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Scaling laws for vortical nucleation solutions in a model of superflow
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Abstract

The bifurcation diagram corresponding to stationary solutions of the nonlinear Schrödinger equation describing a superflow
around a disc is numerically computed using continuation techniques. When the Mach number is varied, it is found that the
stable and unstable (nucleation) branches are connected through a primary saddle-node and a secondary pitchfork bifurcation.
Computations are carried out for values of the ratioξ/d of the coherence length to the diameter of the disc in the range
1/5–1/80. It is found that the critical velocity converges forξ/d → 0 to an Eulerian value, with a scaling compatible with
previous investigations. The energy barrier for nucleation solutions is found to scale asξ2. Dynamical solutions are studied
and the frequency of supercritical vortex shedding is found to scale as the square root of the bifurcation parameter. © 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

An open problem in the theory of superfluids is the determination of the critical velocity at which superfluidity
breaks down [1,2]. Mathematically, at temperatures low enough for the normal component to be neglected, su-
perfluids are described by the nonlinear Schrödinger equation (NLSE) [3,4]. Much work has been devoted to the
determination of the critical velocity in this framework. The superflow around a cylinder was studied using direct
simulations of NLSE by Frisch, Pomeau and Rica. They observed a transition to a dissipative regime involving
vortex nucleation [5] and interpreted the results of their direct simulations in terms of a saddle-node bifurcation
of the stationary solutions of the NLSE [6]. A saddle-node bifurcation was explicitly found by Hakim [7] when
studying the stability of unidimensional NLSE flows across obstacles described by a potential. He obtained analyt-
ical expressions for the bifurcating stationary solutions and studied the transitional dynamics characterized by the
generation of grey solitons.
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More recently, using numerical continuation techniques, we were able to obtain the complete bifurcation diagram
corresponding to the 2D superflow around a disc [8]. It was found that the stable (elliptic) branch and the unstable
(hyperbolic) branch are connected through a saddle-node bifurcation. The unstable branch generates, after a sec-
ondary pitchfork bifurcation, solutions that are asymmetric with respect to the diameter of the disc. The symmetric
and asymmetric unstable solutions were found to contain, respectively, two and one vortices. Note that the flow
around a cylindrical obstacle is governed by two dimensionless parameters: the Mach numberM = |U|/c (where
c is the speed of sound) associated to the flow velocity|U| and the ratio of the superfluid coherence lengthξ to the
diameter of the discd. It turns out thatξ/d was arbitrarily fixed atξ/d = 1/10 in the numerical studies reported
above. It should be stressed, however, that the coherence lengthξ is a microscopic length scale of the order of 1 Å
in the case of superfluid4He. Note that another experimental context should be mentioned at this point: trapped
Bose–Einstein condensed gases. Recent experiments were performed by moving a blue detuned laser beam through
the condensate at different velocities. The ratio of the healing length to the diameter of the beam wasξ/d ∼ 1/10
[9].

The main motivation of the present work is to study the scaling of the bifurcation diagram whenξ/d is decreased.
The critical dynamics of solutions will also be studied using slightly perturbed unstable solutions as initial data.
This paper is organized as follows. In Section 2, we introduce the formulation of NLSE that includes a potential
used to model a disc moving in a superfluid. Our results are given in Section 3, and Section 4 is our conclusion.
The appendix describes the numerical techniques used to compute the stationary and dynamical solutions of the
NLSE.

2. Definition of the system

In this section, we present the hydrodynamic form of the nonlinear Schrödinger equation that models the effect
of a moving disc of diameterd in a two-dimensional superfluid at rest.

We first define the following action functional:

A =
∫

dt

{√
2cξ

∫
d2x

i

2

(
ψ̄
∂ψ

∂t
− ψ

∂ψ̄

∂t

)
− F

}
, (1)

whereψ is a complex field,ψ̄ its conjugate andF is the energy of the system. We show at the end of this section
thatc andξ are the physical parameters characterizing the superfluid. They correspond to the speed of sound (c)
for a fluid with mean densityρ0 = 1, and to the coherence length (ξ ).

The energyF reads

F = E − P · U (2)

with

E = c2
∫

d2x

(
[−1 + V (x)]|ψ |2 + 1

2
|ψ |4 + ξ2|∇ψ |2

)
, (3)

P =
√

2cξ
∫

d2x
i

2

(
ψ∇ψ̄ − ψ̄∇ψ)

, (4)

where the potentialV (r) = (V0/2)(tanh [4(r−d/2)/1]−1) is used to represent the disc. The calculations presented
below were realized withV0 = 10 and1 = ξ . With these values, the fluid density inside the disc is neglectable and
the density boundary layer is well resolved with a mesh adapted to the coherence length.
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The Euler–Lagrange equation corresponding to (1) furnishes the following NLSE:

∂ψ

∂t
= −i√

2cξ

δF

δψ̄
= i

c√
2ξ
(�(x)ψ − |ψ |2ψ + ξ2∇2ψ)+ U · ∇ψ, (5)

where�(x) = 1 − V (|x|).
Note that theU · ∇ψ term in (5) could be removed by the change of variablex = x′ + Ut . Expressed in thex′

coordinates, the disc would be described by the potential�(x) = �(x′ + Ut) and thus be moving at a constant
velocityU. However, for convenience, we keep theU · ∇ψ term in (5) so that stationary solutions of (5) correspond
to solutions of the NLSE equation with the disc in uniform translation in thex′ coordinates.

The NLSE (5) can be mapped into two hydrodynamical equations by applying Madelung’s transformation [2,10]:

ψ = √
ρ exp

(
iφ√
2cξ

)
. (6)

The real and imaginary parts of the NLSE produce for a fluid of densityρ and velocity

v = ∇φ − U, (7)

the following equations of motion:

∂ρ

∂t
+ ∇ (ρv) = 0, (8)

[
∂φ

∂t
− U · ∇φ

]
+ 1

2
(∇φ)2 + c2[ρ −�(x)] − c2ξ2∇2√ρ√

ρ
= 0. (9)

In the coordinate systemx that follows the obstacle, these equations correspond to the continuity equation and
to the Bernoulli equation [1] (with a supplementaryquantum pressureterm c2ξ2∇2√ρ/√ρ) for an isentropic,
compressible and irrotational flow. Note that in the limit whereξ/d → 0, the quantum pressure term vanishes and
we recover the system of equations describing an Eulerian flow.

Using this identification, one can derive the dispersion relation for acoustic waves propagating around a constant
density levelρ = ρ0 as [11]:

ω =
√
c2ρ0k2 + ξ2

2
c2k4. (10)

For small wave numbers, one recovers the usual sound wave propagation. The speed of sound is uniquely defined
in terms of the fluid mean densityρ0 as

lim
k→0

dω

dk
= c

√
ρ0, (11)

which justifies our definition ofc as the speed of sound whenρ0 = 1. For small wave number acoustic waves, the
last term of (9) does not play a significant role. The length scale at which the dispersive term becomes noticeable
corresponds to the coherence lengthξ .

Note that there also exist vortical stationary solutions of (5) corresponding to topological defects (zeros) of the
complex fieldψ . Close to the centre of the vortex, the density behaves asρ = r2. The tangential velocity is given
by v = √

2cξ/r, and the characteristic size of the core of the vortex is given byξ . Thus, the velocity circulation
around a vortex is given by0 = 2π

√
2cξ . For a Bose condensate of particles of massm, the quantum of circulation

has the Onsager–Feynman value0 = h/m (with h the Planck’s constant) [11].
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3. Results

We now turn to our numerical results on the properties of the stationary and dynamical solutions of (5). In
Section 3.1, using the Mach numberM = |U|/c as a control parameter, we compute the bifurcation diagrams of the
stationary solutions for various values ofξ/d. In Section 3.2, we use these solutions to construct initial conditions
that are well adapted to the controlled study of the dynamical evolution through time integration.

3.1. Stationary solutions

The valueF(M)−F(0) (change of the energyF relative to zero Mach number) found by our numerical procedure
is displayed in Fig. 1 as a function of the Mach numberM for various values ofξ/d. As can be seen by inspection
of the figure, for eachξ/d, the stable branch (solid line) disappears with the unstable solution (dashed line) at a

Fig. 1. Top: plots of the energy of the stationary state (F(M) − F(0)) versus Mach number (M = |U|/c) for ξ/d = 1/5 (i), ξ/d = 1/10
(ii), ξ/d = 1/20 (iii), ξ/d = 1/40 (iv) andξ/d = 1/80 (v). For eachξ/d there is a stable branch (solid line) and two unstable branches
corresponding to asymmetric (dotted line) and symmetric (dashed line) solutions. The Mach values at which numerical computations were
performed are marked by (◦) on curves i (top) and iii (bottom) only. Bottom: blow up of the inset shown in the top figure.
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saddle-node bifurcation whenM = Mc. There are no stationary solutions beyond this point. The energyF has a
cusp at the bifurcation point.

This qualitative behaviour is the generic signature of a Hamiltonian saddle node (HSN) bifurcation defined, at
lowest order, by the normal form [12]:

meffQ̈ = δ − βQ2, (12)

whereδ = (1−M/Mc) is the bifurcation parameter. Here,Q is a critical amplitude and the parametersβ andmeff

can be linked to critical scaling laws. Indeed, defining the appropriate energy

F = F0 +meffQ̇
2/2 − δQ+ βQ3/3 − γ δ, (13)

Fig. 2. Top: plots of the functional (E(M) − E(0)) versus Mach number (M = |U|/c) for ξ/d = 1/5 (i), ξ/d = 1/10 (ii), ξ/d = 1/20 (iii),
ξ/d = 1/40 (iv) andξ/d = 1/80 (v). For eachξ/d there is a stable branch (solid line) and two unstable branches corresponding to asymmetric
(dotted line) and symmetric (dashed line) solutions. The pitchfork bifurcation is marked byMpf on curves i and ii. The Mach values at which
numerical computations were performed are marked by (◦) on curves i (top) and iii (bottom) only. Bottom: blow up of the inset shown in the
top figure.
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it is straightforward to derive from (12), close to the critical pointδ = 0, the universal scaling law

F± = Fc − Flδ ± F1δ3/2, (14)

whereF− is the energy of the stable stationary field andF+ is the energy of the unstable stationary field. The
constants in (14) are related to those in (12) by the relationsFc = F0, Fl = γ andF1 = 2/3

√
β. Note that theγ δ

term in (13) does not contribute to the equations of motion (12), but is responsible for the linear term in (14). The
dynamical content of the HSN normal form (12) can be understood by the following considerations. The phase-space
is separated into two regions by a separatrix (homoclinic orbit) that starts and ends at the hyperbolic fixed point.
Trajectories inside the separatrix remain bounded near the elliptic fixed point. If the system is taken beyond the
separatrix by a perturbation (e.g. thermal excitations), it will fall into unbounded (hyperbolic) trajectories. AsM

approachesMc, the bounded region around the elliptic fixed point is reduced and the flow becomes more unstable.
At M = Mc the elliptic fixed point meets the hyperbolic fixed point and the separatrix disappears. No stationary
flow can be formed forM > Mc. Note that the appropriate normal form is Hamiltonian because (5) is invariant
under the following time reversal transformation:

t → −t, ψ → ψ∗, x → −x. (15)

At M = Mpf (see Fig. 2), the unstable symmetric branch (dashed line) bifurcates at a pitchfork to a pair of
asymmetric branches (dotted line) [8]. It can be directly checked on our results (see Fig. 3 below) that the secondary
pitchfork bifurcation breaks they → −y symmetry of the flow.

Fig. 3. Stationary states forM = 0.24 andξ/d = 1/10: stable (A), one vortex unstable (B), two vortices unstable (C). The surface indicates the
fluid densityρ around the cylinder.
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Fig. 4. Saddle-node bifurcation Mach numberMc (×) and pitchfork bifurcation Mach numberMpf (+) as a function ofξ/d. The dotted curve
corresponds to a fit to the polynomial lawMc = K1(ξ/d)

K2 +Mc
Euler with K1 = 0.322, K2 = 0.615 andMc

Euler = 0.35. The dashed lines
M∗

1 ≈ 0.4264 andM∗
2 ≈ 0.3903 correspond, respectively, to first-and second-order compressible corrections to theMc = 0.5 critical velocity

computed using a local sonic criterion for an incompressible flow (see text). Note that the agreement, that is claimed to exist in [5,6], between
theξ/d = 1/10 numerical result andM∗

1 is shown to be spurious.

In Fig. 2, the bifurcation diagrams are presented in the same conditions as those of Fig. 1, but for the functional
E(M)− E(0) (change ofE relative to zero Mach number) as a function ofM. The pitchfork bifurcation is marked
byMpf in theξ/d = 1/5 andξ/d = 1/10 case. For smaller values ofξ/d, the pitchfork and the saddle-node Mach
numbers can no longer be resolved.

From Figs. 1 and 2, it is apparent that asξ/d → 0, the three branches approach each other and the pitchfork gets
closer to the saddle-node. This behaviour is compatible with an Eulerian flow limit forξ/d = 0.

By visualizing the stationary solutions of the NLSE we can relate the branches of Figs. 1 and 2 to the presence
of vortices. Fig. 3 shows the densityρ = |ψ |2 of typical stationary solutions forM = 0.24 andξ/d = 1/10. It is
apparent by inspection of the figure that the stable branch is irrotational (Fig. 3A) while the unstable branch (B)
corresponds to a one vortex solution, and the unstable branch (C) to a two vortex solution. AsM is increased, the
distance between the vortices and the obstacle on the unstable branches (Fig. 3B and C) decreases. At a certain
M < Mc, they disappear on the surface on the cylinder, generating an irrotational flow. See [8] for a detailed study
of the Mach number at which the vortex emerges from the disc.

We now study the dependence ofξ/d on the main features of the bifurcation diagram. In Fig. 4 the saddle-node
Mach numberMc (crosses) and the pitchfork Mach numberMpf (pluses) are displayed as a function ofξ/d. As
we have already pointed out, whenξ/d is decreased,Mc andMpf become indistinguishable. In the limit where
ξ/d = 0, the critical Mach numberMc will be that of an Eulerian flowMc

Euler.
This convergence to the Eulerian critical velocity can be characterized by fitting the polynomial lawMc =

K1(ξ/d)
K2 +Mc

Euler to theMc results. The dotted line in Fig. 4 shows such a fit yieldingK1 = 0.322, K2 = 0.615
andMc

Euler = 0.35. This result is compatible with the analytical approximate results presented in [13,14] that
predicts a square root (K2 = 0.5) polynomial dependence onξ/d.

The dashed lineM∗
1 in Fig. 4 corresponds to the critical velocityMc = √

2/11 obtained in [5] by applying a
local sonic criterion through the following procedure. Neglecting the quantum pressure term, the continuity (8) and
Bernoulli (9) equations for a stationary flow become

∇ · (ρ∇φ′) = 0, (16)
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c2(ρ − ρ∞) = |U|2
2

− (∇φ′)2

2
, (17)

where a new phase variableφ′ = φ − Ux has been defined so that the local velocity can be expressed asv = ∇φ′

(see Eq. (7)). This system together with the appropriate boundary conditions limx→∞φ′ = −U and∇n̂φ′ = 0
(where∇n̂ stands for the derivative ofφ′ in the direction perpendicular to the surface of the disc) can be solved by
an iterative scheme.

The first step consists in considering the density constant. The continuity equation is then simply a harmonic
equation for the phase. Its solution satisfying the corresponding boundary conditions is readily found to be
[1]:

φ′
0 = −|U| cos(θ)

[
r + (d/2)2

r

]
, (18)

wherer andθ are the standard polar coordinates with origin at the centre of the disc. This solution corresponds
to a flow velocity fieldv = ∇φ′

0 with maximums located atθ = ±π/2 and equal to 2|U|. Introducingφ′
0 into the

Bernoulli equation (17) gives the first correction to the local densityρ. The local sound speed can then be computed
using Eq. (11):c = √

ρ. By supposing that the stationary solutions disappear when the local velocity is larger than
the local speed of sound (Landau’s sonic criterion) it is then straightforward to obtain a first-order approximation
to the saddle-node Mach number asM∗

1 = √
2/11 ≈ 0.4264 [5].

This approximation for the critical velocity can be improved by another iteration. Solving the continuity equation
with the corrected value of the densityρ yields an improved solution forφ′. Applying the local sonic criterion
for this new velocity field one obtains the next order approximation [15] to the critical Mach numberM∗

2 =√√
233− 11/(2

√
7) ≈ 0.3903.

Note that it is apparent in Fig. 4 that the agreement that is claimed to exist in [5] between theξ/d = 1/10
numerical computations and the first-order critical velocity approximationM∗

1 is a mere coincidence. Our present

Fig. 5. Energy gap between branches as a function ofξ/d. The (×) and (+) show the difference between the energyF of the one-vortex unstable
solution and the stable solution for Mach numbersM = Mc

ξ/d − 0.1 (×) andM = Mc
ξ/d − 0.08 (+) (whereMc

ξ/d is the critical Mach number

as a function ofξ/d). The dashed lines correspond to the polynomial fits1F = 92.2(ξ/d)2.04 for (×) and1F = 71.5(ξ/d)2.07 for (+). The
circles and the diamonds show the saddle-node amplitudesAF andAE for F andE , respectively (see text). The solid lines show the fits given
byAE = 1406(ξ/d)2.16 andAF = 932(ξ/d)2.17.
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results, based on theξ/d → 0 solutions of the NLSE, point to a limit velocity of aboutMc
Euler = 0.35. We have been

unable to find in the literature a computation of the precise value ofMc
Euler. The problem of its direct determination,

starting from the Euler equation, is left for future work.
Fig. 5 shows the variation withξ/d of the gap between the stable and unstable energy branches (see Figs. 1 and

2). At the tip of the bifurcation, we characterize this gap as a function ofξ/d by using two quantities. The circles
indicate the saddle-node amplitude1F = 2F1 (see Eq. (14)), and the diamonds present the saddle-node amplitude
1E = 2E1 corresponding to the scaling law for the functionalE : E+−E− = E1δ1/2. The gap is also characterized,
at a finite distance from the tip of the bifurcation, as theF energy difference between the one-vortex unstable solution
and the stable solution at Mach numbersM = Mc

ξ/d − 0.1 (indicated by crosses) andM = Mc
ξ/d − 0.08 (indicated

by pluses), where the vortices are well detached from the cylinder. Here,Mc
ξ/d is the critical Mach number of the

correspondingξ/d.
The data shown in Fig. 5 shows that our numerical results follow a(ξ/d)2 scaling. Note that this scaling law

was proposed in [6] based on the existence of detached vortices. It is therefore not surprising that it applies to the

Fig. 6. Evolution of the NLSE time integration at a supercritical Mach numberMc = 0.9 starting from asymmetric(two vortices) unstable
stationary solution atM = 0.7. Here,ξ/d = 1/20 andMc ≈ 0.382. The images correspond tot = 1 × 104 (A), t = 2 × 104 (B), t = 3 × 104

(C), t = 4 × 104 (D) in natural (ξ/c) time units. A clearly defined periodicity on the emission of+ and− vortex pairs appears.
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energy gap between the one-vortex unstable solution and the stable solution. Our results further demonstrate that
the(ξ/d)2 scaling also applies to the bifurcation amplitudesAF andAE .

3.2. Dynamical solutions

The stationary solutions obtained above provide us with adequate initial data for the study of dynamical solutions.
Indeed, after a small perturbation, their integration in time will generate a dynamical evolution with very small
acoustic emission. This procedure also provides an efficient way to start vortical dynamics in a controlled manner.

Figs. 6 and 7 show the evolution of the NLSE time integration at a supercritical Mach numberMc = 0.9 that is
obtained starting, respectively, from a two-vortex and one-vortex unstable stationary solution. While Fig. 6 displays
a clearly defined periodicity on the emission of+ and− vortex pairs, Fig. 7 shows a disorganized wake. Indeed,
initial condition given by the one-vortex unstable stationary solution is essentially different from the two-vortex

Fig. 7. Evolution of the NLSE time integration, at a supercritical Mach numberMc = 0.9 starting from anonsymmetric(one vortex) unstable
stationary solution atM = 0.7. Here,ξ/d = 1/20 andMc ≈ 0.382. The images correspond to the same times as in Fig. 6. Since this initial
condition presents a nonzero circulation around the cylinder (in contrast with the two-vortex unstable initial condition shown in Fig. 6), the
perturbation of this solution produces a peculiar pattern of vortex emission:+,−,−,+,+,−,−,+,+, etc. The circulation around the cylinder
oscillates symmetrically about 0. The resulting wake is extremely disorganized, in sharp contrast with Fig. 6.
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Fig. 8. Vortex emission frequency as a function ofδsp = (M −Mc)/Mc � 1 (with Mc = 0.3817) for a symmetric wake (as in Fig. 7) and

ξ/d = 1/20. The dashed line shows a fit of a polynomialν = K1δ
1/2
sp with K1 = 0.081. The obtainedδ1/2

sp law for the frequency is equivalent
to the one expected for a dissipative system.

one since it presents a nonzero circulation around the cylinder. This characteristic forces the emission of a second
(oppositely charged) vortex in order for the disc to have a zero circulation as the first vortex is dragged to infinity.
This pattern is followed by the emission of a second oppositely charged vortex. The system then goes through the
peculiar pattern of vortex emission given by+,−,−,+,+,−,−,+,+, etc. The circulation around the cylinder
therefore oscillates symmetrically about 0.

In order to study the behaviour of the frequency of vortex emission close to the bifurcation, we have measured it in
the symmetrical wake corresponding to Fig. 6 for several supercritical velocities (characterized byδsp = −δ > 0).

Our results, plotted in Fig. 8, are consistent with aδ1/2
sp scaling, which is unexpected in a Hamiltonian system.

The Andronov saddle-node and homoclinic bifurcations [16] have been shown recently to be relevant for the study
of dissipative extended systems [17,18]. The simple case of the saddle-node Andronov bifurcation is produced when
there exists an homoclinic connection at the bifurcation point. The homoclinic orbit generates a limit cycle whose
period diverges at the bifurcation with the timescaleτ of evolution near the bifurcation point. In the case of dissipative
systems whose saddle-node bifurcation is controlled by the normal form

meffQ̇ = δ − βQ2, (19)

the timescale is found to beτ ∼ δ
−1/2
sp by a simple scaling argument.

If the Hamiltonian normal form (12) is used instead of (19), the timescaleτ is given byτ ∼ δ
−1/4
sp . Thus, in

contradiction with the results presented in Fig. 8, the frequency should diverge asν ∼ δ
1/4
sp . The relevance of the

dissipative scaling to our numerical results can perhaps be understood by the following physical arguments. The
system is generating vortices that are carried away by the flow. It behaves in a dissipative way because the incident
kinetic energy of the flow is irreversibly transferred to the vortical wake. Indeed, a time reversal of the type defined
in (15) will transform the system into a highly nongeneric state that requires a very special preparation of the system.
However, the proper extension to infinite nondissipative systems (such as the one studied in the present paper) of
the dissipative system results such as those given in [17,18] remains to be done.

Note that Josserand et al. [14] have derived a more complex equation than the normal form (19) in an approach
that uses the Euler–Tricomi equation supplemented by suitable asymptotic corrections. This equation reads

Q̈+ iωQ̇ = δ −Q2. (20)
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This expression is time reversible and its stationary solutions correspond to a purely realQ. A formal argument
using the oscillating terṁQ would give the scalingν ∼ δ1/2 close toδ = 0. However, the instability in (20) can be
shown to be a Hopf bifurcation occurring atδ = ω4/64 with a finite frequency.

Our results were obtained in a close vicinity ofMc (δsp< 0.1). Note that in a much larger rangeδsp ∼ 1, it was
reported in [5] that a linear scaling onδ seems to be followed by the vortex emission frequency. This result is not
incompatible with our result because of the different range ofδ in which they, respectively, apply.

4. Conclusion

The main results presented in this paper are the scaling laws that characterize the dependence ofξ/d on the
bifurcation diagram for stationary solutions of the NLSE. The critical Mach numberMc, at which the stationary
stable and stationary unstable solutions meet in a saddle-node bifurcation was found to tend to the Eulerian critical
Mach numberMc

Euler ≈ 0.35, following aMc − Mc
Euler ∝ (ξ/d)0.615 law. This result is compatible with the

Mc −Mc
Euler ∝ (ξ/d)1/2 dependence predicted in [13,14]. The dependence ofξ/d on the energy gap between the

stable and unstable stationary solution (nucleation barrier) was studied near and far from the tip of the saddle-node
bifurcation. The bifurcation amplitude and the energy difference between the one-vortex unstable and the stable
branches at a given Mach number show that this nucleation energy barrier vanishes as(ξ/d)2.

Using slightly perturbed stationary solutions as initial conditions, the dynamics of solutions beyond the saddle-node
bifurcation was also studied. While a perturbed symmetric unstable stationary solution was found to generate a pe-
riodic vortex wake, a nonsymmetric solution produces a disorganized wake by generating vortices that follow the
emission pattern+,−,−,+,+,−,−,+,+, etc. The symmetric wake frequency was measured as a function of
the supercritical velocity parameter. The resulting scaling law was surprisingly found to correspond to the one of
dissipative systems.
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Appendix A. Numerical methods

In this appendix, we describe the numerical techniques used to compute the stationary and dynamical solutions
of Eq. (5).

Eq. (5) follows a conservative dynamics, and therefore does not relax towards a minimum of the energyF .
Nevertheless, the stable stationary states of (5) corresponding to a minimalF can be reached by integrating forward
the real Ginzburg–Landau equation (RGLE) associated to (5)

∂ψ

∂t
= − 1√

2cξ

δF

δψ̄
= c√

2ξ
(�(x)ψ − |ψ |2ψ + ξ2∇2ψ)− iU · ∇ψ. (A.1)

Indeed, (5) and (A.1) have the same stationary solutions. Eq. (A.1) is integrated to convergence by using the
Forward-Euler/Backwards-Euler time stepping scheme

ψ(t + σ) = 2−1
[
(1 − iσU · ∇) ψ(t)+ σ

c√
2ξ
(�(x)ψ(t)− |ψ(t)|2ψ(t))

]
, (A.2)
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where

2 =
[
1 − σ

cξ√
2
∇2

]
. (A.3)

The advantage of this time stepping method is that it converges to the stationary solution of (5) independent of the
time stepσ .

We use Newton’s method [19] to find unstable stationary solutions of the RGLE. In order to work with a
well-conditioned system [20], we search for fixed points of (A.2). Callingψ(j) the value of the fieldψ over thejth
collocation point, this is equivalent to findingψ∗ such that

f(j)(ψ
∗) ≡ ψ∗

(j)(t + σ)− ψ∗
(j)(t) = 0. (A.4)

Every Newton step thus requires the solution forδψ(k) of

∑
k

[
df(j)
dψ(k)

]
δψ(k) = −f(j)(ψ), (A.5)

which is done by an iterative bi-conjugate gradient method (BCGM) [21]. This method uses the direct application
of [df(j)/dψ(k)] over an arbitrary fieldϕ, given by

∑
k

[
df(j)
dψ(k)

]
ϕ(k) =

{
2−1

[
(1 − iσU · ∇) ϕ + σ

c√
2ξ
(�(|x|)ϕ − ψ2ϕ̄ − 2|ψ |2ϕ)

]
− ϕ

}
(j)

.

Since the convergence of the time step (A.2) does not depend onσ , the roots found through this Newton iteration
are also independent ofσ . Therefore,σ becomes a free parameter that can be used to adjust the preconditioning of
the system in order to optimize the convergence of the BCGM [20].

We use standard Fourier pseudo spectral methods [22]. Typical convergences of the Newton and bi-conjugate
gradient iterations are shown in Figs. 9 and 10. The computer resources needed to generate the bifurcation diagrams
presented below on a CRAY C90 are summarized in Table 1.

Fig. 9. Two typical examples of the Newton method convergence towards the solution of Eq. (A.4) forξ/d = 1/10 and a fieldψ(j) discretized
into n = 128× 64 = 8190 collocation points. The error measure is given by

∑n
j=1f

2
(j)(ψ)/n. The convergence is faster than exponential, as

expected for a Newton method.
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Fig. 10. Two typical examples of a bi-conjugate gradient method convergence corresponding to the case shown in Fig. 9. The convergence of
the relative error in thex solution ofAx=b is given by|Ax − b|/|b|, whereA = [df(j)/dψ(k)], b = −f(j)(ψ) andx = δψ(k) (see Eq. (A.5)).

Note that it is possible to reduce the precision required for the BCGM routine down to∼ 10−1. In this
case, the convergence of (A.5) becomes simply exponential. Such a quasi-Newton scheme was used forξ/d ≤
1/40.

The time integration of the NLSE is done by using a fractional step (Operator-Splitting) method [23]. We construct
an exponential operator generating a forward time evolution. We divide this operator into one part that is computed
in spectral space

TL(k,1t) = exp

[
i

(
c√
2ξ

+ U · k − k2
)
1t

]
, (A.6)

and another part that is computed in physical space

TNL(x,1t) = exp

[
−i

(
V (x)+ c√

2ξ
|ψ(x, t)|2

)
1t

]
. (A.7)

The time step is then given by

ψ̂(k, t +1t) = TL(k,1t/2)F
[
TNL(x,1t)F−1[TL(k,1t/2)ψ̂(k, t)]

]
, (A.8)

whereF andF−1 represent the direct and inverse Fourier transforms, respectively.

Table 1

ξ/d Resolution Time

1/5 64×32 5 min
1/10 128×64 30 min
1/20 256×128 2 h
1/40 512×256 10 h
1/80 1024×512 50 h
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