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Energy fluxes in quasi-equilibrium flows
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We examine the relation between the absolute equilibrium state of the spectrally
truncated Euler equations (TEE) predicted by Kraichnan (J. Fluid Mech., vol. 59 (4),
1973, pp. 745–752) to the forced and dissipated flows of the spectrally truncated
Navier–Stokes (TNS) equations. In both of these idealized systems, a finite number
of Fourier modes is kept contained inside a sphere of radius kmax, but, while the
first conserves energy, in the second, energy is injected by a body-force f and
dissipated by the viscosity ν. For the TNS system, stochastically forced with energy
injection rate IE , we show, using an asymptotic expansion of the Fokker-Planck
equation, that in the limit of small kmaxη (where η = (ν3/IE)

1/4, the Kolmogorov
length scale) the flow approaches the absolute equilibrium solution of Kraichnan
with an effective ‘temperature’ such that there is a balance between the energy
injection and the energy dissipation rate. We further investigate the TNS system
using direct numerical simulations in periodic cubic boxes of size 2π/k0. The
simulations verify the predictions of the model for small values of kmaxη. For
intermediate values of kmaxη, a transition from the quasi-equilibrium ‘thermal’ state
to Kolmogorov turbulence is observed. In particular, we demonstrate that, at steady
state, the TNS system reproduces the Kolmogorov energy spectrum if kmaxη � 1.
As kmaxη becomes smaller, then a bottleneck effect appears, taking the form of the
equipartition spectrum E(k)∝ k2 at small scales. As kmaxη is decreased even further, so
that kmaxη� (k0/kmax)

11/4, the equipartition spectrum occupies all scales approaching
the asymptotic equilibrium solutions found before. If the forcing is applied at small
scales and the dissipation acts only at large scales, then the equipartition spectrum
appears at all scales for all values of ν. In both cases, a finite forward or inverse flux
is present even for the cases where the flow is close to the equilibrium state solutions.
However, unlike the classical turbulence, where an energy cascade develops with a
mean energy flux that is large compared to its fluctuations, the quasi-equilibrium state
has a mean flux of energy that is subdominant to the large flux fluctuations observed.

Key words: homogeneous turbulence, turbulence theory

1. Introduction
Turbulence is a classical example of an out-of-equilibrium system. In steady state,

energy is constantly injected at some scale `in, while it is dissipated at smaller scales

† Email address for correspondence: alexakis@phys.ens.fr

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 n
or

m
al

e 
su

pe
ri

eu
re

, o
n 

03
 F

eb
 2

02
0 

at
 1

7:
44

:1
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
96

5

https://orcid.org/0000-0003-2021-7728
https://orcid.org/0000-0002-0618-5806
mailto:alexakis@phys.ens.fr
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.965


884 A33-2 A. Alexakis and M.-E. Brachet

`ν by viscous forces. This process requires a finite flux of energy from the former
scale `in to the latter `ν that is provided by the well-known Kolmogorov–Richardson
cascade. Despite the out-of-equilibrium nature of turbulence, there are circumstances
where equilibrium dynamics become relevant. This has been claimed to be the case
for the scales larger than the injection scale ` > `in. At these scales, the energy flux
is zero and can possibly be modelled using equilibrium dynamics (Dallas, Fauve
& Alexakis 2015; Cameron, Alexakis & Brachet 2017; Alexakis & Brachet 2019).
Furthermore, at the smallest scales of the inertial range a so-called ‘bottleneck’
manifests where the power-law slope of the energy spectrum becomes less steep
(Falkovich 1994; Lohse & Müller-Groeling 1995; Martinez et al. 1997; Donzis &
Sreenivasan 2010). This has been interpreted by Frisch et al. (2008) as an ‘incomplete
thermalization’ that becomes asymptotically at equilibrium for hyper-viscous flows
when the order of the hyper-viscosity tends to infinity. Equilibrium dynamics become
also relevant in the presence of inverse cascades in finite domains where large scale
condensates form (Kraichnan 1967; Robert & Sommeria 1991; Naso, Chavanis &
Dubrulle 2010; Bouchet & Venaille 2012; Shukla, Fauve & Brachet 2016). Finally,
understanding equilibrium dynamics is important for systems that display a transition
from a forward to an inverse cascade (Deusebio et al. 2014; Seshasayanan, Benavides
& Alexakis 2014; Sozza et al. 2015; Benavides & Alexakis 2017; Sahoo, Alexakis
& Biferale 2017; Alexakis & Biferale 2018) because the large scale flows in these
systems transition from an equilibrium state to an out-of-equilibrium state. Besides
the possible applications, understanding the equilibrium dynamics in turbulence is also
a much needed step required before understanding its much harder out-of-equilibrium
counterpart. This has led many researchers (Hopf 1952; Lee 1952; Kraichnan 1967,
1973; Orszag 1977) to investigate the equilibrium state of the truncated Euler
equations (TEE), where only a finite number of Fourier modes is kept and are
given by

∂tu+ PK[u · ∇u+∇p] = 0, ∇ · u= 0. (1.1)

Here u is the incompressible velocity field, p is the pressure and PK is a projection
operator that sets to zero all Fourier modes except those that belong to a particular
set ‘K’ (here chosen to be all wavenumbers inside a sphere centred at the origin with
radius kmax). These equations conserve exactly two quadratic invariants:

the energy, E =
1
2

∫
|u|2 dx3, and the helicity, H=

1
2

∫
u · ∇× u dx3. (1.2a,b)

In Fourier space, these invariants are distributed among the different modes that are
quantified by the energy and helicity spherically averaged spectra, E(k), H(k),
respectively, defined as

E(k)=
1

2k0

∑
k6|k|<k+k0

|ũk|
2 and H(k)=

1
2k0

∑
k6|k|<k+k0

ũ−k · (ik× ũk). (1.3a,b)

Here ũ is the Fourier transform of u and we have assumed a triple periodic cubic
domain of size 2π/k0. The spectra have been divided by the smallest non-zero
wavenumber k0 so that they have units of energy and helicity density, respectively.

At late times, this system reaches a statistically steady state whose properties are
fully determined by these two invariants. Using Liouville’s theorem and assuming
ergodicity, Lee (1952) predicted that, at absolute equilibrium, this system will be such
that every state u of a given energy E is equally probable. This is equivalent to the
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Energy fluxes in quasi-equilibrium flows 884 A33-3

microcanonical ensemble in statistical physics, and it leads to equipartition of energy
among all the degrees of freedom (i.e. among all Fourier amplitudes) and an energy
spectrum given by E(k) ∝ k2. Kraichnan (1973) generalized these results, including
helicity, and, assuming a Gaussian equipartition ensemble,

P(u)=Z−1 exp[−αE − βH], (1.4)

where P(u) is the probability distribution for the system to be found in the state u, E
is the energy and H the helicity given in (1.2) and Z a normalization constant. The
parameters α and β are the equivalent of an inverse temperature and inverse chemical
potential, respectively, in analogy with statistical physics. We note that for the TEE
system, (1.4) is not exact! This is because (1.4) allows for fluctuations of the energy
E , which are not allowed for the TEE system. However, it becomes closer to the true
distribution as the number N of Fourier modes becomes larger. For no helicity, β = 0,
which leads to the energy spectrum E(k) ∝ k2 predicted by Lee. In the presence of
helicity, one obtains

E(k)=
4παk2

α2 − β2k2
, H(k)=

4πβk4

α2 − β2k2
. (1.5a,b)

The coefficients α and β are determined by imposing the conditions

E = k0

∑
k

E(k) and H= k0

∑
k

H(k), (1.6a,b)

where E and H are the initial energy and helicity, respectively. The predictions above
have been verified for the truncated Euler system in numerous numerical simulations
(Orszag & Patterson 1977; Cichowlas et al. 2005; Krstulovic et al. 2009; Dallas et al.
2015; Cameron et al. 2017; Alexakis & Brachet 2019).

In the TEE, however, there is no exchange of energy with external sources or sinks,
and it is thus harder to make contact with more realistic systems, such as those scales
larger than the forcing scale in a turbulent flow, mentioned at the beginning of the
introduction. It was shown recently in Alexakis & Brachet (2019) that, in some cases,
although the large scales are close to an equilibrium state, there is still exchange of
energy with the smaller turbulent and forcing scales, generating energy fluxes (from
the forced scales to the large scales and from the large scales to the turbulent scales).
It appears thus that, even in the presence of sources and sinks, equilibrium dynamics
can still be relevant. In this work, we examine further this possibility by looking at the
truncated Navier–Stokes (TNS) equations, where there is constant energy injection and
dissipation similar to the regular Navier–Stokes equations, but the system is limited to
a finite number of Fourier modes as in TEE. We show analytically in the next section
that, for weak energy injection and weak viscosity so kmaxη� (k0/kmax)

11/4 (where η
is the Kolmogorov length scale), the system indeed reaches a quasi-equilibrium state
whose probability distribution P(u) can be calculated. We verify and extend these
results using direct numerical simulations in § 3. Our conclusions are presented in the
last section.

2. Asymptotic expansion
We consider the truncated Navier–Stokes (TNS) equations,

∂tu+ PK[u · ∇u+∇P] = f + ν1u, (2.1)
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884 A33-4 A. Alexakis and M.-E. Brachet

where u is the incompressible velocity field, P is the pressure, ν is the viscosity and f
is a forcing function. The domain is a 2π periodic cube so that the smallest non-zero
wavenumber is k0= 1. The projection operator PK sets to zero all Fourier modes with
wavenumbers outside the sphere of radius kmax. In total, there are N ' 4π

3 (kmax/k0)
3

Fourier wavenumbers inside this sphere. In order to proceed, it helps to write the
truncated Navier–Stokes equations in Fourier space using the Craya–Lesieur–Herring
decomposition (Craya (1958), Lesieur (1972), Herring (1974)) where every Fourier
mode is written as the sum of two modes, one with positive helicity and one with
negative helicity, ũk = ũ+k h+k + ũ−k h−k . The two vectors h±k are given by

hs
k =

k× (ê× k)
√

2|k× (ê× k)|
+ i s

ê× k
√

2|ê× k|
, (2.2)

where ê is an arbitrary unit vector. The sign index s=±1 indicates the sign of the
helicity of hs

k. The basis vectors hs
k are eigenfunctions of the curl operator in Fourier

space, such that ik× hs
k= s|k|hs

k. They satisfy hs
k · h

s
k= 0 and (hs

k)
∗ · hs

k= 1, where the
complex conjugate of hs

k is given by (hs
k)
∗
= h−s

k = hs
−k. They form a complete base

for incompressible zero-mean vector fields. This decomposition has been extensively
used and discussed in the literature (Cambon & Jacquin 1989; Waleffe 1992; Chen,
Chen & Eyink 2003; Biferale, Musacchio & Toschi 2012; Moffatt 2014; Alexakis
2017; Sahoo et al. 2017). Note that since every ũk is described by two complex
amplitudes, ũ±k , that satisfy (ũ±k )

∗
= ũ±

−k, there are in total 2N independent degrees
of freedom. The truncated Navier–Stokes equations can then be written, using the
helical decomposition, as

∂tũs
k = V s

k − νk2ũs
k + f̃ s

k , (2.3)

where the nonlinear term V s
k is written as the convolution

V s
k =

∑
p+q=k

∑
sp,sq

C
s,sq,sp
k,q,p ũsp

p ũsq
q , (2.4)

and the tensor C
sk,sq,sp
k,q,p is given by C

sk,sq,sp
k,q,p =

1
2(sqq − spp)(hsk

−k · hsq
q × hsp

p ). The
nonlinearity V s

k satisfies the following relations:∑
s,k

ũs
−kV s

k = 0,
∑

s,k

s k ũs
−kV s

k = 0 (2.5a,b)

that correspond to the energy and helicity conservation, respectively, and∑
s,k

∂

∂ũs
k
V s

k = 0. (2.6)

This last relation indicates that phase-space volume is conserved by the nonlinearity
(i.e. it satisfies a Liouville condition). We will assume that the forcing is written as
f̃ s
k = ε

s
kξ

s
k , where ξ s

k are random complex amplitudes that are statistically independent,
normally distributed and delta-correlated in time, such that 〈ξ s

k(t)ξ
s′
−q(t

′)〉 = 2δs,s′ δq,k
δ(t− t′). With this choice, each forcing mode injects energy to the system on average
at the rate εs

k. Then the Fokker–Plank equation for the probability density P(u) in the
2N-dimensional space of all complex amplitudes ũ±k is given by

∂

∂t
P +

∑
s,k

∂

∂ũs
k
(V s

kP)= ν
∑

s,k

∂

∂ũs
k
(k2ũs

kP)+
∑

s,k

εs
k
∂

∂ũs
k

∂

∂ũs
−k
P, (2.7)
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Energy fluxes in quasi-equilibrium flows 884 A33-5

where the sum is over all 2N modes ũs
k. Multiplying by E = 1

2

∑
s,q |ũ

s
q|

2, integrating
over the phase-space volume and using integration by parts, we obtain the energy
balance equation

∂

∂t
〈E〉 =−〈DE〉 + 〈IE〉 , (2.8)

where DE = ν
∑

s,k k2
〈|ũs

k|
2
〉 is the energy dissipation, IE =

∑
s,k ε

s
k is the injection

rate and the brackets stand for the average 〈 f 〉 ≡
∫

fPdU, where dU stands for the
phase-space volume element dU =

∏
s,k dũs

k.
We are interested in the limit that the energy injection and dissipation rate are a

small perturbation to the thermalized fluctuations. We thus set νk = δν
′

k and εs
k = δε

′s
k ,

where δ� 1 is a small parameter. We then expand P as a power series of δ: P =
P0+ δP1+ . . . . We are going to also consider the long time limit, so we can neglect
the time derivative. To zeroth order we then have∑

s,k

∂

∂ũs
k
(V s

kP0)= 0. (2.9)

The equation above implies that P0 is constant along the trajectories in the phase
space followed by solutions of the truncated Euler equations. These trajectories are
expected to be chaotic for large N and, since this is such a high dimensional space,
we can also conjecture that these trajectories are space-filling (i.e. ergodic) in the
subspace constrained by the invariants of the system. In other words, we assume that
the trajectory will pass arbitrarily close to any point that has the same energy and
helicity as the initial conditions. In this case, P0 is determined by the energy and
helicity of the system P(u)= f (E,H). For the present work, however, we are going
to neglect the second invariant the helicity and assume dependence only on the energy.
We then write the solution of (2.9) as

P0 = f (E)= f

(
1
2

∑
s,k

|ũs
k|

2

)
. (2.10)

To the next order, we then get∑
s,k

∂

∂ũs
k
(V s

kP1)= ν
′
∑

s,k

∂

∂ũs
k
(k2ũs

kP0)+
∑

s,k

ε ′sk
∂

∂ũs
k

∂

∂ũs
−k
P0. (2.11)

Substituting (2.10) and using the chain rule for the derivatives

∂

∂ũs
k
f (E)=

∂E
∂ũs

k

∂f
∂E
=

(
∂

∂ũs
k

1
2

∑
ss,q

ũsq
−qũsq

q

)
∂f
∂E
= ũs

−k
∂f
∂E
, (2.12)

we obtain, for the function f (E),

∑
s,k

∂

∂ũs
k
(V s

kP1)= ν
′
∑

s,k

(
f + |ũs

k|
2 ∂f
∂E

)
k2
+

([∑
s,k

ε ′sk

]
∂f
∂E
+

[∑
k

ε ′sk |ũ
s
k|

2

]
∂2f
∂E2

)
.

(2.13)
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884 A33-6 A. Alexakis and M.-E. Brachet

To obtain a closed equation for f (E), we average (2.13) over the volume dUE of all
points in phase space of energy between E and E + dE . This consists of a spherical
shell in the 2N-dimensional phase space of radius

√
2E . Averaging over this volume

leads the sum in the left-hand side to drop out because it is a divergence and the
trajectories determined by V s

k stay inside the shell. The volume integrals of terms
independent of ũs

k are proportional to the shell volume dUE = S2N(2E)N−1 dE , where
S2N is the surface of an unit radius 2N-dimensional sphere. Terms proportional to |ũs

k|
2

result due to symmetry:
∫

dUE
|ũs

k|
2 dU = (2N)−1

∫
dUE

∑
s,k |ũ

s
k|

2 dU = (2N)−1S2N(2E)N .
This leads to

ν ′

(∑
k

|k|2
)(

f +
E
N
∂f
∂E

)
+

[∑
s,k

ε ′sk

](
∂f
∂E
+

E
N
∂2f
∂E2

)
= 0. (2.14)

If we set I ′E =
[∑

s,k ε
′s
k

]
and K2

=
∑

s,k |k|
2
' 8πk5

max/(5k3
0) (where the last equality

comes from approximating the sum with a three-dimensional integral), then, by
multiplying by EN−1, the equation simplifies to

∂

∂E

(
ν ′K2EN f + I ′EEN ∂f

∂E

)
= 0 (2.15)

that has the bounded solution

f (E)=Z−1 exp
(
−
νK2

IE
E
)
, (2.16)

where Z is a normalization constant that imposes
∫
P(u) du= 1 and is given by

Z = S2N2N−1

(
IE

νK2

)N

Γ (N) (2.17)

with Γ being the Gamma function. We have thus recovered the Kraichnan distribution
of (1.4) with β=0 and inverse temperature given by α= νK2/IE . Note that α depends
only on the ratio of ν ′ and I ′E and thus is independent of δ and we have thus dropped
the primes.

It is worth restating that P(u) = f ( 1
2

∑
s,k |ũ

s
k|

2) given in (2.16) expresses
the probability that the system finds itself in the particular state u with energy
E = 1

2

∑
s,k |ũ

s
k|

2. If we would like to find the probability P(E) of finding the system
in any state u of energy E , we need to average over all states u that have energy E .
This leads to the chi-distribution for the energy:

P(E)=
S2N(2E)N−1

Z
exp

(
−
νK2

IE
E
)
. (2.18)

For large N, the distribution P(E) in (2.18) is highly peaked at the mean energy:

〈E〉 =
NIE

νK2
. (2.19)

As N tends to infinity, P(E) becomes asymptotically a delta function centred at 〈E〉.
The mean energy of any mode ũs

k is given by 1
2 〈|ũ

s
k|

2
〉 = 〈E〉/2N. Averaging over

spherical shells then leads to the thermal equipartition spectrum

E(k)=
4πIE

νK2k3
0

k2. (2.20)
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Finally, using (2.16), one can calculate the energy dissipation as

〈DE〉 = νZ−1
∑

s,q

q2
∫
|ũs

q|
2 exp

(
−

1
2
α
∑

s,k

|ũs
k|

2

)
dU

=
ν

2NZ

(∑
s,q

q2

)∫
(2E) exp(−αE) dU

=
νK2

N
〈E〉 = IE (2.21)

and verify that the energy balance relation in (2.8) is satisfied. The results indicate,
therefore, that, for small viscosity, the truncated system will converge to the absolute
equilibrium solutions of such ‘temperature’ 1/α so that the viscous dissipation
balances the energy injection rate!

3. Numerical simulations

In this section, we test the results of the previous section and extend our
investigation beyond the asymptotic limit, using direct numerical simulations of
the TNS system of (2.1). The simulations were performed using the GHOST code
(Mininni et al. 2011), which is a pseudospectral code with 2/3 de-alliasing and a
second order Runge–Kutta. For all runs, the energy injection rate was fixed to unity
and the integration times were sufficiently long so that steady states were reached.
The forcing used is random and white in time as the one discussed in the previous
section. It is limited to a spherical shell of wavenumbers satisfying kF 6 |k|6 k′

F
.

Three cases were examined. In the first case, small resolution runs were performed
on a cubic domain with NG = 32 grid points in each direction. Due to their small
size, these runs allow, to some extent, a direct investigation of probability distribution
function P(u). In the second case, the simulations were performed on a larger grid
(NG = 256 numerical grid) that, after de-aliasing, leads to kmax = 85 and was forced
at large scales (kF = 1, k′

F
= 2). These simulations demonstrate the transition from a

forward cascade to a quasi-equilibrium state predicted in the section before. In the
third case, the simulations were designed to demonstrate the presence of an inverse
flux in the thermalized state. A smaller grid was used with NG = 128 with kmax =

42. The energy injection was at large wavenumbers (kF = 31, k′
F
= 35), while we

replaced ν∇2u by the modified viscous term ν∇2PQD
[u] that acts only on a particular

spherical set of small wavenumbers QD satisfying 16 |k|6 4. With this set-up, energy
is forced to be transported inversely from the forced wavenumbers to the dissipation
wave numbers.

3.1. Small resolution runs
For these small resolution runs, the energy injection rate was fixed to unity and the
viscosity was set to ν = 10−4. The maximum wavenumber for the grid NG = 32 that
was used was kmax = 10. Despite the small value of kmax, the total number of Fourier
modes in this system is still quite high: N = 5040. It is thus still impossible to verify
the predictions for P(u) in full detail for such a high dimensional space. Nonetheless,
we can compare the predictions of (2.18) with the probability distribution function
P(E) measured directly from the numerical simulations. In figure 1(a), we plot with
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FIGURE 1. (a) The probability distribution functions P(E) from the results of the 323-
grid numerical simulations compared with the theoretical prediction. (b) The probability
distribution functions for the amplitudes of us

k (real and imaginary part) for k= (0, 2, 0),
(0, 4, 0), (0, 8, 0) and for s=±1.

the solid brown line P(E) obtained from the numerical simulations and with the black
dashed line we give the prediction of (2.18). The two curves overlap indicating that
both the mean value and fluctuations around it are correctly captured. Note that for
this large value of N, the distribution is highly peaked; however, there is still a finite
variance of E , indicating that E is a fluctuating quantity at difference with the TEE,
where E is fixed by the initial conditions.

To further explore the validity of result (2.16), on figure 1(b), we plot the probability
distribution function (p.d.f.) of the real and imaginary parts of the modes ũs

k for each
of the three wavenumbers k= (0, 2, 0), (0, 4, 0), (0, 8, 0) and for s=±1. The results
of the previous section predict that these amplitudes follow a Gaussian distribution
with the same variance. There are 16 curves in total in figure 1(a) that have the same
variance and perfectly overlap with the Gaussian distribution shown by the dashed line,
in agreement with the prediction of (2.16). Furthermore, we calculated the elements
of the covariance matrix for these modes, Σ i, j = 〈XiXj〉, where Xi stands for the
mode amplitudes Re(ũs

k) and Im(ũs
k). The off-diagonal elements i 6= j are two orders

of magnitude smaller than the diagonal elements i= j. This indicates that the Fourier
amplitudes ũs

k are independent variables with Gaussian distribution, further verifying
the predictions of the previous section.

3.2. Quasi-equilibrium state and forward flux
In the previous case, although it was possible to verify some of the predictions of the
previous section on P(u), the limited range of wavenumbers did not allow us to test
the predictions on the energy spectrum. To that end, we used a series of simulations
on a larger grid (NG = 256) with IE = 1, varying the viscous coefficient ν from ν =

2×10−1 to ν=10−10. We must note here that the time T to reach saturation from zero
initial conditions is proportional to the energy over the injection rate, T ∝ E/IE , and
can be very large for small values of ν. For this reason, the runs with small ν started
with random initial conditions, with energy close to the one predicted. The same runs
were repeated with slightly smaller or larger energy to make sure all runs converged
to the same point.

The resulting energy spectra are shown in figure 2(a) for 10 values of ν. Dark
colours indicate large values of ν, while bright values indicate small values of ν. For
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FIGURE 2. (a) Energy spectra for six different runs of the TNS equations with kmax =

85, IE = 1 and, from dark to bright, ν = 10−1, ν = 10−2, ν = 10−3, ν = 10−4, ν =
10−5, ν = 10−6, ν = 10−7, ν = 10−8, ν = 10−9, ν = 10−10. The forcing was restricted
in the small wavenumbers and the dissipation in the large wavenumbers as indicated.
(b) The wavenumber ktran where the Kolmogorov spectrum k−5/3 transitions to the thermal
spectrum k2 as a function of the Kolmogorov length scale η = (ν3/IE)1/4. Here ktran for
the simulations (diamonds) is estimated as the wavenumber that E(k) obtains its minimum.
The dashed line gives the prediction in (3.1).

the large values of ν, the simulations are well resolved in the sense that one can
observe clearly the dissipation range where there is an exponential decrease of the
energy spectrum. For ν = 0.01 and ν = 0.001 (second and third dark line from the
bottom), one can also see the formation of an inertial range that displays a negative
power-law close to the Kolmogorov prediction E(k) = CKI2/3

E k−5/3, where CK ' 1.6
is the Kolmogorov constant (Sreenivasan (1995), Donzis & Sreenivasan (2010)). As
the value of ν is decreased, a bottleneck at large wavenumbers appears and energy
starts to pile up at the smallest scales of the system. As the value of ν is decreased
further, this bottleneck appears to take the form of a positive power-law, close to
the thermal equilibrium prediction, E(k) = A k2. This thermal spectrum occupies
more wavenumbers as the viscosity is decreased, until all wavenumbers follow this
scaling. At the smallest value of ν, the result is compared with the asymptotic
result obtained in the previous section. The proportionality coefficient A can be
estimated from (2.20) to be A = 5IE/(2νk5

max), which guarantees that the energy
balance condition 2ν

∫ kmax

0 k2E(k)dk = IE is satisfied. Matching the thermal with the
Kolmogorov spectrum we obtain that the transition occurs at the wavenumber

ktran = kmax

(
2CK

5

)3/11

(kmaxη)
4/11, (3.1)

where η= (ν3/IE)
1/4 is the Kolmogorov length scale. Figure 2(b) shows a comparison

of this estimate with ktran measured from the spectra as the wavenumber at which
E(k) obtains its minimum. The scaling agrees very well with the results from the
simulations.

In summary, for values of kmaxη larger than k0/kmax (i.e. k0η � 1), the flow is
laminar, displaying an exponential spectrum. For 1 � kmaxη � k0/kmax, there is the
formation of an inertial range where the Kolmogorov spectrum dominates, followed
by the dissipation range. If (k0/kmax)

11/4
� kmaxη � 1 (so that ktran � k0), then

the dissipative range no longer exists, and there is coexistence of the Kolmogorov
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Laminar+

1

Thermal
Kolmogorov

Thermal
Kolmogorov (kmax˙)

(kmax/k0)(k0/kmax)11/4

FIGURE 3. Turbulence behaviour as a function of kmaxη.

spectrum, followed by a thermalized spectrum at large wavenumbers. Finally, for
kmaxη� (k0/kmax)

11/4, the system is in the quasi-equilibrium thermal state predicted in
the previous section. These results are summarized in figure 3.

The transition from a Kolmogorov spectrum to a thermal one closely resembles the
time evolution of the TEE studied in Cichowlas et al. (2005). At early times, for the
TEE, a k−5/3 energy spectrum develops as energy is transferred to larger and larger
wavenumbers. When the maximum wavenumber kmax is reached, the thermalized
energy spectrum starts to develop, displaying at intermediate times both spectral
slopes k−5/3 and k2. The difference with the present runs is that in the Euler case the
transition occurs as time is increased, while in the present case we only consider the
steady state and vary the value of kmaxη.

Similarities can also be found with the recent work on a time-reversible version
of the Navier–Stokes equations (Gallavotti 1996). Using shell models (Biferale et al.
(2018)) and three-dimensional simulations (Shukla et al. (2019)) of the time-reversible
Navier–Stokes equations, other authors found similar transitions from a Kolmogorov
to a thermal quasi-equilibrium with the formation of both spectra depending on the
parameter regime. The results were interpreted in terms of a phase transition, a
possibility that could be further explored for the present work as well.

We note that the time-averaged flux from large scales to small scales is constant in
the inertial range. What varies as we change the value of kmaxη is the amplitude of
the fluctuations of the flux around this mean value of the flux. This is displayed in
figure 4, where the mean flux is shown with a dark line, and the instantaneous fluxes
at different times for four different values of ν are shown with bright colours. For
ν in the Kolmogorov turbulence regime, the fluctuations of the flux are concentrated
around the mean value without large deviations from it. As the value of the viscosity
is decreased, the fluctuations at large wavenumbers are increased until, finally, the
fluctuations of the mean flux are orders of magnitude larger than the averaged flux
for all wavenumbers. The p.d.f.s of the energy flux for different wavenumbers and
values of viscosity are shown in figure 5. Note that for a flow in equilibrium, all
third-order quantities, such as the flux, have zero value. In this case, the mean
value of the flux remains fixed, but the variance of the fluctuations increases as
ν is decreased (figure 5b) or k is increased (figure 5a). Thus, compared to the
variance of the fluctuations, the mean flux becomes negligible and thus the flow is in
quasi-equilibrium.

3.3. Quasi-equilibrium state and inverse flux
In most three-dimensional turbulent flows, the scales that are larger than the forcing
scale are close to an equilibrium state (Alexakis & Brachet 2019). In many instances,
however, there is a change of dynamics at large enough scales, and the flow is
constrained to two-dimensional dynamics (similar to, for example, turbulence in thin
layers or in rotating flows) where energy tends to cascade inversely (Alexakis &
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FIGURE 4. Time average energy fluxes (dark line) and instantaneous energy fluxes (bright
lines) for four different values of the viscosity. (a) ν= 10−3. (b) ν= 10−5. (c) ν= 3× 10−5.
(d) ν = 3 × 10−6. The dashed line shows the variation amplitude of the flux. (Note the
change in scale of the y-axis in (c and d).)
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FIGURE 5. (a) Probability distribution function of the energy flux for ν = 10−5 at four
different wavenumbers. (b) Probability distribution function of the energy flux at k = 20
and different values of viscosity. The dashed line shows the variation amplitude of the
flux.

Biferale 2018). There is thus a transition from a thermal state with zero energy flux
to a state that has a finite inverse flux of energy. Close to such a transition (unless
the transition is discontinuous), the system has to be close to the equilibrium state
with an inverse energy flux. With this motivation, we examine the case where the
forcing is located at small scales, while the dissipation is limited in the large scales
so that there is an net inverse transfer of energy.

We have thus performed simulations on a NG = 128 numerical grid that leads to a
kmax = 48 forcing at wavenumbers in the range (kF = 31 to k′

F
= 45) with unit energy

injection rate. In contrast to the previous simulations, the dissipation is limited only to
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FIGURE 6. (a) Energy spectra from simulation forced at small scales and dissipated at
large scales as indicated. For all runs IE = 1 and, from dark to bright, ν = 10, ν = 1, ν =
0.1, ν = 0.01. (b) Time average energy flux (dark line) and instantaneous energy fluxes
(bright lines) for ν = 1.
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FIGURE 7. (a) Energy spectra from simulation forced at small scales and dissipated by
regular viscosity. For all runs IE = 1 and, from dark to bright, ν = 0.01, ν = 0.003, ν =
0.001, ν= 0.0003, ν= 0.00001. (b) Time average energy flux (dark line) and instantaneous
energy fluxes (bright lines) for ν = 0.00001.

small wavenumbers that satisfy 1 6 |k|6 k′ = 4. The energy is thus injected at small
scales and dissipated at large scales, forcing an inverse transfer of energy.

The spectra for four different values of ν are shown in figure 6(a). The forcing
and dissipation shells are indicated in the graph. In this case, a spectrum E(k)=Ak2

forms for all values of ν, with small changes at the dissipation wavenumbers for large
values of ν. For small values of ν, the amplitude of the spectrum A is such that the
energy balance is satisfied, which leads to A' 5IE/(2νk′5), where k′ is the maximum
wavenumber where the dissipation acts. The dashed line shows this prediction for the
smallest value of ν. The flux fluctuations shown in the right panel of the same figure
figure 6(b) are always dominant. We note, however, that their averaged value leads
to a constant negative flux in the k2 inertial range, where no forcing or dissipation
are present. It is worth noting that in these quasi-equilibrium states the direction of
the transfer of energy is not determined by the nonlinear term, as in Kolmogorov
turbulence, but only by the location of the energy source and sink. If regular viscosity
is used, although a thermalized state is still reached as predicted by the previous
section, there is no net inverse flux of energy. This is demonstrated in figure 7 where
the energy spectra and the energy flux are shown for simulations with regular viscosity
forced at small scales.
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4. Conclusions
In this work, we examined the spectrally truncated Navier–Stokes equations flows

that are close to equilibrium. We showed analytically that in the limit of small
viscosity the statistically steady state of these flows converge to the Kraichnan (1973)
solutions. We note that our prediction is not just for the spectrum in (2.20) but for
the full probability distribution P(u) in order for the system to find itself in a state
u given in (2.16).

The derivation was based on two major assumptions. First, we assumed ergodicity
for the solutions of the TEE. This assumption appears in most calculations of
classical statistical physics, and, although it can only be proved in very few systems,
it appears to be a plausible one for many systems with large numbers of degrees
of freedom. For the TEE, it appears at least to be in agreement with the results of
numerical simulations. The second assumption we made was to neglect the effect of
the second invariant: the helicity. This assumption was made in order to simplify the
(rather involved) calculation. Had we kept the effect of helicity, then the zeroth order
solution P0(u) would have been reduced to a function of two variables, f (E,H), and
we would have ended up with an elliptic partial differential equation to solve for f .
However, the presence of helicity would break the spherical symmetry in phase space
that allowed us to calculate the involved integrals. The calculation is still feasible,
but much more lengthier and we leave it for future work.

The numerical investigation verified our analytical results and demonstrated that the
Fourier amplitudes ũs

k indeed become independent Gaussian variables, and that the
energy distribution and energy spectrum approach that of the analytic predictions as
the asymptotic limit is reached. Furthermore, the numerical investigation also sheds
light on how the TNS system transitions from the classical Kolmogorov turbulence
state to the thermalized solutions of Kraichnan (1973) as the kmaxη is varied, and led
to precise predictions on when the transition takes place. The transitions are compactly
summarized in figure 3, where the three different states ‘laminar’, ‘turbulent’ and
‘thermal’, as well as the transitions from one state to the other, are clearly marked.
Finally, it was also demonstrated that these quasi-equilibrium states are present
when the dissipation is localized in the small wavenumbers and the forcing at large
wavenumbers forms an inverse flux of energy.

It is worth noting that a fixed amplitude flux (positive or negative) was always
present in our simulations and that it was determined by the injection rate. However,
as the quasi-equilibrium state is approached, the amplitude of the velocity fluctuations
increases. These velocity fluctuations then lead to fluctuations of the energy flux to
have variance that is much larger than the mean value, making this mean flux a
subdominant. Furthermore, the mean energy in the quasi-equilibrium state scales as
〈E〉∝ 1/ν (see (2.19)) and therefore in the small viscosity limit the energy dissipation
normalized by u3

rmsk0,

lim
ν→0

〈IE〉

〈2E〉2/3k0
= 0 (4.1)

becomes zero. Thus, as opposed to Kolmogorov turbulence, there is no finite
(normalized) energy dissipation rate in the zero viscosity limit. We have thus
to distinguish the processes of energy transfer in these quasi-equilibrium states
(sometimes referred to as ‘warm cascades’) from the energy cascade that is met in
classical turbulent flows. These states are dominated by fluctuations, and the direction
of the energy transfer is not determined by the properties of the nonlinearity but only
by the location of the sources and sinks of energy, and in general is a non-local
process (see figure 14 in Alexakis & Brachet (2019)).
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There are many directions in which the present results can be pursued further. First
of all, including the effect of helicity is crucial to have a complete description of
the system. Moreover, carrying out the calculation at the next order so that statistics
of the fluxes can also be calculated would be equally desirable. Finally, extending
these results to two-dimensional flows, where the equilibrium states can take the form
of large scale condensates, is another possible direction. Such calculations, although
considerably longer than the ones presented here, should still be feasible and we hope
to address them in our future work.
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