lee [51] predicted that at equilibrium this system will be
such that every state u of a given energy E is equally probable. This leads to the prediction that the
energy spectrum E(k) (defined as the mean energy of the wavevector k) is given by E(k) = E/N,
where N is the total number of wavevectors. This is equivalent to the microcanonical ensemble
in statistical physics, which has been extensively studied for small systems [55,56], and it here
amounts to equipartition of energy among all the degrees of freedom (i.e. among all Fourier
amplitudes). Two decades later, Kraichnan [53] considered the TEE, for which he proposed a
different approach, by considering that the complex amplitudes of the Fourier modes followed
a canonical distribution that was controlled by the mean values of the invariants of the system:
energy and helicity. Kraichnan’s approach corresponds to a grand canonical ensemble, as total
energy and helicity are allowed to fluctuate around a mean value. The grand canonical approach
allowed Kraichnan to generalize Lee’s result to a modified energy spectrum in the presence of
helicity. A review of these results can be found in [54]. We note that a microcanonical statistical
description of finite-dimensional three-dimensional TEE taking into account both the energy
and the helicity constraint, has not been achieved. This is because, as we will see for the two-
dimensional case, the presence of an additional invariant significantly complicates the integrals
involved.

In two dimensions, the TEE and the grand canonical ensemble statistics were investigated
again by Kraichnan [57]. The two-dimensional TEE can be written in terms of the stream function
ψ(r) at position r (related to velocity via u = ê3 × ∇ψ),

∂tω + PKJ(ψ ,ω) = 0, (1.1)

where ω= ∇2ψ is vorticity, J( f , g) = (∂xf )(∂yg) − (∂xg)(∂yf ) is the Jacobian operator, x, y are the
space coordinates, and PK is a projection operator that sets equal to zero all Fourier modes except
those that belong to a particular set K. The TEE possess exactly two invariants, namely

energy E = 1
2

∫
|u|2d2x and enstrophy Ω = 1

2

∫
|∇ × u|2d2x. (1.2)

In Fourier space, energy and enstrophy are distributed over the different modes. This is quantified
by the two-dimensional energy spectrum, which, in terms of the Fourier transform ψ̂(k) of ψ(r),
reads

E(k) = 1
2

k2|ψ̂(k)|2. (1.3)

Note that E(k) is the energy contained in the single mode with wavevector k, and is not summed
over the wavenumber shell of radius |k|, by contrast with the commonly used isotropic energy
spectrum. At late times the solution of the TEE reaches a statistically steady state whose properties
are fully determined by E and Ω . Kraichnan’s [57] grand canonical ensemble assumes again that
the Fourier amplitudes follow a canonical distribution:

P(u) =Z−1 exp(−αE − βΩ), (1.4)

where Z is a normalization constant, P(u) is the probability density function (PDF) associated
with the system having the velocity field u. The constants α,β are Lagrange multipliers, analogous
to inverse temperature and inverse chemical potential in a gas at equilibrium. It implies the
average energy spectrum E(k) = (α + βk2)−1. Note that (1.4) is not exact for the TEE, since it allows
for fluctuations of energy and enstrophy, which are invariants of the TEE.

The alternative is to assume only ergodicity and use the microcanonical description of Lee
[51]. This amounts to attributing uniform probability in the subset of phase space that satisfies
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the energy constraint E = E0 and enstrophy constraint Ω =Ω0, where E0 and Ω0 are the initial
energy and enstrophy of the system. Explicitly, the PDF is given by

P(u) =Z−1δ(E − E0)δ(Ω −Ω0), (1.5)

with normalization Z (different from that in (1.4)) and E and Ω defined in (1.2). In geometrical
terms, this distribution in phase space is non-zero only at the intersection between the manifold
determined by the energy constraint and the manifold determined by the enstrophy constraint in
the N-dimensional phase space. Not surprisingly, it is non-trivial to obtain analytical results using
the microcanonical ensemble, as the integrals involved in the computation of any mean quantity
have to be performed over a high-dimensional (co-dimension 2), complicated submanifold in
phase space. Both the microcanonical and canonical ensembles correspond to invariant measures,
in the sense that they are stationary solutions of Liouville’s equation for the probability density,
because they both depend on invariants only [54].

In general, working in the canonical ensemble greatly simplifies computations. While it is
found in many cases that the canonical results asymptotically agree with the microcanonical
ones as the number of degrees of freedom tends to infinity (the thermodynamic limit), there are
also examples of ensemble inequivalence in this limit, in particular in systems with long-range
interactions [26,58–62]. Moreover, for systems in which the energy is concentrated in only a small
number of modes, as is the case in large-scale condensates, there is a priori no reason to expect the
two statistical ensembles to yield the same result. In this case, for exactly conservative systems
such as the TEE, the micro-canonical ensemble is the more appropriate choice, since it respects the
conservation laws and only assumes the dynamics to be ergodic. Therefore, despite the technical
difficulty it entails, the study of the microcanonical ensemble is highly relevant to the TEE.

In this work, we propose a novel approach to the microcanonical statistical mechanics of TEE
flows. We explicitly compute the intersection volume and deduce different statistical quantities
based on the microcanonical distribution (1.5) for two examples. First, we consider a condensate
flow and compute the microcanonical average energy spectrum. Second, we extend the work of
[27] to show that the statistics of reversals of the largest-scale velocity in a simple free-slip flow in
a square domain are correctly predicted by an explicitly geometrical microcanonical calculation.

2. Energy spectrum of condensate flows

(a) Microcanonical calculation
In this section, we calculate the energy distribution among modes. Consider a two-dimensional
flow with boundary conditions leading to a discrete set of Fourier modes, e.g. in a periodic
domain

ψ(r) =
∑
k∈K

ψ̂(k) eik·r, (2.1)

with complex amplitudes ψ̂(k) satisfying the condition ψ̂(−k) = ψ̂∗(k), required for ψ to be real,
the summation being over the set K = {2π (n/Lx, m/Ly)|(n, m) ∈ Z

2} ∩ {k ∈ R
2|0< |k| ≤ kmax} for a

domain size Lx × Ly, or to a discrete set of sine modes, e.g. for a [0,π ]2 free-slip domain,

ψ(r) =
∑

k=(n,m)∈K

ψ̂(k) sin(mx) sin(ny), (2.2)

with real amplitudes ψ̂(k) depending on k in K = {k = (m, n)|0< |k|< kmax; m, n ∈ N+}. In the
following, we always denote by N the number of elements in the set K, independently of whether
the amplitudes ψ̂(k) are real or complex. If the amplitudes are complex, the real and imaginary
parts of ψ̂ are separate degrees of freedom, but only for half the wavevectors. In either case
(real or complex amplitudes), the number of degrees of freedom is equal to the number of wave
vectors N. We label the degrees of freedom by an index i = 1, . . . , N, and denote the associated
wavevector by ki, with wavenumber ki = |ki|. In order to obtain a real-valued phase space
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whose components are indexed in such a way that the corresponding wavenumber is a non-
decreasing function of the index, we introduce the following new variables: if ψ̂(k) is real, then
ri := ψ̂(ki)ki/

√
2, and the index i covers all wavevectors. If ψ̂ is complex, then ri := Re{ψ̂(ki)}ki

if i is even, ri := Im{ψ̂(ki)}ki if i is odd and i covers half the wavevectors so that ki and −ki
together cover all wavevectors. The labelling is such that the ki are ordered so that ki ≤ ki+1 and
let also k1 = k2 = · · · = kM < kM+1 be the first M equal smallest wavenumbers. For instance, in a
periodic square spatial domain [0, 2π ]2, M = 4 with k1 = · · · = k4 = 1, corresponding to the real and
imaginary parts of k = (1, 0), (0, 1), (−1, 0), (0, −1), taking into account that ψ is real. For free-slip
boundary conditions in a [0,π ]2 domain, one finds M = 1 with k1 = √

2.
Geometrically, with this notation, constant-energy trajectories in phase space satisfy

∑
r2

i = E ,
i.e. they live on the surface of an N-dimensional sphere of radius

√E . Constant-enstrophy
trajectories follow

∑
k2

i r2
i =Ω and thus live on the surface of an N-dimensional ellipsoid with

the longest ellipse semi-axis isΩ1/2/k1, the shortest semi-axis isΩ1/2/kN . The two hyper-surfaces
intersect when Ek2

1 ≤Ω ≤ Ek2
N . Phase space trajectories of the TEE that conserve both energy

and enstrophy thus live on this intersection of the two hyper-surfaces. Note that this is the
N-dimensional analogue of the energy and angular momentum conservation for a freely spinning
top (see §37 of [63]).

Our goal is to calculate the temporal mean energy spectrum E(ki) = 〈r2
i 〉 for a flow with initial

energy E and enstrophy Ω . The assumption of ergodicity allows us to replace the temporal mean
by an average over phase space volume, thus

〈r2
i 〉 = 1

Z
∫

r2
i δ

⎛
⎝ N∑

j=1

r2
j − E

⎞
⎠ δ

⎛
⎝ N∑

j=1

r2
j k2

j −Ω

⎞
⎠∏

j

drj, (2.3)

where

Z =
∫
δ

⎛
⎝ N∑

j=1

r2
j − E

⎞
⎠ δ

⎛
⎝ N∑

j=1

r2
j k2

j −Ω

⎞
⎠∏

j

drj. (2.4)

In particular, we are interested in the limiting case where

Ω = Ek2
1(1 + ε2), with ε
 1, (2.5)

such that almost all energy is concentrated in the small-k modes. This case is closely related to the
situation met in forced two-dimensional turbulence, where the inverse cascade leads to a high
condensation of energy at the smallest wavenumbers, displaying quasi-equilibrium statistics.
Also, in this case, because energy is concentrated in a few modes, the thermodynamic limit N →
∞ could fail.
A priori we cannot tell if the two limits ε→ 0 and N → ∞ commute.

In geometrical terms, ε
 1 means that the largest ellipse semi-axis, Ω1/2/k1, is slightly larger
than the sphere radius, E1/2, as sketched in figure 1a. The delta functions restrict the integrals to
values of r1, r2, . . . , rM ∈ [−E1/2, E1/2], to be of order one, while rM+1, rM+2, . . . , rN are of order ε.
We define x2 :=∑M

i=1 r2
i as the energy in the largest scale and y2 :=∑N

i=M+1 r2
i as the energy in the

remaining scales. The equations then become

x2 + y2 = E and k2
1x2 + q2

M+1(Φ)y2 = Ek2
1(1 + ε2), (2.6)

where

q2
M+1(Φ) =

(∑N
n=M+1 k2

nr2
n

)
(∑N

n=M+1 r2
n

) . (2.7)

Note that q2
M+1(Φ) depends on the values rM+1, . . . , rN , but not on x and y (the latter drops out

in the division). Using spherical coordinates in the subspace (rM+1, . . . , rN), it can be expressed
in terms of a set of angles Φ. Similarly, for the subspace (r1, . . . , rM), we introduce another set of
spherical coordinates, with a set of angles denoted by Θ . The transformation to the two spherical

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 M

ay
 2

02
2 



6

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210049

...............................................................

x

y

R

B

Ld d
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Figure 1. (a) A cross-section of the geometry studied here. The greatest semi-axis of the ellipsoid is slightly larger than
the sphere’s radius, such that the largest-scale modes k1, . . . , kM are O(1), while rM+1, . . . , rN are O(ε). (b) Zoom on the
intersection area. (Online version in colour.)

coordinate systems is given in appendix A. The values of x2 and y2 that satisfy (2.6) can then be
expressed in terms of qM+1(Φ) as

x2 = E − k2
1ε

2E
q2

M+1 − k2
1

and y2 = k2
1ε

2E
q2

M+1 − k2
1

. (2.8)

To compute the integrals in (2.3) and (2.4), we fix the angle coordinates Θ ,Φ (and thus
the qM+1(Φ)), and consider the volume with energy in the range [E , E + dE] and enstrophy in
[Ω ,Ω + dΩ], with dE , dΩ infinitesimal. Then, in the x, y plane the N-spherical shell and the N-
ellipsoidal shell intersect forming a parallelogram, shown in figure 1, of height δR = dE/(2√E)
and base length δL defined as the distance between the points (xA, yA) and (xB, yB) given by
the intersection of the curves x2

A + y2
A = E and k2

1x2
A + q2

M+1y2
A =Ω , and x2

B + y2
B = E and k2

1x2
B +

q2
M+1y2

B =Ω + dΩ , respectively. A straightforward Euclidean calculation gives, to first order in ε,

δL2 = (yB − yA)2 + (xB − xA)2 (2.9)

=
(

dΩ

2(q2
M+1 − k2

1)

)2 (
1

x2
A

+ 1

y2
A

)
(2.10)


 dΩ2

4(q2
M+1 − k2

1)2y2
A

, (2.11)

The area of the parallelogram is thus, to leading order,

δA = δRδL 
 dE dΩ

4E1/2(q2
M+1 − k2

1)|yA| = dE dΩ

4εEk1

√
q2

M+1 − k2
1

. (2.12)

The remaining part of the calculation amounts to integrating this infinitesimally small area
element over all remaining degrees of freedom (i.e. the angles Φ,Θ). This rather lengthy, but
straightforward calculation is done in appendix A, and gives that for all i>M,

E(ki) = 〈r2
i 〉 = ε2Ek2

1

(N − M)(k2
i − k2

1)
. (2.13)

For i = 1, . . . , M, conservation of energy thus yields the leading-order result,

E(ki) = 〈ri
2〉 = 1

M

⎛
⎝E −

N∑
j=M+1

〈r2
j 〉
⎞
⎠= E

M
+ O(ε2). (2.14)
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(b) Comparison with Kraichnan’s canonical ensemble prediction
From Kraichnan’s canonical ensemble probability density (1.4), one can compute the canonically
averaged two-dimensional energy spectrum (energy of the single mode with wavevector ki) 〈r2

i 〉c.
One finds

E(ki) = 1

2(α + βk2
i )

, (2.15)

with α,β determined by E = 1
2
∑

i E(ki), andΩ = 1
2
∑

i k2
i E(ki). For highly condensed flows, where

E(ki) � E(kj) for any i ≤ M, j ≥ M + 1, one requires α/β = −k2
1(1 − δ2), δ
 1. Hence

E = M

2βδ2k2
1

+ 1
2β

N∑
i=M+1

1

k2
i − k2

1(1 − δ2)
= M

2βδ2k2
1

+ higher-order terms (2.16)

and

Ω = M
2βδ2 + 1

2β

N∑
i=M+1

k2
i

k2
i − k2

1(1 − δ2)
= M

2βδ2 + higher-order terms, (2.17)

where again M is the number of modes with |k| = k1. These expressions imply that Ω = k2
1E +

O(1), and β−1 = 2Ek2
1δ

2/M. Furthermore, using the definition of ε in equation (2.5), we find that,
at leading order ε2 ∼ δ2(N − M)/M. This gives at leading order

〈r2
i 〉c =

⎧⎨
⎩

E
M : 1 ≤ i ≤ M

Eε2k2
1

(N−M)(k2
i −k2

1)
: M + 1 ≤ i ≤ N,

(2.18)

which is identical to the microcanonical results, although the latter involved no thermodynamic
large-N limit, but only a small-ε limit.

The agreement of the two calculations indicates that the two limits ε→ 0 and N → ∞ commute
in this case. The microcanonical result provides an added value, since it is valid for any N, even in
the absence of the thermodynamic limit, under the hypothesis of ergodicity. In the condensate
state examined here, where most of the energy is concentrated in a few modes, there is no
guarantee that the grand canonical result applies. In fact, in the example presented in the next
section, we show that the microcanonical and grand canonical ensembles give different results.

3. Reversals in free-slip flow in the square domain

(a) Microcanonical calculation
In the problem examined below, one can easily show that the grand canonical description fails. We
consider the TEE in a square (x, y) ∈ [0,π ]2 =: D with free-slip boundary conditions. This allows
one to write the stream function as a double-sine series with real coefficients ψn,m

ψ(x, y) =
∑
m,n

ψn,m sin(mx) sin(ny), (3.1)

with a truncation that retains N modes (m, n). As described in §2(a), the summation in (3.1) is over
the set K = {(m, n) ∈ N

2+|0<
√

m2 + n2 < kmax}. We again enumerate all retained modes by a single
index i as (m(i), n(i)), non-decreasing in ki :=

√
m(i)2 + n(i)2, i.e. k1 = √

2, k2 = k3 = √
5, k4 = √

8, . . ..
We also define the more convenient variables ri =ψm(i),n(i)ki/

√
2, as in the previous section. Then

energy and enstrophy conservation read, once again

N∑
i=1

r2
i = E and

N∑
i=1

k2
i r2

i =Ω . (3.2)

For this system, it is clear that if Ω < Ek2
2, then the amplitude of the r1 mode cannot be reduced

to zero because that would correspond to a Ω ≥ Ek2
2 situation. Thus, if r1 is positive/negative at
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Figure 2. Three-dimensional illustration of the intersection between an ellipse and a sphere, studied here in N dimensions.
As the second semi-axis exceeds the sphere radius, the intersection transitions from two disjoint lobes to a single connected
set—this is the transition to reversals studied here. (Online version in colour.)

t = 0 it will remain positive/negative at all times (note the importance of ψ1,1 ∈ R at this step in
the argument). A three-dimensional geometric illustration of this result is shown in the leftmost
panel of figure 2 where it is shown that the intersection of a sphere with an ellipsoid results in
two disjoint lobes. This is in contradiction to the grand canonical description, which assumes a
Gaussian PDF P(u) ∝ exp[

∑
(α + βk2

i )r2
i ] and thus ri = 0 is always the most probable value for

ri. It is, however, not an issue in the microcanonical ensemble, which follows the geometrical
description illustrated in figure 2. For Ω ≥ Ek2

2, the amplitude r1 can change sign (i.e. the large-
scale flow can reverse) with a probability that becomes smaller and smaller as Ω approaches the
critical value Ωc = Ek2

2 from above. Based on this insight, we define ε by

Ω =: k2
2E(1 + ε). (3.3)

At ε= 0, the system undergoes a transition where reversals appear. We emphasize that ε is
different from ε used in the previous section. In particular, ε may take both signs and need not
be small. The possibility of reversals in the large-scale circulation has been discussed previously
in [64]. In this section, we explicitly calculate the reversal probability and its scaling with the
deviation from onset ε, using the microcanonical description as before.

Denote by S(E) the spherical shell in N dimensions, with energy in [E , E + dE] for infinitesimal
dE . Similarly, denote by E(Ω) the ellipsoidal shell in N dimensions, with enstrophy in [Ω ,Ω +
dΩ] for infinitesimal dΩ . We wish to compute the following microcanonical probability

P(r1 ∈ [z, z + dz]) = Vol (ri ∈ S(E) ∩ E(Ω)|r1 ∈ [z, z + dz])
Vol(S(E) ∩ E(Ω))

, (3.4)

or equivalently, the probability density p(z), satisfying P(r1 ∈ [z, z + dz]) =: p(z) dz.
Similar to §2, we will denote z = r1, r2 = x cos(θ ), r3 = x sin(θ ), y2 =∑N

i=4 r2
i . This gives

z2 + x2 + y2 = E (3.5)

and

k2
1z2 + k2

2x2 + q2(Φ)y2 =Ω , (3.6)

where q2 = q2
M+1 is given by equation (2.7) with M = 3, and the angles Φ are defined by adopting

spherical coordinates for (r4, . . . , rN), as described explicitly in the appendix B. By eliminating y
and x from (3.5) and (3.6), respectively, one finds

x2 = E q2(Φ) − (1 + ε)k2
2

q2(Φ) − k2
2︸ ︷︷ ︸

=a

− q2(Φ) − k2
1

q2(Φ) − k2
2︸ ︷︷ ︸

=b

z2 and y2 = (k2
2 − k2

1)z2 + εk2
2E

q2(Φ) − k2
2

. (3.7)

These relations imply several important constraints, as described in detail in appendix B. We
highlight the following: for fixed ε≥ 0, there is a value zc(ε) of |z|, such that at |z| ≤ zc(ε) all angles
Φ are consistent with x2 = Ea − bz2 > 0 in (3.7). In this case, integrals over Φ, which arise when
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computing p(z), must be performed over the whole (N − 4)-sphere. For |z|> zc, only a non-trivial
subset of the (N − 4)-sphere satisfies Ea − bz2 > 0, which complicates Φ integration.

We proceed by fixing z, θ ,Φ and considering the x, y plane. The intersection between the
spherical energy shell and the ellipsoidal enstrophy shell in this plane is a parallelogram of height

δR = dE
2
√
E − z2

(3.8)

and base length δL =
√

(xA − xB)2 + (yA − yB)2, where A is a point at energy E and enstrophy Ω ,
while B is a point at energy E and enstrophy Ω + dΩ , as in the previous chapter. This situation is
the one depicted in figure 1. We take dE , dΩ infinitesimally small. The parallelogram area is

δA(z, ϕ) = δRδL. (3.9)

The base length δL satisfies

δL2 = (xA − xB)2 + (yA − yB)2

= (x2
A − x2

B)2

4x2 + (y2
A − y2

B)2

4y2

(3.7)= dΩ2

4(q2 − k2
2)2

E − z2

x2y2 .

Putting these expressions together, we can compute the sought-after probability density

p(z) ∝
∫
δAx dθyN−4 dΦ = dE dΩ

4
2π

∫
yN−5

(q2 − k2
2)

dΦ, (3.10)

where the normalization is omitted. Using (3.7) to express x, y as a function of z and Φ gives

p(z) ∝ ((k2
2 − k2

1)z2 + εk2
2E)(N−5)/2

∫
S(z,ε)

(q2(Φ) − k2
2)(3−N)/2

︸ ︷︷ ︸
=:f (z,ε)

dΦ, (3.11)

where S(z, ε) denotes the subset of the N − 4-dimensional Φ unit sphere contributing to the
integral at a given z and ε. First consider 0 ≤ ε < εc and |z| ≤ |zc(ε)|. In this case, S(x, ε) = SN−4 is
the whole unit N − 4-sphere, and the Φ integral gives a z-independent constant. Thus, we obtain

p(z) ∝
(√

(k2
2 − k2

1)z2 + εk2
2E
)N−5

. (3.12)

The result does not include normalization, which will depend on E , ε and the ki. Equation (3.12)
was verified by a Monte–Carlo computation, uniformly sampling from the spherical shell S(E),
retaining only the points in the intersection with E(Ω) (not shown). For small ε > 0, it implies that

p(z = 0) ∝ ε(N−5)/2, (3.13)

(at small ε, the normalization becomes independent of ε to leading order). The bottleneck
(the term is used here without any relation to the bottleneck phenomenon referenced in the
introduction) illustrated in figure 2 thus becomes thinner as ε decreases and as N increases.
Moreover, for small ε > 0, there is a power-law range p(z) ∝ |z|N−5 at intermediate |z|, which
becomes steeper as N increases. It thus becomes less likely to reach states close to z = 0 as
N increases. In the above calculation, the two real modes (1, 2) and (2, 1) are associated with
the second wavenumber k2. If instead, there are M̃ degrees of freedom associated with k2 (e.g.
M̃ = 1 in a non-square rectangular free-slip domain), then one can show that (3.13) is replaced
by p(z = 0) ∝ ε(N−M̃−3)/2, reproducing (3.13) for M̃ = 2. We further note that equation (3.12) also
applies to TEE flow in a channel with mixed free-slip-periodic boundary conditions as studied in
[65], with k1 = 1, k2 = √

2.
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Figure 3. (a) Time series of the amplitude z of the large-scalemode. (b) PDF p(z) versus z forε = 0.3, 0.23, 0.14, 0.08, 0.05 (top
to bottom at z = 0). The black dashed line indicates the theoretically predicted functional form, the prefactor is determined by
fitting. The endpoints of the dashed lines are given by z = ±zc(ε) defined in equation (B 2). Beyond this point, equation (3.12)
ceases to be valid, and is replaced by (3.11) which is harder to evaluate. (Online version in colour.)

If either (i) ε < εc, |z|> |zc|(ε), or (ii) ε≥ εc, then the integration boundaries are z-dependent
and p(z) in (3.12) is modified by a non-trivial z-dependent factor f (z, ε) given in equation (3.11).
The integral can in principle be computed numerically for small N, which we have verified for
the simplest non-trivial case N = 5 (not shown). However, this becomes increasingly costly for
higher values of N. If ε > εc, then f (z, ε) decreases strictly monotonically as |z| increases, competing
against the square root term, which increases from z = 0. For sufficiently large ε, the PDF develops
a maximum at z = 0. Eventually, p(z) approaches a Gaussian centred on z = 0, as is seen in [27].
Only in that special case may one attempt to describe the reversal statistics using the canonical
ensemble, while the present microcanonical description also captures the behaviour of the system
close to ε= 0.

(b) Comparison with numerical simulations
In this section, we confront the analytical predictions derived above with numerical solutions of
the minimal 13-mode model that is given explicitly in [27]. This minimal model corresponds to
the TEE in the square domain with free-slip boundaries and kmax = 2

√
5. We initialize simulations

in a state with E(k) = 1/2(α + βk2). For fixed β, we vary α, and in each case normalize such
that the total energy is E = 1/2. Thus, we generate states with equal E , but different Ω , or
equivalently, different ε. We use a fourth-order Runge–Kutta scheme to integrate the 13-mode
TEE for long times (up to O(1011) time steps). From this, we obtain time series such as the
one shown in figure 3a, from which we may construct histograms of z. Figure 3b shows the
resulting PDF, p(z), for different values of ε. One observes that the value p(z = 0) decreases
with ε and the weight of the PDF shifts to larger |z|. An excellent agreement is found between
the theoretical predictions, shown by the black dashed lines in figure 3, and the results of the
numerical integration. The normalization constant, which is the unique parameter not predicted
by the theory, was determined by fitting the theoretical prediction to the data. We reiterate that
Kraichnan’s canonical description (1.4) is inadequate here, given the bi-modal shape that is far
from being Gaussian, which indicates that the microcanonical description is required. While
the exact normalization constant is not given by (3.12), the scaling prediction of equation (3.13)
for N = 13 is that p(z = 0) ∝ ε4. This is confirmed in figure 4a. Geometrically, the fraction of the
intersection volume close to z = 0 shrinks rapidly as ε→ 0+. This suggests that transitions from
one lobe to the other will be controlled by the bottleneck illustrated in figure 2.
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Figure 4. (a) p(z = 0) versus ε. The dashed line indicates the scaling ε4 predicted theoretically. (b) Inverse of mean reversal
time as a function of ε. The scaling at small ε is proportional to p(0). (Online version in colour.)

A further characteristic of the system is the average waiting time 〈tr〉 between two reversals,
shown in figure 4b for different ε. It is found that the inverse of 〈tr〉 scales as ε(N−5)/2 at small
ε, just as p(0). This translates the aforementioned fact that the width of the bottleneck controls
the reversals for small ε. It is interesting to note that in the Kramers problem [66], which
consists of the escape of a Brownian particle from a potential well, a similar relation is found
between the mean first-escape time and the probability to be at the edge of the well. There,
the constant of proportionality can be computed in terms of the curvature of the potential. In
the TEE, by contrast, there is no underlying potential which generates the dynamics. Therefore,
a priori, the constant of proportionality cannot be derived in the same way as for the Kramers
problem. The chaotic motion of the higher-dimensional truncated-Euler dynamics may possibly
be modelled by noise. Alternatively, instanton theory, which has already proven to be a powerful
tool for studying transitions in multistable hydrodynamic systems [67,68], provides a promising
approach to studying the reversal statistics here.

Since p(0) ∝ ε(N−5)/2 for small ε, the PDF p(z) near z = 0 will converge to zero as N → ∞ with ε
fixed. This points to a question of non-commuting limits. Taking ε→ 0+ first and then increasing
N will likely yield a different result. Specifically, first taking N to be large and then increasing ε
from ε= 0 must be expected to display an onset of reversals at ε= εthr > 0. By contrast, for finite
N the onset is at ε= 0, even though, as described by Shukla et al. [27], an ergodicity delay takes
place for small ε, which becomes more severe with increasing N as our calculation indicates.

The strict absence of reversals at ε < 0 is related to the exact conservation properties of the TEE.
A forced-dissipative Navier–Stokes flow with the same average energy and enstrophy values
close to ε= 0 may behave differently, since the conservation laws do not apply exactly, and energy
and enstrophy always fluctuate. Nonetheless, our result on average reversal times may potentially
have some relevance for experiments [69,70], since it allows one to relate the number of modes
in the system to an experimentally simple-to-measure quantity. In an experiment, if one controls
the average energy and enstrophy of the flow, then one may hope to infer information on the
effective number of modes active in the system by measuring reversal time statistics. In a realistic
turbulent flow, the truncation is related to viscosity.

4. Conclusion
We have provided two examples of explicit microcanonical computations, involving the exact
solution of phase space volume integrals for the TEE system. In the case of a strongly condensed
TEE flow, we showed that the microcanonical average energy spectrum is identical to Kraichnan’s
canonical prediction at leading order, for any number of modes. In the second example, we
extended the results of [27] and explicitly computed the functional form of the PDF of the large-
scale mode z of TEE flow confined in a square domain with free-slip boundaries. The prediction
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for the PDF in confined TEE flow was validated using a minimal 13-mode model. Our theoretical
results on free-slip flow in a square domain also apply to the mixed free-slip-periodic flow studied
in [65]. We further analysed the statistics of waiting time between reversals. In particular we
observe numerically that the inverse of the mean time between reversals scales as ε(N−5)/2 with
the distance from threshold ε. This is proportional to the scaling of p(z = 0), depending strongly
on ε and the number of modes N. While our TEE-based computation does not take into account
forcing and dissipation, it was established by Shukla et al. [27] and Dallas et al. [65] that many
properties of the large scales of Navier–Stokes flow in the same domain are well described by
the TEE equations. At a practical level, reversal times are easily accessible in experiments such as
[69,70]. Thus, a potential link with experiments could be made by measuring transition times
for flows with different energy and enstrophy, which may be controlled by the forcing in an
experiment. Our result relates the number of modes N to the mean reversal time. Thus, one may
be able to deduce an effective number of active dynamical modes in a laboratory flow from simply
measuring reversal times.

This study provides a first step towards an explicit, geometric microcanonical theory of TEE
flows, thus complementing the impressive existing body of literature on the statistical mechanics
of turbulent flows. Future studies should aim to extend the microcanonical results presented
here to three-dimensional TEE flows conserving both energy and helicity. Aperiodically reversing
flows are observed in realistic geophysical flows, for instance in the form of the Quasi-Biennial
Oscillation [71] and reversals of the large-scale magnetic field in dynamo flows [72]. Similar
transitions of the large-scale dynamics occur in many models for the dynamics of geo- and
astrophysical flows, such as the primitive and quasi-geostrophic equations. If aspects of these
transitions can be described using a TEE-type reduction, then a microcanonical approach similar
to the one described here could be a useful tool for understanding statistical properties of these
transitions. An interesting possible extension of the work presented here, which goes beyond
the dichotomy of choosing between the microcanonical and canonical ensembles, is to consider
generalized canonical ensembles such as the ones formulated in [73].
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Appendix A. Details on the condensate case

(a) Coordinate transform
In order to be able to perform integrals efficiently, we define two sets of spherical coordinates
in terms of angle variables Θ = (θ1, θ2, . . . , θM−1) and Φ = (φM+1,φM+2, . . . ,φN−1). If M = 1, we
simply let r1 = x and no angles Θ are required. If M> 1, then the first M variables are

rn = x

(n−1∏
i=1

sin(θi)

)
cos(θn) = xgn(Θ) for 1 ≤ n ≤ M − 1 (A 1)
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and

rM = x

(M−1∏
i=1

sin(θi)

)
= xgM(Θ). (A 2)

The remaining N − M variables are given by

rn = y

⎛
⎝ n−1∏

i=M+1

sin(φi)

⎞
⎠ cos(φn) = yfn(Φ) for M + 1 ≤ n ≤ N − 1, (A 3)

and

rN = y

⎛
⎝ N−1∏

i=M+1

sin(φi)

⎞
⎠= yfN(Φ). (A 4)

The volume element dV is given by

dV = xM−1yN−M−1 dx dy dΘ dΦM+1,

with
dΘ = sinM−2(θ1) sinM−3(θ2) . . . sin(θM−2) dθ1 dθ2 . . . dθM−1, (A 5)

and

dΦM+1 = sinN−M−2(φM+1) sinN−M−3(φM+2) . . . sin(φN−2) dφM+1 dφM+2 . . . dφN−1, (A 6)

(understanding that dΘ := 1 for M = 1, and letting N ≥ M + 2, so thatΦ contains at least one angle
variable), see https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates, or alternatively
[74]. We stress that the angles Θ drop out of equation (2.6), while a non-trivial dependence on
the angles Φ remains. As a consequence, Θ integrations will be trivial, while those over Φ must
be performed iteratively. Therefore, we define the differential dΘ without an index, but dΦM+1
with an index to keep track of the iterations. In terms of the spherical coordinates given above,
the quantity qM+1(Φ) defined in equation (2.7) satisfies

q2(Φ) =
N−1∑

n=M+1

k2
n

⎛
⎝ n−1∏

i=M+1

sin2(φi)

⎞
⎠ cos2(φn) + k2

N

N−1∏
i=M+1

sin2(φi). (A 7)

(b) Angular integration
With the infinitesimal area element derived in the main text, we can now perform the angular
integration. We first consider the N-dimensional volume of the intersection Z , given in (2.4) as

Z =
∫

dE dΩ

4εEk1

√
q2

M+1 − k2
1

· xM−1yN−M−1 dΦM+1 dΘ . (A 8)

Note that the integrand is independent of Θ . After substituting the expressions for y, x from (2.8)
and integrating over the angles Θ , the integral becomes

Z = 1
4

SM−1(εk1)N−M−2E (N/2)−2 dE dΩ
∫ (

1

q2
M+1 − k2

1

)(N−M)/2

dΦM+1︸ ︷︷ ︸
=:I

(A 9)

where SM−1 is the surface of the unit-radius (M − 1)-sphere (S0 := 1). Integrating over φM+1,

making the substitution u =
√

q2
M+2 − k2

M+1/k
2
M+1 − k2

1 tan(φM+1), gives

I =
(∫

(1/q2
M+2 − k2

1)(N−M−1)/2 dΦM+2

)
(k2

M+1 − k2
1)1/2

(∫ (
1

1 + u2

)(N−M)/2
uN−M−2 du

)
. (A 10)

As shown below, further simplifications are not necessary for obtaining the final result.
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The integrals (2.3) can be performed by a procedure similar to that just presented for equation
(2.4). Here two cases must be distinguished. For i = 1, . . . , M, to leading order, we need to compute

〈r2
i 〉 = 1

Z
∫ g2

i (Θ) dE dΩ

4εEk1

√
q2

M+1 − k2
1

xM+1yN−M−1 dΦM+1 dΘ . (A 11)

For i = M + 1, . . . , N, the integral to be computed is given, to leading order, by

〈r2
i 〉 = 1

Z
∫ f 2

i (ΦM+1) dE dΩ

4εEk1

√
q2

M+1 − k2
1

xM−1yN−M+1 dΦM+1. (A 12)

We first explicitly consider i = M + 1.

〈r2
M+1〉 = 1

Z
∫

r2
M+1 dV (A 13)

= 1
Z

∫
dE dΩ

4εEk1

√
q2

M+1 − k2
1

xM−1yN−M+1 cos2(φM+1) dΦM+1 dΘ

= 1
4Z SM(εk1)N−ME (N/2)−1 dE dΩ

×
∫ (

1

q2
M+1 − k2

1

)((N−M)/2)+1

cos2(φM+1) dΦM+1︸ ︷︷ ︸
=:J

. (A 14)

The last integral J can again be calculated by use of the substitution u =
√

q2
M+2 − k2

1/k
2
M+1 − k2

1
tan(φM+1),

J = 1

(k2
M+1 − k2

1)3/2

⎛
⎝∫ (

1

q2
M+2 − k2

1

)(N−M−1)/2

dΦM+2

⎞
⎠

×
(∫ (

1
1 + u2

)((N−M)/2)+1
uN−M−2 du

)
. (A 15)

So, combining equations (A 9), (A 10) and (A 14), (A 15), we finally have

〈r2
M+1〉 = E(εk1)2

k2
M+1 − k2

1

(∫
(1/1 + u2)((N−M)/2)+1uN−M−2 du∫

(1/1 + u2)(N−M)/2uN−M−2 du

)

= E(εk1)2

k2
M+1 − k2

1

Γ ((N − M)/2)
2Γ ((N − M)/2 + 1)︸ ︷︷ ︸

=(N−M)−1

. (A 16)

To find 〈r2
i 〉 for i = M + 2, . . . , N, we may simply choose a different set of spherical coordinates

with kM+1 → ki at the outset. This amounts to replacing kM+1 by ki in (A 16). Hence, for all i>M

E(ki) = 〈r2
i 〉 = ε2Ek2

1

(N − M)(k2
i − k2

1)
. (A 17)

For i = 1, . . . , M, all values of i give the same result by symmetry (all ki being equal for i ≤ M).
Conservation of energy thus yields, at leading order,

E(ki) = 〈ri
2〉 = 1

M

⎛
⎝E −

N∑
j=M+1

〈r2
j 〉
⎞
⎠= E

M
+ O(ε2). (A 18)
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Appendix B. Details on the free-slip case

(a) Coordinate transformation
In order to simplify the integration, we transform from the ri to the following set of coordinates:

r1 = z,

r2 = x cos(θ )

r3 = x sin(θ )

rn = y

(n−1∏
i=4

sin(φi)

)
cos(φn) = yfn(Φ) for 4 ≤ n ≤ N − 1,

rN = y

(N−1∏
i=4

sin(φi)

)
= yfN(Φ),

with Φ = (φ4, . . . ,φN−1). We restrict our attention to N ≥ 5, so that Φ always contains at least one
angle variable. The variable names are chosen by analogy with §2.

(b) Constraints
The expressions for x and y given in equation (3.7) imply several important constraints.

(i) For ε < 0, imposing y2 ≥ 0 gives

z2 ≥ z2
min = |ε|k2

2E
(k2

2 − k2
1)

. (B 1)

This is consistent with the geometrical insight. It implies p(z = 0) = 0 for ε≤ 0. A transition
from no reversals to reversals occurs at ε= 0.

(ii) For ε≥ 0, a ≤ 1 and b> 1 in (3.7). Further, a and −b increase as q2 increases. This implies
that in order for x2 = aE − bz2 to be greater than or equal to zero for all Φ, one must have

z2 ≤ zc(ε)2 := E (k2
4 − k2

2(1 + ε))

(k2
4 − k2

1)
. (B 2)

As long as this is satisfied, integrals over the angles Φ, which need to be performed for
computing p(z), are over the whole unit (N − 4)-sphere.

(iii) In order for z2
c ≥ 0, it is necessary that

ε≤ εc = k2
4

k2
2 − 1

. (B 3)

If ε > εc or |z|> |zc|, theΦ integration is non-trivial due to z-dependent integration limits.
(iv) For a given ε, there is a value z2

max of z2 such that x2 ≥ 0 in (3.7) cannot be satisfied for any
Φ for |z|> zmax. The PDF p(z) vanishes for z ≥ zmax. It is given by

z2
max = E(k2

N − (1 + ε)k2
2)

(k2
N − k2

1)
. (B 4)
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