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Abstract 

Non-linear waves described by the defocusing non-linear Schroedinger (NLS) equation admit a hydrodynamical repre- 
sentation in terms of Galilean potential flows and, using this correspondence, an autonomous equation for potential flow’s 
non-linear acoustic has been recently derived by Nore et al. However, this equation does not contain simple solutions of the 
original one such as (dark) solitons. The purpose of the present article is to characterize the reasons behind this failure and to 
present an original method to build separate equations describing all different types of acoustic solutions (but one). 

For reasons of generality, we work in a framework adapted to special relativistic hydrodynamics. All the results we derive 
have Galilean counterparts which are also discussed. In particular, we argue that there exist an infinity of different acoustic 
sectors for relativistic barotropic fluids, and we prove this result for fluids with a particularly simple equation of state. Solitons 
are naturally captured by our approach and a few explicit examples are worked out. Conserved quantities for the acoustic 
regime are also derived. 

1. Introduction 

Much attention has been devoted to non-linear waves, both from a mathematical and a physical point of view, 

with applications ranging from optics to superconductivity and hydrodynamics (see, for example, [l] and references 

therein). Recently, Nore et al. [2], using the fluid dynamical representation of the (defocusing) NLS equation given 

by Madelung’s transform, established a second-order scalar wave equation to describe non-linear acoustics (up to a 

certain order). Equations of this type are very useful to understand non-linear phenomena such as renormalization of 

pulse velocity. However, their equation does not do justice to the wealth a different non-linear acoustic phenomena 

contained in the original NLS equation. In particular, the NLS dark-solitons, in the acoustic limit, cannot be obtained 

from the equation presented in [2]. The reason for this is that the authors of [2] actually considered just a single 

‘long wavelength’ scaling, where the wave vector scales as the density inhomogeneities, whereas, there actually 

exist an infinity of non-equivalent scalings which correspond to what we call different acoustic sectors. The acoustic 
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solitons of the NLS equation just happen to belong to another acoustic sector than the one presented in [2]. Indepen- 
dently, Debbasch and Brachet [3] presented a relativistic generalization of the usual Galilean Madelung’s transform, 
with which it is possible to derive an ‘honest to God’ relativistic fluid dynamical representation of the non-linear 
Klein-Gordon (NLKG) equation. This relativistic generalization permits a de facto generalization of the different 
Galilean results pertaining to non-linear acoustics to the relativistic case. It turns out that the methods developed to 
obtain these results can actually be applied more generally to barotropic fluids, both in the Galilean and relativistic 
regime, provided that we restrict our attention to potential flows. Here a barotropic fluid will be defined as one 
in which the local thermodynamical state can be specified with a single thermodynamical variable. This type of 
idealized fluid naturally enters the description of isentropic flows for which the entropy remains constant in the 
space-time region occupied by the fluid [4]. 

This article is organized as follows: In Section 2, we present some basic results on potential flows of relativistic 
barotropes. We first generalize to arbitary equations of state the results obtained in [3] for Bose-condensates at 
vanishing temperature and then, we introduce a general framework suitable for discussing properly wave phenomena. 
In Sections 3 and 4, we address our main topic: barotropes a priori possess an infinity of different acoustic sectors 
and there exist a simple variational method through which one can obtain, for all sectors but one, a scalar non-linear 
wave equation which describes the acoustic at any (given) order. In Section 5, two particular examples are worked 
out in relative detail to show how the method can be practically implemented on the special case of semi-classical 
relativistic superfluids at T = OK, for which any flow is automatically potential [3]. The Galilean limit is also 
investigated naturally, to provide a link with [2]. Section 6 is devoted to the direct obtention of correct expressions 
for the different conserved quantities in the acoustic regime. Some possible extensions of this work are finally 
discussed in the conclusion. Appendix A provides the reader with some exact solutions of the NLKG equation 
which belong to various sectors discussed in the article. 
Notations. In this article, greek and latin tensorial indices will, respectively, run from 0 to 3 and from 1 to 3. 

The position of a point in space-time will be denoted by x = (XL”) = (ct, x), where c is the light velocity and 
the signature of the Minkowski metric 7 is conventionally chosen to be negative, so that r] = diag (1, - 1, - 1, - 1). 
Moreover, the partial derivative with respect to x@ (resp. xJ will be usually indicated by using I_L as subscript (resp. 
superscript) to the quantity which is derived and 0 will stand for the usual d’alembertian operator defined by 0 
= $a@. Finally, V and A represent, respectively, the 3d gradient and Laplacian operators. 

2. Fundamentals on potential flows of special relativistic barotropes 

In order to support the existence of interesting non-linear acoustic phenomena such as solitons, the barotropes we 
study have to include some dispersive terms in their dynamics. For simplicity reasons, we will restrict this discussion 
ab initio to the case where these dispersive terms are identical to those present in the (relativistic) flows of Bose- 
condensate at T = 0 K. The extension of the results obtained in this article to the case of more general dispersion 
terms is relatively straightforward and will be presented elsewhere. Potential flows of special relativistic barotropes 
with the same type of dispersion as a Bose-condensate at vanishing temperature can be adequately described by 
a single complex scalar field ly (xw), the dynamics of which derives from a generalized non-linear Klein-Gordon 
(GNLKG) Lagrangian density L: 

In the preceding equation, m represents the mass of the (real) particles out of which the fluid is made and the scalar 
function f specifies the equation of state of the barotrope. For a Bose-condensate at T = 0 K, f may be supposed 
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to be essentially a quadratic polynomial in I * I2 such as the one given in (2.22). Introducing the squared modulus 

p and the phase 0 of @, L reads 

1 PpP’L 
L(p,, e,, p, e> = pepep - m2c2p - f(P) + --. 

4 P 
(2.2) 

The last term in (2.2) is clearly responsible for the dispersive nature of the fluid. Moreover, the 4-velocity u of the 

barotrope and its scalar density n can be defined by: 

u I* = -e,&e”)-“2 (2.3) 

and 

n = P(e,e”)1/2 (2.4) 
m 

so that the conserved current j associated to the U (1) (or phase)-invariance of L takes the correct hydrodynamical 

form 

j = nu. (2.5) 

Defining then the enthalpy density w by 

w = Peaoff. (2.6) 
m 

one finds the usual relation for relativistic potential flows: 

8, = -HuF, 

where H is the enthalpy per particle, 

H = w/n. 

From (2.4) and (2.6), one has 

(2.7) 

(2.8) 

p=mc. (2.9) 
W 

If one wants to eliminate the gradients of 8 in the expression for n and w, one can use the equation of motion for p 

derived from L: 

ia, L2.t =~,~~_m2c2-~_-- ( 1 1 PpP 
P 4 P2 

to obtain 

(2.10) 

(2.11) 

This equation, complemented by the two immediate relations 

n = pH/m (2.12) 

w = nH = pH2/m, 

directly gives n and w as functionals of p and its derivatives: 

(2.13) 
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(2.14) 

(2.15) 

It is important to realize at this point that, in the relativistic regime, p cannot generally be eliminated from these 

expressions in order to obtain w (or any other thermodynamical quantity) as a functional of the density n and its 

derivatives, simply because (2.14) contains dispersive terms in the form of derivatives of p. This means that the 

natural thermodynamical variable is p and not n. In particular, one cannot a priori obtain the pressure p by simply 

integrating the usual differential relation 

dp = n d(w/n) = n dH, (2.16) 

since, basically, (2.16) derives from the fact that H is the Lengendre transform, with respect to IZ, of the internal 

energy per particle U = E/n, considered as a function of n- not p- and, possibly, some other variables. This 

practically means that, from the point of view of thermodynamics, a definition of the pressure through w and n is 

somewhat arbitrary for dispersive barotropes. If, however, dispersive terms are omitted, (2.14) can be solved (at 

least locally) in p and a usual thermodynamical structure can then be recovered from (2.16). Implementing this idea 

for a non-dispersive barotrope, one gets 

P(P) = n(p)dW(p)) = s s $=$p= s P d(H*) 
--ddp. 
2m dp 

If there is no dispersion, (2.11) becomes 

H*=,*,*fdf 
dp 

and, integrating (2.17) by parts, we obtain 

P(P)=% p+(p) ( > . 
The pressure can then be written as a function of n by solving for p the non-dispersive form of Eq. (2.14): 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

and by inserting the result in (2.19). 

For simplicity reasons, we will retain (2.19) as the definition of the pressure in the dispersive case. This is the 

choice that we already made in studying superflows of a Bose-condensate at T = 0 K [3]; we will also retain the 

usual definition for the internal energy density E: 

&=W-p, (2.21) 

keeping in mind that, if there is dispersion, U = E/n cannot be interpreted as Legendre transform of H with respect 

to the pressure p defined by (2.19). 

Let us conclude this section by observing that, for a semi-classical Bose-condensate at vanishing temperature 

[3], P can be interpreted as the common wave function of the bosons in the condensate and obeys the usual NLKG 

equation; the function f, after convenient normalization, can therefore be supposed to read [3] 

f(P) = P(P - 2) (2.22) 
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so that the equation of state is then simply 

m n* * 

p=2z’ ( > 
(2.23) 

A sometimes different discussion of the preceding identifications and some details about the way to obtain from them 

the correct Galilean limit is given in [3] for the case of the Bose-condensate. A complete presentation of the Galilean 

limit on the more general case corresponding to an arbitrary equation of state would follow the developments in [3] 

very closely and should not be repeated here. Let us just note that, in order to obtain directly the Galilean dynamics 

from the one derived from L, one has to introduce a new complex field @ related to @ by 

Q = eimc2t * = fiei@, (2.24) 

and having written the equations of motion in terms of p and 4, let c tend to infinity. It then turns out that, in this 

limit, the particle density nG, defined as the limit of n/c [3], is always identical to p, even if the dispersive terms 

in L are taken into account. This means that the enthalpy density w can then be written as a function of nG and its 

derivatives. As a matter of face, the limit expression of H = w/(n/c) = Hc reads 

1 An’ 1 df Hxmc*---+--. 
2m &F 2m dnG 

(2.25) 

The first term in the preceding expression represents the rest mass energy per unit volume, the second one - the 

only one which involves derivatives of nG - traces back to the dispersive effects in the fluid while the third one is 

a function of the particle density only and can be interpreted as the Galilean enthalpy per particle HG. Moreover, 

pG, the Galilean limit of the pressure p, can be obtained directly from ~~ = nG HG by using (2.16). As for the 

Galilean limit of U = UC, it also involves three different contributions. The first two are identical with the first two 

terms appearing in the Galilean equivalent of H and the third one, U ‘, ’ IS simply related to HG and pG by the usual 

formula 

EC = nGIJG = wG -PG. (2.26) 

We therefore recover, in the Galilean limit, a usual thermodynamical structure in terms of cc, wG, nG and pG. In 

particular, HG is then the Legendre transform of UC with respect to the particle density. 

3. Identification of the acoustic sectors 

Let us suppose f admits an extremum for a certain non-vanishing value Pmin of p; it is then easy to verify that 

the field Lyeq, defined by 

weq = &eCimc2’, (3.1) 

identically satisfies the equations of motion derived from L. The corresponding density neq and 4-velocity ueq are 

then given by (2.3) and (2.4): 

&q = cPmin3 (3.2) 

ueq = (1,O) (3.3) 

so that this state corresponds to a fluid at rest with uniform particle density. Let us now investigate small perturbations 

around this unperturbed equilibrium state. Following the traditional hydrodynamical language [4], we shall say that 
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such a perturbation (n, u) is an acoustic one if II - neq, UI - ~0,~ and u - ueq are infinitesimal quantities of the 

same order, conventionally chosen to be the first (order). Eqs. (2.3), (2.4), (2.9) and (2.23) then imply that, for an 

acoustic perturbation, S = p - Pmin and the four derivatives & are also to be considered of the first order. Terms of 

order higher than one in 6 represent non-linear acoustic effects. There is another small parameter in the problem: the 

ratio e/k, of the coherence-length, at whose scale dispersive effects become dominant, to the characteristic length 

associated to the (spatial) variations of the acoustic solution. We will consider particular asymptotics in which both 

S and c/h are small and are related by 

6/h = s’-“, (3.4) 

where a! is a real positive parameter inferior to one. This scaling implies that the variations of 4 are of order (Y and 

a, is of order 1 - o, which ensures the correct scaling for @I. The GNLKG equation and its Galilean counterpart, 

the GNLS equation, should therefore admit an infinity of acoustic sectors, each one being characterized by a value 

of the parameter o. Some explicit solutions of the NLKG equation in the acoustic regime are given in Appendix A 

and prove the existence of such sectors, at least for values of o superior or equal to 3. Up to now, the only scalings 

that have been studied for the NLKG equation seem to be the one corresponding to a = 0, with the further limitation 

that the work has only been done in the Galilean limit [2], and the one corresponding to a! = 1, in the linear regime 

only [3]. However, these scalings are definitely not the only interesting ones; as a matter of fact, for f given by 

(2.22), Pmin = 1 and the acoustic soliton described in Appendix A belongs to the sector associated to o = 1. 

4. General presentation of the scheme 

Let us choose a value for (II and investigate the corresponding acoustic sector by a perturbation calculation, pushed 

up to order p > o. Since the procedure that is to be described now can only be successfully implemented if 4 < 1, 

we will suppose this condition to be realized in what follows and discuss the case o = 1 only briefly at the end of 

this Section 5.1. 

In terms of 6 and $, the Lagrangian density reads: 

1 
L(&,&,&@) = 

4(6 + Anin) 
GpJcL + (6 + Prnin)$p$’ - 2m(J + PminMt - .f(S + Anin) (4.1) 

from which we obtain the following Lagrange equations: 

1 1 
0s - 

2(J + Pmin) 4(6 + Pmin) 
2 6~6’ - $pV + 2mh + .f(S + Anin) = 0 (4.2) 

and 

1 

(6 + Pmin) 
[S,qV -m&l+ 04 = 0. (4.3) 

The basic idea behind the proposed scheme is to solve perturbatively the equation of motion of 6, namely 

Eq. (4.2), in order to obtain, at order (/3 + cr), an expression of this quantity as a function of the derivatives of 4. 

This can always be done, as long as o < 1. The obtained expression can then be used in (4.1) to obtain, at the same 

order, an effective lagrangian density which will be a functional of the derivatives of 4 only. This will automatically 

furnish a non-linear wave equation for 4 (only) at order j3 and the associated conserved currents at order (p + a). 

There is naturally a price to pay for the elimination of S: the final equation for 4 will turn out to be of the fourth 

order in time while the original equations (4.2) and (4.3) are only of the second order. 
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We will now illustrate briefly how this method works if the dynamics of the fluid corresponds to the usual NLKG 

dynamics, with f given by (2.22); this will in particular apply if we are interested in acoustic waves propagating 

in a semi-classical Bose-condensate with equation of state (2.23). We will first address the important case a = $, 

which is then the correct scaling for acoustic solitons; the case (11 = 0 will also be rapidly reviewed, first because it 

is one of the only two scalings that seems to have been considered systematically until now (albeit in the Galilean 

limit only) and because it will also give us the opportunity to compare the implementation of the proposed method 

for two different scalings. 

5. Two examples 

5.1. Casea! = 4 

If we suppose (2.22) (4.2) particularizes to 

1 

------06 - - = 
2(6 + 1) 4(6 1 1)2s~SP 4~4’ + 2m4+ + 26 0. (5.1) 

Let us now find the non-linear wave equation corresponding to the acoustic sector a = i up to terms of order 

B = s. Eq. (5.1) reads 

S = -t(l - 6)OS + AS,P + i$*f#P - rn$+ + o(S3). 

This in turn implies that 

06 = -$0*6 + ~O(@,@) - mD$, + o(S3), 

(5.2) 

(5.3) 

which gives 

q *6 = -mO*& +o(S3). 

Inserting this result in (5.3) we get 

06 = $mn*$, + ~O(&$p)-mOq5,+o(S3) 

Similarly, (5.2) implies that 

6,6’* = m*$,,# +o(S3) 

so that 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

6Z -#n0*@,+ io(@~V) - mWl+ ~m2qhp~~+~~pf.$'1 -mf$+ ~m2f#+O~,+o(~3), 

or, reordering the terms by increasing order, 

(5.8) 

6 = -m& + $mn$r + 14~4’ - $[$mn*& + •(6V~P)] + {m*q+,# + $m*q!+O& + o(s3). 

From the preceding expression, we easily deduce 

6* = m*& - m&(iE% + @P$fi) + 0(S3) 

(5.9) 

(5.10) 
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and, using (4. l), (5.6), (5.9) and (5. lo), we obtain the following expression for the effective lagrangian density L, 

which only involves the derivatives of 4: 

The extremization of the action associated to L gives the equation of motion of C$ in the form [5] 

Expliciting the partial derivatives, we obtain 

rttt i- 2mV# . V& + mg$A@ - $&ptt = 0. 

(5.12) 

(5.13) 

This is the desired non-linear wave equation which governs the behaviour of the phase 4 in the scaling cx = i, up to 

terms of order 2. At the same order, p is related to 4 through 6 by (5.9). Moreover, because of the procedure used 

to derive it, (5.13) is automatically covariant (at this order), though not manifestly covariant since C$ is not a Lorenz 

scalar. 

Let us stress at this point that the comer stone of the method lies in solving (4.2) for 6 at the desired order. To 

accomplish this, we have to first obtain an expression for the first and second derivatives of this quantity in terms 

of the derivatives of C$ only, at the right order. This can only be done by successive differentiations of (4.2), under 

the condition that these differentiations indeed increase the order of the different terms in (4.2). This means that our 

method only works if the order of i3, is strictly positive, i.e. cx -C 1. 

5.2. Case a! = 0 

If one repeats the same procedure for this other scaling, pushing the perturbation calculations up to terms of the 

fourth order, one easily finds that 

and the equation of motion for 4 is therefore 

@tt - A+ + GWtt - $Attt + 2mV$ . V& + met A$ - $c&& 

3 
; 

2 
+ -@#‘tt + -(V@> A$ - 

ow24tt &WJ 24, 
2c4 t 2c2 

---c,v~.v+=o. 
2c2 

(5.15) 

Letting c tend to infinity and noticing that, in this limit, (5.15) implies that A24 and A& are identical up to terms of 

order 5, we recover the equation which was proposed by Nore et al. [2] to describe, at the fourth order, the acoustic 

sector of the NLS equation corresponding to cx = 0. 

It is important to realize that, although the first terms in (5.13) and (5.15) are apparently indentical, they do not 

have the same meaning and relative importance in both equations. For example V$. V& and A& are both of order 

i in (5.13) while, in (5. IS), their order are, respectively, 3 and 4. 
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6. Conserved quantities 

6.1. Particle number conservation 

As we already pointed out, this conservation law is well known to be associated to the phase invariance of 

the Lagrangian density L(ly*p, UJ@, ly*, P) (Eq. (2.1)) [3,5,6] or, equivalently, to the invariance with respect to 

translation in 4 space of ,!,(a,, c#J@, 8, $) (Eq. (4.1)). Naturally, the effective Lagrangian density L will also display 

the same invariance and one can deduce from it the corresponding conserved current directly. Let us work this out 

on the two examples proposed in the preceding section. 

In both cases, the Lagrangian density L depends on the first derivatives of C$ and of 4, only and the equation of 

motion takes the form (5.12); this makes it clear that the conserved courant j = (j’,j) we are searching for is given 

by 

(6.1) 

the factor - 4 being there to ensure the correct normalization of j. For o = 4, we easily obtain from (6.1): 

j = -V@ + rn$,V@ + im2V& + o(S2), (6.2) 

j” = mc - A(1 + m2c) + 3:& - g,,,, + o($). (6.3) 

and similarly, for a! = 0, 

(6.4) 

6.2. Stress-energy-momentum tensor 

Since the effective Lagrangian density L has the same space-time symmetries as the original Lagrangian L, one 

can also deduce directly from it the (canonical) stress-energy-momentum tensor. However, the calculation is not 

completely straightforward because L depends on some second derivatives of 4. 

Suppose that we are given a Lagrangian density A which is a function of a field A and of its first and second 

derivatives. Let us define the two conjugate momenta p and T by 

and 

an 
=fiv = F. (6.7) 

A direct calculation shows that, up to a multiplicative constant, the canonical stress-energy-momentum tensor T 

is given by 

(6.8) 
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Following [3], we choose l/2 m as normalizing factor and obtain, if (II = 1, 

(6.9) 

with L given by (5.11). 

Similarly, if a! = 0, we get from (6.8): 

(6.10) 

the correct expression for L being now (5.14) 

Let us remark that this canonical stress-energy-momentum tensor is evidently not symmetrical; it should therefore 

be conveniently symmetrized if one wishes to obtain from it the angular-momentum density; we will not delve into 

more technical details about this point here. 

7. Conclusion 

We have argued that the GNLKG equation and its Galilean equivalent, the GNLS equation, interpreted as dy- 

namical equations for potential flows of barotropes, admit an infinity of acoustic sectors and we have developed 

a variational scheme to study all of them but one analytically. The way to obtain the usual conserved currents has 

also been discussed and the Galilean limit has been investigated to provide a link with previous works. Moreover, 

we have also constructed explicitly exact solutions of the NLKG equation which, in the acoustic limit, belong to 

various of these different acoustic sectors. The natural extension of this work to rotational flows of barotropic and 

non-barotropic fluids is currently underway. An interesting context in which the methods developed in the present 

article may prove to be useful is wave turbulence and especially the study of its asymptotic time-behaviour [7]. 

Appendix A 

In this section, we will show that any acoustic sector of the NLKG equation characterized by an a! superior or 

equal to i is not empty; the proof will be obtained by exhibiting exact acoustic solitons which belong to any such 

sector. 

In terms of the function @ defined by (2.24), the equation of motion derived from (2.1) and (2.22) reads 

@,t 
- - 2im@+ = A@ - 2@(]@*] - 1). 
C* 

64.1) 

We will search for travelling wave solutions of (A. 1) of the form: 

@(x, t) = u(x - Vt) exp(irct) = (p(X))‘/* exp[i(h(X) + it)], 64.2) 

where x is one of the three Cartesian space-coordinates and X = x - Vt. 

Inserting the ansatz (A.2) in (A. l), one gets two separate (real) equations: 

VPX (1 - -k&) = --&PhX)X~ (A.3) 
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-&v2(&‘hx - 2/7;(K - V~X>~] + 2mfi(K - VAX) 

= waxx - 42; - LfzP - 1) 

with, as usual, 

r = (1 - v2/c2)-‘? 

(A-4) 

(A.5) 

Eq. (A.3) can be directly integrated into 

Ax = A + B/p, 64.6) 

where 

A = mVf2(1 - K/mc2) (A.7) 

and B is an arbitrary integration constant. For the equation of state (2.22), the equilibrium state of the fluid corre- 
sponds to p = 1 and, naturally, ix = 0. This fixes the value of B to B = -A. 

Using (A.6) and (A.7) one can then integrate (A.4) and obtain 

-&Pi = F(P), (A-8) 

F(P) = p3 - p2 2 + m2V2 (1 - s)* + 2mK (1 - s)] + 2cp - m2V2 (I- 5)’ , (A.9) 

where C is an arbitrary (real) integration constant. 
It can be shown that [8,9], if F has three distinct zeros pt, p2, ~3, (pl > p2 > p3), then (A.8) has periodic 

solutions in the forrn of conoidal waves: 

P(X) = P2 - (P2 - P3)cn2r(P* - P3)“2xl. (A.lO) 

In (A. lo), the parameter s* of the cn function is related to the zeros of F by 

s2 = (P2 -P3)l(P1 -P3). (A. 11) 

Because the pi’s are the zeros of F one also has the following relations: 

plp2p3 = m2V2(1 - tC/mc2)2, (A. 12) 

pt + p2 + p3 = p1p2p3 + 2 + 2mK(I - K/hC2). (A.13) 

Let us now choose: 

p2= 1, (A. 14) 

p3=1-E, (A.15) 

Pl=l-E+v, (A. 16) 

S* = E/q (A.17) 

with 77 = sB > F > 0. This choice ensures that both S = (p - 1) and hx are of order E. For small enough E and 
q(m2c2 > ET] - Ed), (A.13) then gives 

(A.18) 
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which proves that K is of order EV. Eq. (A. 12) then implies 

mV = (1 + (e* - q)/m*c*)-“*(l + q - 2s - e7j + e*)“*, 

which proves that V is of order zero in E and 77. Since the phase 4 of the function @ verifies: 

(A.19) 

@X =hXT (A.20) 

$r = -Vhx + K, (A.21) 

the preceding considerations prove that both C#I~ and 4r are, as S, of order E. 
Moreover, a straightforward calculation shows that, for E < 2B-‘, 8x/6 scales as q1/2. This proves that the 

solution under consideration belongs, for small enough E, to the sector characterized by a, = 1 - ij3. Since q is 
superior to E, /3 is inferior to 1 and CI lies therefore between $ and 1. 

Let us finally remark [9] that, if p2 approaches p1 and s correspondingly approaches 77, the soliton given by (AS), 
(A.6) and (A.10) becomes the acoustic soliton whose density p and phase derivatives are given by 

p(x, t) = 1 - 6 sech*(F&(x - V,)), (A.22) 

& = -&lV = T*mV(l - l/p) (A.23) 

with m V = (1 - E) ‘I*. This shows that solitons, in the acoustic regime, belong to the sector associated with cx = 4. 
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