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Abstract
New generalized equations of motion for the Weber–Clebsch potentials
that describe both the Navier–Stokes and magnetohydrodynamics (MHD)
dynamics are derived. These depend on a new parameter, which has
dimensions of time for Navier–Stokes and inverse velocity for MHD.
Direct numerical simulations (DNSs) are performed. For Navier–Stokes, the
generalized formalism captures the intense reconnection of vortices of the
Boratav, Pelz and Zabusky (BPZ) flow, in agreement with the previous study
by Ohkitani and Constantin. For MHD, the new formalism is used to detect
magnetic reconnection in several flows: the three-dimensional (3D) Arnold,
Beltrami and Childress (ABC) flow and the (2D and 3D) Orszag–Tang
(OT) vortex. It is concluded that periods of intense activity in the magnetic
enstrophy are correlated with periods of increasingly frequent resettings.
Finally, the positive correlation between the sharpness of the increase in
resetting frequency and the spatial localization of the reconnection region is
discussed.

1. Introduction

The Eulerian–Lagrangian formulation of the (inviscid) Euler dynamics in terms of advected
Weber–Clebsch potentials (Constantin 2001a) was extended by Constantin (Constantin
2001b) to cover the (viscous) Navier–Stokes dynamics. Ohkitani and Constantin
(OC) (Ohkitani and Constantin 2003) then performed numerical studies of this formulation
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of the Navier–Stokes equations. They concluded that the diffusive Lagrangian map becomes
noninvertible under time evolution and requires resetting for its calculation. They proposed
the observed sharp increase of the frequency of resettings as a new diagnostic of vortex
reconnection.

We were able to recently complement these results, using an approach that is based on
a generalized set of equations of motion for the Weber–Clebsch potentials that turned out
to depend on a parameter τ , which has the unit of time for the Navier–Stokes case (Cartes
et al 2007) (the magnetohydrodynamics (MHD) case is different, see section 2.1.3). The OC
formulation is the (singular) τ → 0 limit case of our generalized formulation. Using direct
numerical simulations (DNSs) of the viscous Taylor–Green vortex (Taylor and Green 1937)
we found that for τ 6= 0 the Navier–Stokes dynamics was well reproduced at small enough
Reynolds numbers without resetting. However, performing resettings allowed computation at
much higher Reynolds number.

The aim of the present paper is to extend these results to different flows, both in
the Navier–Stokes case and in MHD, and thereby obtain a new diagnostic for magnetic
reconnection. Our main conclusion is that intense reconnection of magnetic field lines is
indeed captured in our new generalized formulation as a sharp increase of the frequency of
resettings. Here follows a summary of our principal results.

We first derive new generalized equations of motion for the Weber–Clebsch potentials
that describe both the Navier–Stokes and MHD dynamics. Performing DNS of the Boratav,
Pelz (BPZ) and Zabusky flow (Boratav et al 1992), that was previously used by OC (Ohkitani
and Constantin 2003), we first check that our generalized formalism captures the intense
Navier–Stokes vortex reconnection of this flow. We demonstrate the reconnection of vortices
is actually occurring at the instant of intense activity in the enstrophy, near the lows of the
determinant that trigger the resettings. We then study the correlation of magnetic reconnection
with increase of resetting frequency by performing DNS of several prototypical MHD flows:
the three-dimensional (3D) Arnold, Beltrami and Childress (ABC) flow (Archontis et al 2003)
and the Orszag–Tang (OT) vortex in 2D (Orszag and Tang 1979) and 3D (Mininni et al 2006).

2. Theoretical framework

2.1. General setting

2.1.1. Weber–Clebsch representation for a class of evolution equations. Let us consider a 3D
vector field Z depending on time and (3D) space, with coordinates (x1, x2, x3 and t). Assume
Z satisfies an evolution equation of the kind:

DZ
Dt

= −∇ P +
3∑

α=1

uα∇Zα + κ4Z, (1)

∇ · Z = 0, (2)

where Greek indices α, β denote vector field components running from 1 to 3, u is a given 3D
velocity field and we have used the convective derivative defined by

D

Dt
≡

∂

∂t
+ (u · ∇).

In the following sections, two different cases will be considered. In section 2.2
(Navier–Stokes case), the vector field Z will correspond to the velocity field u, whereas in
section 2.3 (MHD case) it will correspond to the magnetic vector potential A.
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Let us first recall that performing a change from Lagrangian to Eulerian coordinates on
the Weber transformation (Lamb 1932) leads to a description of the Euler equations as a
system of three coupled active vector equations in a form that generalizes the Clebsch variable
representation (Constantin 2001a).

Our starting point will be to apply this classical Weber–Clebsch representation to
the field Z:

Z =

3∑
i=1

λi
∇µi

− ∇φ, (3)

where each element of the three pairs of Weber–Clebsch potentials (λi , µi ), i = 1, 2, 3 is a
scalar function.

Performing a variation on the Weber–Clebsch representation (3) yields the relation

δZ =

3∑
i=1

(
δλi

∇µi
− δµi

∇λi)
− ∇

(
δφ −

3∑
i=1

δµiλi

)
, (4)

where the symbol δ stands for any (spatial or temporal) partial derivative. Taking into account
the identity

[
∇, D

Dt

]
≡ (∇u) · ∇, it is straightforward to derive from (4) the following explicit

expression for the convective derivative of the vector field Z:

DZ
Dt

=

3∑
i=1

(
Dλi

Dt
∇µi

−
Dµi

Dt
∇λi

)
−

3∑
α=1

Zα∇uα − ∇

(
Dφ

Dt
−

3∑
i=1

Dµi

Dt
λi

)
, (5)

2.1.2. Equations of motion for the potentials. Following steps that are similar to those
presented in our previous paper (Cartes et al 2007), we now derive a system of equations
of motion for the Weber–Clebsch potentials (3) that is equivalent to the original equation (1).
If we use the rhs of equation (1) to replace the lhs of our general identity (5), the resulting
relation can be solved for the time derivative of the potentials:

Dλi

Dt
= κ4λi + L̃ i [λ, µ], (6)

Dµi

Dt
= κ4µi + M̃ i [λ, µ]. (7)

Here, L̃ i and M̃ i obey the linear equation

3∑
i=1

(
L̃ i

∇µi
− M̃ i

∇λi
)

= f̃ − ∇G̃, (8)

where

f̃ = 2κ

3∑
i=1

3∑
α=1

∂αλi∂α∇µi (9)

and G̃[λ, µ] is an arbitrary scalar related to the non-unique separation of a gradient part in
equation (5):

Dφ

Dt
− P =

3∑
i=1

λi M̃ i
− G̃ − u · Z. (10)
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The ‘divergence-less gauge’ (2) allows one to express φ in terms of λi and µi , as the solution
of the linear equation

4φ =

3∑
i=1

∇ · (λi
∇µi ). (11)

Thus, there is no need to solve equation (10) for the field φ, since this equation is identically
satisfied when φ is determined by equation (11).

Equation (8) above is a system of three linear equations for the six unknowns L̃ i and M̃ i .
When κ = 0, there is a simple solution to (8): L̃ i

= M̃ i
= G̃ = 0. In this case, the evolution

equations (6) and (7) represent simple advection.

2.1.3. Moore–Penrose solution and minimum norm. The linear system (8) is
underdetermined (three equations for six unknowns). In order to find a solution to the system
we need to impose extra conditions. Since L̃ i and M̃ i appear in the equations on an equal
footing, it is natural to supplement the system by a requirement of minimum norm, namely
that

3∑
i=1

(L̃ i L̃ i + τ−2 M̃ i M̃ i ) (12)

be the smallest possible (this is the so-called general Moore–Penrose approach (Moore 1920,
Penrose 1955 and Ben-Israel and Greville 1974), see also our previous paper (Cartes et al
2007). The parameter τ has physical units equal to [M̃/L̃]. Using equations (6) and (7) these
are the units of [µ/λ]. It will turn out (see equation (20) below) that [µ] = L (length) and this
implies from equation (3) that [λ] = [Z]. Therefore the units of τ are

[τ ] =
L

[Z]
.

In the Navier–Stokes case (section 2.2) [Z] = [u] = LT −1 and thus [τ ] = T , whereas in the
MHD case (section 2.3) [Z] = [A] = L2T −1 and thus [τ ] = T L−1.

The Moore–Penrose solution to (8), that minimizes the norm (12), is explicitly given in
equations (A6) and (A7) of (Cartes et al 2007). Inserting this solution in (6) and (7) we finally
obtain the explicit evolution equations

Dλi

Dt
= κ4λi + ∇µi

·H−1
·

(
f̃ − ∇G̃

)
, (13)

Dµi

Dt
= κ4µi

− τ 2
∇λi

·H−1
·

(
f̃ − ∇G̃

)
, (14)

where f̃ is given in equation (9), the dot product denotes matrix or vector multiplication of
3D tensors, and H−1 is the inverse of the square symmetric 3 × 3 matrix H, defined by its
components:

Hαβ ≡

3∑
i=1

(
τ 2∂αλi∂βλi + ∂αµi∂βµi) . (15)
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These evolution equations together with the particular choice for the arbitrary function G̃ (see
equation (A.11) of (Cartes et al 2007))

G̃ = 4
−1

∇ · f̃, (16)

is our new algorithm.
In the Navier–Stokes case, we showed in a previous paper (Cartes et al 2007) that the

limit τ → 0 corresponds to the approach used by OC (Ohkitani and Constantin 2003). In the
general case (Navier–Stokes as well as MHD), we remark that the matrixH (see equation (15))
can be written (using obvious notation) as H= (∇µ) · (∇µ)T + τ 2(∇λ) · (∇λ)T, which has a
very simple structure in the limit τ → 0. Because the condition det (∇µ) = 0 is generically
obtained at lower codimension than the condition detH= 0, the limit τ → 0 is singular.

2.2. Navier–Stokes equations

The standard incompressible NS equations can be written in the form:

Du
Dt

= −∇

(
p +

1

2
|u|

2

)
+

3∑
α=1

uα∇uα + ν4u,

∇ · u = 0,

which is indeed of the general form (1) and (2) with Z = u, κ = ν and P = p + 1
2 |u|

2.

2.3. MHD equations

The standard incompressible MHD equations for the fluid velocity u and the induction field
b, expressed in Alfvenic velocity units, can be written in the form:

Du
Dt

= −∇ p + ν4u + (∇ × b) × b, (17)

Db
Dt

= (b · ∇)u + η4b, (18)

∇ · u = 0,

∇ · b = 0,
(19)

where ν and η are the viscosity and magnetic resistivities, respectively.
We introduce the vector potential in the Coulomb gauge:

b = ∇ × A,

∇ · A = 0.

Using the identity ∇ ×

(∑3
α=1 uα∇ Aα − (u · ∇)A

)
= (b · ∇)u − (u · ∇)b − (∇ · u)b and the

incompressibility condition (19), equation (18) can be written as

DA
Dt

= −∇c +
3∑

α=1

uα∇ Aα + η4A,

which is indeed of the general form (1) with Z = A, κ = η and P = c.
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3. Numerical results

3.1. Implementation

3.1.1. Initial conditions in pseudo-spectral method. Spatially periodic fields can be
generated from the Weber–Clebsch representation (3) by setting

µi
= x i + µi

p, (20)

and assuming that µi
p and the other fields λi and φ appearing in (3) are periodic. Indeed, any

given periodic field Z can be represented in this way by setting

µi
p = 0, (21)

λi
= Z i , (22)

φ = 0. (23)

Note that the time independent nonperiodic part of µi of the form given in (20) is such that
the gradients of µi are periodic. It is easy to check that this representation is consistent
with the generalized equations of motions (13) and (14). We chose to use standard Fourier
pseudospectral methods, both for their precision and for their ease of implementation (Gottlieb
and Orszag 1977).

3.1.2. Resettings and reconnection. Following OC (Ohkitani and Constantin 2003), we
now define resettings. Equations (21)–(23) are used not only to initialize the Weber–Clebsch
potentials at the start of the calculation but also to reset them to the current value of the field
Z, obtained from (3) and (11), whenever the minimum of the determinant of the matrix (15)
falls below a given threshold

detH6 ε2.

It is possible to capture reconnection events using resettings. The rationale for this
approach is that reconnection events are associated with localized, intense and increasingly
fast activity which will drive the potentials to a (unphysical) singularity in a finite time. One
way to detect this singularity is via the alignment of the gradients of the potentials, which leads
to the vanishing of detH at the point(s) where this intense activity or ‘anomalous diffusion’
is taking place. Now, the timescale of this singularity is much smaller than the timescale of
the reconnection process itself (Ohkitani and Constantin 2003), so when detH goes below the
given threshold and a resetting of the potentials is performed, the anomalous diffusion starts
taking place again, more intensely as we approach the fastest reconnection period, driving
the new (reset) potentials to a new finite-time singularity, in a timescale that decreases as we
approach this period. Therefore, successive resettings will be more and more frequent near
the period of fastest reconnection, and that is what we observe in the numerical simulations.
This procedure will be used to capture reconnection events in particular flows in both the
Navier–Stokes case (Z = u, section 3.2) and the MHD case (Z = A, sections 3.3.2 and 3.3.3).

3.2. Navier–Stokes case: BPZ flow, resettings and reconnection

OC (Ohkitani and Constantin 2003) used a flow that initially consists of two orthogonally
placed vortex tubes that was previously introduced in BPZ (Boratav et al 1992) to study in
detail vortex reconnection. Our previous numerical study of the generalized Weber–Clebsch
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Figure 1. Navier–Stokes case: BPZ flow. Temporal evolution of kinetic enstrophy � for a
Reynolds number of R = 1044 with τ = 0, 0.01 and 0.1 (+, ◦ and ×). The solid line comes from
a DNS at resolution 1283.

description of Navier–Stokes dynamics (Cartes et al 2007) was performed using the
Taylor–Green vortex, a flow in which vorticity layers are formed in the early stage,
followed by their rolling-up by Kelvin–Helmholtz instability (Brachet et al 1983). It can be
argued (Ohkitani and Constantin 2003) that cut-and-connect-type reconnections are much
more pronounced in the BPZ flow than in the Taylor–Green flow. In this section, we present
comparisons, performed on the BPZ flow, of our τ 6= 0 generalized algorithm with direct
Navier–Stokes simulations and with OC original approach. The potentials are integrated with
resettings in resolution 1283 for a Reynolds number of R = 1044, which is the one used by
BPZ and OC.

The BPZ initial data is explicitly given in (Boratav et al 1992).

3.2.1. Comparison of Weber–Clebsch algorithm with DNS of Navier–Stokes. In order to
characterize the precision of the τ 6= 0 Weber–Clebsch algorithm, we now compare the
velocity field Z = u obtained from (3) and (11), by evolving the Weber–Clebsch potentials
using (13)–(16), with the velocity field obtained independently by direct Navier–Stokes
evolution from the BPZ initial data.

More precisely, we compare the associated kinetic enstrophy �(t) =
∑

k k2 E(k, t),
where the kinetic energy spectrum E(k, t) is defined by averaging the Fourier transform
û(k′, t) of the velocity field (3) on spherical shells of width 1k = 1,

E(k, t) =
1

2

∑
k−1k/2<|k′|<k+1k/2

|û(k′, t)|2.

Figure 1 shows that the kinetic enstrophy is well resolved, independently of the choice of
the parameter τ .

3.2.2. Time between resettings as a method for reconnection capture. In this section,
we study the influence of the parameter τ on the temporal distribution of the intervals

7
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Figure 2. Navier–Stokes case: BPZ flow. Temporal evolution of resetting interval 1t for τ = 0,
0.01 and 0.1 (◦, � and +), the triangles correspond to the simulation performed by OC.

Figure 3. Visualization of vorticity ω for the BPZ flow (same conditions as in figures 1 and 2).
Note the change of topology of the vortex tubes before (left, t = 3.2 and ωmax = 20) and after
(right, t = 7.1 and ωmax = 15) the reconnection process. Isosurfaces colors: orange: 6, yellow: 9,
green: 12 and blue: 16.

1t j = t j − t j−1 between resetting times t j , at fixed value of the resetting threshold ε2
= 0.1.

Using the same Reynolds number and resolution that was used to create figure 1, figure 2 is a
plot of 1t as a function of time, for simulations with different values of τ . In the same figure,
we also show the corresponding 1t for a replica of the simulation performed by OC that is in
excellent agreement with our general case.

We see that, independently of τ , there are sharp minima in 1t during the periods of
maximum enstrophy (see figure 1). Inspection of figure 3 demonstrates that the deepest
minimum corresponds in fact to the time when reconnection is taking place. The main tubes
in the left and right figures are isosurfaces of vorticity corresponding to 60% of the maximum
vorticity, which is attained inside each of the main tubes.

Figure 4 (left) shows that the spatial region where the determinant detH goes below
the threshold before each resetting corresponds to a small, localized neighborhood between
the main interacting vortices. This region is seen in the right figure as a bridge connecting the
two vortices: this bridge is an isosurface of vorticity corresponding to 73% of the maximum
vorticity, which is attained inside the bridge. The main tubes correspond to isosurfaces of 30%
of the maximum vorticity. Note that this behavior of the determinant detH is also true for any
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Figure 4. Visualization of the determinant of the matrix (15) (left) and vorticity (right, with the
same color map than in figure 3) at reconnection time t = 4.7 and ωmax = 43.6 (see figure 2),
for τ = 0.01. The region, where the determinant triggers resetting is within the displayed blue
isosurface at 9 times the triggering level ε2.

value of τ (data not shown), confirming in this way the original rationale for the study of
reconnection with the aid of resettings.

Figures 3 and 4 were made using the VAPOR (Clyne and Rast 2005, Clyne et al 2007)
visualization software.

3.3. MHD flows

In this section, we study MHD flows with simple initial conditions. The magnetic potential
Z = A is obtained in terms of the Weber–Clebsch potentials from (3) and (11), and the
Weber–Clebsch potentials are evolved using equations (13)–(16).

We treat the evolution of the velocity field in two different ways: (i) as a kinematic
dynamo (ABC flow, section 3.3.1), where the velocity is kept constant in time; (ii) using
the full MHD equations (OT 2D and 3D, sections 3.3.2 and 3.3.3), where the velocity field is
evolved using the momentum equation (17).

To compare with DNS of the induction equation (18) for the magnetic field we proceed
analogously as in the Navier–Stokes case. We compare the magnetic enstrophy (Dahlburg
and Picone 1989) �m(t) =

∑
k k2 Em(k, t), where the magnetic energy spectrum Em(k, t) is

defined by averaging the Fourier transform b̂(k′, t) of the magnetic field b = ∇ × A (with A
given by (3)) on spherical shells of width 1k = 1,

Em(k, t) =
1

2

∑
k−1k/2<|k′|<k+1k/2

|b̂(k′, t)|2.

Note that magnetic dissipation is the square current.
Resettings will be performed with a resetting threshold ε2

= 0.1. We have checked that
ε2

= 0.4 and ε2
= 0.025 give results that vary only slightly (figures not shown). This is an

evidence of the robustness of the resetting method and a validation of the rationale for the use
of resettings to diagnose reconnection.

3.3.1. Kinematic dynamo: ABC flow. We have used the ABC (Archontis et al 2003) velocity:

ux = B0 cos k0 y + C0 sin k0z,

u y = C0 cos k0z + A0 sin k0x,

uz = A0 cos k0x + B0 sin k0 y,

9
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Figure 5. Temporal evolution of magnetic enstrophy �m for the ABC flow (kinematic dynamo)
with τ = 0 and 1 (◦ and +), with a resolution of 1283 and the constants ν = 0 and η = 1/12. The
solid line comes from a DNS of the induction equation for the magnetic field.

with k0 = 2 and A0 = B0 = C0 = 1. We used an initial magnetic seed that reads

Ax = 0,

Ay = 0,

Az = d0 sin x sin y.

The magnetic resistivity has been chosen as η = 1/12 and we have set d0 = 1/100 for
simplicity (its value is unimportant in the kinematic dynamo).

Runs with resettings are compared for different values of the parameter τ . It is seen in
figure 5 that the magnetic enstrophy �m is well resolved for each case, at resolution 1283.

The resettings are quite regular in time and indeed they slow down as time goes by,
at a regular rate which decreases with increasing resolution (figure not shown). There is no
increase in the resetting frequency. This behavior is consistent with the monotonic behavior of
the magnetic enstrophy and with the absence of localized or intense activity of the magnetic
field.

3.3.2. Full MHD equations: 2D OT vortex. In the rest of the paper, the full MHD equations
of motion are integrated. The momentum equation for the velocity (17) is integrated together
with the Weber–Clebsch evolution equations (13)–(16), where the magnetic potential Z = A
is obtained from (3) and (11).

We have chosen the following initial data for the 2D OT vortex (Orszag and Tang 1979):

ux = − 2 sin y,

u y = 2 sin x,

uz = 0,

Ax = 0,

Ay = 0,

Az = 2 cos x cos 2y.

10
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Figure 6. Temporal evolution of magnetic enstrophy �m for OT in 2D for τ = 0, 0.01 and 1
(◦, � and �) with a resolution of 1282 and η = ν = 0.005. Solid line: DNS of MHD equations.
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Figure 7. Temporal evolution of 1t for τ = 0, 0.01, 0.1 and 1 (◦,�, � and M), for a simulation of
OT in 2D with ν = η = 0.005 and a resolution of 1282.

The OT vortex has a magnetic hyperbolic X-point located at a stagnation point of the velocity,
and is a standard test of magnetic reconnection, both in 2D (Politano et al 1989) and in
3D (Politano et al 1995), see section 3.3.3.

We compare runs with resettings for different values of the parameter τ . Figure 6 shows
that the magnetic enstrophy is well resolved in resolution 1282.

Figure 7 shows the time between resettings as a function of time, for runs performed with
different values of τ . It is apparent from the figure that there are periods of frequent resettings,
which coincide with the periods of high magnetic enstrophy from figure 6. This is a robust
evidence of the utility of the resetting approach for 2D magnetic reconnection.

We have also simulated the OT vortex in the so-called 2.5D setting (Montgomery and
Turner 1982) (see also DiPerna–Majda’s construction (DiPerna and Majda 1987)), defined by
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Figure 8. Temporal evolution of magnetic enstrophy �m for OT in 3D for τ = 0, 0.1 and 1
(◦, � and �) with a resolution of 1283 and η = ν = 0.005. Solid line: DNS of MHD equations.
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Figure 9. Temporal evolution of 1t for τ = 0, 0.1 and 1 (◦, � and �), for a simulation of OT in
3D.

the same initial data as the above 2D OT vortex, but with Ax = sin y and Ay = −sin x . We
obtained (data not shown) a behavior of the resetting frequency which was very similar to that
of the 2D case.

3.3.3. Full MHD equations: 3D OT vortex. For the 3D OT vortex (Mininni et al 2006), the
initial magnetic potential reads

Ax = c0 (cos y − cos z) ,

Ay = c0 (− cos x + cos z) ,

Az = c0 (cos x + cos 2y) ,

12
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with c0 = 0.8. The initial velocity is given by

ux = − sin y,

u y = sin x,

uz = 0.

As in the 2D case, we compare runs with resettings for different values of the parameter τ .
Figure 8 shows that the magnetic enstrophy is well resolved in resolution 1283, and figure 9
shows the time between resettings as a function of time. Again the periods of frequent
resettings coincide with the periods of high magnetic enstrophy from figure 8, proving the
utility of the resetting approach for 3D magnetic reconnection.

4. Conclusions

We have shown that the generalized Weber–Clebsch evolution equations allow to study
reconnection events for both Navier–Stokes and MHD dynamics. We have checked for the
Navier–Stokes BPZ flow that reconnection events can be viewed as periods of fast and
localized changes in the geometry of the Weber–Clebsch potentials, leading to more and more
frequent resetting of the potentials.

We have applied the new generalized Weber–Clebsch evolution equations to the study
of magnetic reconnection in MHD. Taking as examples both the 2D and 3D OT vortices,
we show a correlation of the reconnection events (associated with periods of high magnetic
dissipation) with the periods of fast changes in the geometry of the Weber–Clebsch potentials,
leading to frequent resettings of the potentials.

However, unlike the case of BPZ reconnection, in this case the frequency of resettings
does not have a sharp peak but a smeared one. Notice that, in the Navier–Stokes case,
the corresponding frequency of resettings for the Taylor–Green vortex has also a mild
peak (Cartes et al 2007). One can argue that the 2D and 3D OT flows are more similar
to Taylor–Green than to BPZ. Indeed, both Orszag–Tang and Taylor–Green have initial
conditions with just a few Fourier modes, therefore they are extended spatially, whereas the
BPZ initial condition is spatially localized (two orthogonal vortex tubes).

This wide spatial extent of the vorticity in both OT and Taylor–Green vortices, as
opposed to the localized extent of BPZ, might be the reason for the mildness in the shape
of the minimum of the time between resettings. In both spatially extended cases one expects
reconnection events to happen in relatively distant places at similar times, as opposed to the
BPZ very localized cut-and-connect type of reconnection. In terms of the singularities of
the Weber–Clebsch potentials and associated resetting, we should observe (to be studied in
detail in future work) that the set of points where detH goes below the threshold consists of
an extended region, as opposed to BPZ, where we have confirmed that these points belong
to a very localized region in space. Consequently, the widely distributed events that lead to
resetting in OT and Taylor–Green configurations would tend to be less correlated in time,
leading to the smearing of the minimum of the curve for the time between resettings, which
would otherwise be very sharp if the events were more localized and therefore more correlated
in time.
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