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The free decay of two-dimensional turbulence is simulated by direct numerical integration of the
incompressible Navier-Stokes equations at resolutions 5122 and, for flows with symmetries, 10242,
At early times, quasirectilinear vorticity-gradient sheets develop, with a thickness decaying ex-
ponentially in time until dissipation becomes relevant. The energy spectrum then displays a k"
range with n = —4. At later times, we observe a transition to n = — 3. Vorticity gradients are
then distributed on reconnecting, elongated, dissipative structures.

PACS numbers: 47.25.—c, 61.20.Ja

A controversial question concerning high-Rey-
nolds-number turbulence in two-dimensional in-
compressible flows is the behavior of the small-scale
energy spectrum. Saffman! argues that advection will
bring different values of vorticity close together, pro-
ducing thin sheets of vorticity gradient and leading to a
k~* inertial energy spectrum. In contrast, the statisti-
cal theory of the enstrophy cascade of Kraichnan? and
Batchelor?® predicts a K~ 3 energy spectrum, with a pos-
sible logarithmic correction due to nonlocal interac-
tions.* Furthermore, Kraichnan® argues that because
of this nonlocality, intermittency will not affect the
small-scale energy spectrum.

Since the first calculations of Lilly,® it has been
recognized that high resolutions are required to simu-
late an inertial range properly.” Preliminary computa-
tions at 5122 resolution presented by Orszag® showed
that when the large-scale Reynolds number is in-
creased from 1100 to 25000, a distince change is ob-
served from a k~* energy spectrum to a spectrum
roughly proportional to k ~3. Calculations at a similar
resolution have recently been done by Satofuka,
Nakamura, and Nishida.?

In this Letter, we present new results on small-scale
dynamics obtained by direct numerical simulations.
This includes the time evolution of the spectral ex-
ponent n which displays a transition from an early
n= —4 to n= —3 corresponding to a more mature
flow. Visualizations in physical space are also present-
ed. We report here on two computations. The first
one was done with general periodic boundary condi-
tions at 5122 resolution (on a CRAY-XMP with 2 me-
gawords of memory). The other was done with a flow
presenting large-scale symmetries analogous to those
of the (three-dimensional) Taylor-Green vortex.!°
These symmetries enabled us to use a resolution of
10242 on a CRAY-1S with 1 megaword memory. Cal-
culations at higher resolution are under way and will

be reported in a more extended paper.

(1) General periodic flow.—The initial velocity field
is a zero-mean Gaussian random function with an en-
ergy spectrum

- 2
E (k,0) = Coke /%", 1

We choose kg=2, Cy=0.02, and a viscosity v=1.5
x10~*11 1In our realization, the energy is ==0.06
and the enstrophy Q =0.34. A pseudospectral method
based on Fourier-mode expansion is used for space
variables. Time marching is done with a stabilized
leapfrog-Crank-Nicholson scheme.

The short-time behavior of the flow is observed to
be dominated by the formation of vorticity-gradient
sheets. A simple modeling of this phenomenon is ob-
tained from the inviscid equation for the curl of vorti-
city:

(0, +v-V)VXw=VXa: Vv, 2)

If, following Weiss,'> we assume scale separation
between V X and a much more slowly varying Vv,
then Eq. (2) is essentially linear in Lagrangean coordi-
nates and leads either to an exponential growth of
V X @ if strain dominates vorticity, or to an oscillatory
behavior if rotation dominates. In the former case,
V X w is locally elongated along one eigendirection and
contracted along the other.

During this period of vorticity-gradient sheet forma-
tion, the exponential tail of the energy spectrum has a
logarithmic decrement B decaying exponentially in
time. This behavior, which reflects the presence of
complex singularities approaching the real domain,!?
could probably be described by a model of sheet for-
mation analogous to that given in the appendix of Ref.
10. This exponential flattening is stopped when dissi-
pation becomes relevant (with our conditions, when
B=0.1). In Fourier space, we then observe a k"
range in the energy spectrum, with a spectral index
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FIG. 1. Spectral index n vs time for general periodic flow,
obtained by fitting of the energy spectrum with E (k)
= Ck"exp(—Bk) in the ranges: 5< k <40 (solid line),
5 < k < 60 (dashed line), 5 < k < 80 (dotted line).

fluctuating around the value n = —4 predicted by
Saffman.! At scales large compared to the sheet thick-
ness, these can indeed be viewed as quasidiscontinui-
ties of vorticity. The value of n is determined by a
least-squares fit of the energy spectrum with a func-
tion of the form E (k)= Ck"exp(—Bk) (Fig. 1) as
well as by direct inspection of the spectrum [Fig. 2(a)].
In Fig. 1, the best fit is represented by the solid line
and corresponds to 5 < k < 40. The two other fits are
obtained on ranges which are sensibly more extended
than the inertial range seen in Fig. 2. They are thus
more affected by the algebraic prefactor of the dissipa-
tion range. These curves nevertheless give an esti-
mate of the sensitivity of the results to the fit interval.
The k~* energy spectrum is only visible during a
short period of time. When the flow becomes more
mature (namely, a few turnover times before the en-
strophy dissipation reaches its maximum), the spectral
index increases sharply to values close to — 3 [Figs. 1
and 2(b)]. In physical space, elongated vorticity-
gradient sheets resulting from squeezing of vorticity
blobs are visible. They first tend to become aligned in
a fixed direction and to pile up (Fig. 3). Dissipation
and straining then act to restore a simpler structure.
The process is reproduced as other vorticity sheets ap-
proach the active region. A simple model of this pro-
cess is obtained by our considering vorticity as a pas-
sive scalar subject to external injection, straining, and
dissipation. Transposition of the Batchelor passive
scalar analysis'*~1¢ leads to a k3 energy inertial range,
but also to a pathological (nonexponential) dissipative
range (except for very special statistics of the large-
scale straining®). This suggests that nonlinear effects
have to be taken into account to describe correctly the
dissipation range and also, as noted in Ref. 5, to obtain
logarithmic corrections to the kK ~3 inertial range.
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FIG. 2. (a) k*E(k) vs kat t=10; (b) K*E(k) vs k at
t =29 (same run as Fig. 1).

(2) Symmetric flows.—We briefly discuss in this sec-
tion the case of (initially Gaussian) random flows with
large-scale symmetries, analogous to those of the
(three-dimensional) Taylor-Green vortex.!® The
stream function is assumed to have the Fourier
representation

N/2
b(xyt)=3 apm(t)sink sinmy, (3)
Lm=0

where the coefficients a;, vanish unless / and m are
both even or both odd integers. This representation is
compatible with Navier-Stokes dynamics and corre-
sponds in physical space to the following flow sym-
metries: (1) invariance by rotation of 7 around the
point x =/2, y =m/2; (ii) reflectional symmetries on
the sides of an impermeable box given by x =0 and =,
y=0and .

Two computations with the same initial conditions
are presented. The initial energy spectrum is given by
Eq. (1), with kg=35 and Cy=0.02. For our particular
realization the energy is 0.61 and the enstrophy 3.6.
The viscosity is v =0.7x10~% and 2.35x 10~3, respec-
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FIG. 3. Isovorticity lines for general periodic flow (same run as Figs. | and 2) at (a) 1 =20 and (b) r = 22.

tively. Results concerning symmetric two-dimensional
flows were previously reported.!”"'® The main obser-
vation is the qualitative similarity of the small-scale
dynamics of flows with and without large-scale sym-
metries. It is again dominated by the formation of

MO
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(b)
FIG. 4. Isovorticity lines for the symmetric flow with

v=7%x10"° at (@ r=1 and (b) r=2 in the domain
Isxsnm,0sy=sw/2.

elongated vorticity-gradient sheets, which may eventu-
ally merge (Fig. 4), and in Fourier space by the transi-
tion from a k=% to a k3 energy inertial range (Fig. 5).
Here, the & ~* period is much shorter than in the non-
symmetric runs. The reason is that we are using initial
conditions with a smaller integral scale and comparable
energy. As a consequence, all the dynamics is ac-
celerated. Note, however, that the impermeable box
produces a bending of the vorticity-gradient sheets.

In none of our runs do we observe the emergence of
coherent persistent isotropic vortices analogous to
those observed by McWilliams.?? This is probably a

FIG. 5. Spectral index n vs time for the symmetric flow
with v=2.35x 1075, The three curves correspond to fits in
the ranges (curve a) 10 < k < 170, (curve b) 10 < k < 256,
and (curve ¢) 10 < k < 340.
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consequence of the much smaller integral scale (com-
pared to the spatial period) and/or the very long in-
tegration time (compared to the time of maximum en-
strophy dissipation) of his calculation.

We thank U. Frisch, J. Herring, R. H. Kraichnan,
S. A. Orszag, and J. C. McWilliams for very useful dis-
cussions and suggestions. We also thank H. Politano,
who made flow visualizations on the VICOM of the
Nice Observatory Direction des Recherches, Etudes et
Techniques Contract No. 82/522). The computations
were done on the Cray 1S of the Centre de Calcul Vec-
torielle pour la Recherche, Ecole Polytechnique
(Palaiseau) and on the Cray-XMP of Compagnie Inter-
nationale de Services en Informatique Computer
Center of Saclay using fast Fourier transforms of
C. Temperton and S. A. Orszag and the National
Center for Atmospheric Research graphics software.
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FIG. 3. Isovorticity lines for general periodic flow (same run as Figs. 1 and 2) at (a) r =20 and (b) 1 = 22.
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FIG. 4. Isovorticity lines for the symmetric flow with
v=7x10"% at (a) +=1 and (b) t=2 in the domain
Isx<sw0<sy<mn/2



