1= PHYSICA

ELSEVIER Physica D 140 (2000) 126-140

N,

www.elsevier.com/locate/physd

Scaling laws for vortical nucleation solutions in a model of superflow

Cristian Huepe, Marc-Etienne Brachet
Laboratoire de Physique Statistique de I'Ecole Normale Supérieure, associé au CNRS et aux Universités Paris 6 et 7, 24 rue Lhomond,
75231 Paris Cedex 05, France

Received 9 June 1999; received in revised form 28 October 1999; accepted 11 November 1999
Communicated by A.C. Newell

Abstract

The bifurcation diagram corresponding to stationary solutions of the nonlinear Schrédinger equation describing a superflow
around a disc is numerically computed using continuation techniques. When the Mach number is varied, it is found that the
stable and unstable (nucleation) branches are connected through a primary saddle-node and a secondary pitchfork bifurcation.
Computations are carried out for values of the r&tid of the coherence length to the diameter of the disc in the range
1/5-1/80. It is found that the critical velocity converges §grl — 0 to an Eulerian value, with a scaling compatible with
previous investigations. The energy barrier for nucleation solutions is found to scgle@mamical solutions are studied
and the frequency of supercritical vortex shedding is found to scale as the square root of the bifurcation parameter. © 2000
Elsevier Science B.V. All rights reserved.

PACS:47.37; 67.40; 05.45; 02.30.H 02.30.J
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1. Introduction

An open problem in the theory of superfluids is the determination of the critical velocity at which superfluidity
breaks down [1,2]. Mathematically, at temperatures low enough for the normal component to be neglected, su-
perfluids are described by the nonlinear Schrodinger equation (NLSE) [3,4]. Much work has been devoted to the
determination of the critical velocity in this framework. The superflow around a cylinder was studied using direct
simulations of NLSE by Frisch, Pomeau and Rica. They observed a transition to a dissipative regime involving
vortex nucleation [5] and interpreted the results of their direct simulations in terms of a saddle-node bifurcation
of the stationary solutions of the NLSE [6]. A saddle-node bifurcation was explicitly found by Hakim [7] when
studying the stability of unidimensional NLSE flows across obstacles described by a potential. He obtained analyt-
ical expressions for the bifurcating stationary solutions and studied the transitional dynamics characterized by the
generation of grey solitons.
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More recently, using numerical continuation techniques, we were able to obtain the complete bifurcation diagram
corresponding to the 2D superflow around a disc [8]. It was found that the stable (elliptic) branch and the unstable
(hyperbolic) branch are connected through a saddle-node bifurcation. The unstable branch generates, after a sec-
ondary pitchfork bifurcation, solutions that are asymmetric with respect to the diameter of the disc. The symmetric
and asymmetric unstable solutions were found to contain, respectively, two and one vortices. Note that the flow
around a cylindrical obstacle is governed by two dimensionless parameters: the Mach Mimbgs|/c (where
c is the speed of sound) associated to the flow veldtlfyand the ratio of the superfluid coherence leriggth the
diameter of the disd. It turns out that /d was arbitrarily fixed at /d = 1/10 in the numerical studies reported
above. It should be stressed, however, that the coherence Eeisyghmicroscopic length scale of the order of 1 A
in the case of superfluitHe. Note that another experimental context should be mentioned at this point: trapped
Bose—Einstein condensed gases. Recent experiments were performed by moving a blue detuned laser beam through
the condensate at different velocities. The ratio of the healing length to the diameter of the begrd wat/10
[9].

The main motivation of the present work is to study the scaling of the bifurcation diagramgyidiéndecreased.

The critical dynamics of solutions will also be studied using slightly perturbed unstable solutions as initial data.
This paper is organized as follows. In Section 2, we introduce the formulation of NLSE that includes a potential
used to model a disc moving in a superfluid. Our results are given in Section 3, and Section 4 is our conclusion.
The appendix describes the numerical techniques used to compute the stationary and dynamical solutions of the
NLSE.

2. Definition of the system

In this section, we present the hydrodynamic form of the nonlinear Schrodinger equation that models the effect
of a moving disc of diametef in a two-dimensional superfluid at rest.
We first define the following action functional:

.A=/d4¢2f/d%%(&%é—w%?)—f} 1)

wherey is a complex fieldy its conjugate andF is the energy of the system. We show at the end of this section
thatc and¢ are the physical parameters characterizing the superfluid. They correspond to the speed af)sound (
for a fluid with mean densityg = 1, and to the coherence leng#) (

The energyF reads
F=€-P.U @
with
2 2 2 1 4 2 2
E=c /dx([—l-l-V(X)]WI + 5101+ £V ) 3)
P = V2t / dzxié (¥Vy —9Vy), )

where the potentidl (r) = (Vo/2)(tanh [4r —d/2)/A] —1) is used to represent the disc. The calculations presented
below were realized witlyo = 10 andA = &. With these values, the fluid density inside the disc is neglectable and
the density boundary layer is well resolved with a mesh adapted to the coherence length.
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The Euler—Lagrange equation corresponding to (1) furnishes the following NLSE:

%—‘f=f7'céi—f;=i[L2§<Q<x>w—|w|2w+§zvzw>+U-w, (5)
whereQ2(x) = 1 — V(|x]).

Note that thdJ - Vi term in (5) could be removed by the change of variabte x’ + Uz. Expressed in thg’
coordinates, the disc would be described by the poteftia) = 2 (x’ + Ur) and thus be moving at a constant
velocity U. However, for convenience, we keep theVyr term in (5) so that stationary solutions of (5) correspond
to solutions of the NLSE equation with the disc in uniform translation indt@ordinates.

The NLSE (5) can be mapped into two hydrodynamical equations by applying Madelung’s transformation [2,10]:

i
= exp — J. 6
o= ron( ) o
The real and imaginary parts of the NLSE produce for a fluid of depségd velocity
v=V¢-U, (1)

the following equations of motion:

ap _
TS + V(pv) =0, (8)
a¢ 1 2 2 2 ZVZ\/ﬁ_

In the coordinate system that follows the obstacle, these equations correspond to the continuity equation and
to the Bernoulli equation [1] (with a supplementagyantum pressuréerm czézvzﬁ/ﬁ) for an isentropic,
compressible and irrotational flow. Note that in the limit whefd — 0, the quantum pressure term vanishes and
we recover the system of equations describing an Eulerian flow.

Using this identification, one can derive the dispersion relation for acoustic waves propagating around a constant
density levelp = pg as [11]:

2
o = [ c?pok? + %czk“. (10)

For small wave numbers, one recovers the usual sound wave propagation. The speed of sound is uniquely defined
in terms of the fluid mean densipp as

lim — = ¢/, (11)

which justifies our definition of as the speed of sound wheg = 1. For small wave number acoustic waves, the
last term of (9) does not play a significant role. The length scale at which the dispersive term becomes noticeable
corresponds to the coherence length
Note that there also exist vortical stationary solutions of (5) corresponding to topological defects (zeros) of the
complex fieldy. Close to the centre of the vortex, the density behaves-as-2. The tangential velocity is given
by v = +/2c£/r, and the characteristic size of the core of the vortex is gives.hus, the velocity circulation
around a vortex is given by = 27 +/2c£. For a Bose condensate of particles of masthe quantum of circulation
has the Onsager—Feynman value- 4 /m (with & the Planck’s constant) [11].
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3. Results

We now turn to our numerical results on the properties of the stationary and dynamical solutions of (5). In
Section 3.1, using the Mach numbir= |U|/c as a control parameter, we compute the bifurcation diagrams of the
stationary solutions for various values&fd. In Section 3.2, we use these solutions to construct initial conditions
that are well adapted to the controlled study of the dynamical evolution through time integration.

3.1. Stationary solutions

The valueF (M) — F(0) (change of the energy relative to zero Mach number) found by our numerical procedure
is displayed in Fig. 1 as a function of the Mach numbgfor various values of /d. As can be seen by inspection
of the figure, for eacl§/d, the stable branch (solid line) disappears with the unstable solution (dashed line) at a
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Fig. 1. Top: plots of the energy of the stationary stat& /) — F(0)) versus Mach numbetf = |U|/c) for §/d = 1/5 (i), £/d = 1/10

(i), £/d = 1/20 (iii), £/d = 1/40 (iv) andé/d = 1/80 (v). For eaclt/d there is a stable branch (solid line) and two unstable branches
corresponding to asymmetric (dotted line) and symmetric (dashed line) solutions. The Mach values at which numerical computations were
performed are marked by)on curves i (top) and iii (bottom) only. Bottom: blow up of the inset shown in the top figure.
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saddle-node bifurcation whe = M°C. There are no stationary solutions beyond this point. The engrggs a
cusp at the bifurcation point.
This qualitative behaviour is the generic signature of a Hamiltonian saddle node (HSN) bifurcation defined, at

lowest order, by the normal form [12]:
metQ =8 — BO7, (12)

wheres = (1— M/MF) is the bifurcation parameter. Her@,is a critical amplitude and the parametgrandm s
can be linked to critical scaling laws. Indeed, defining the appropriate energy

F=Fo+metQ%/2—80+ B03/3— 8, (13)
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Fig. 2. Top: plots of the functional(M) — £(0)) versus Mach numbe| = |U|/c) for &/d = 1/5 (i), £/d = 1/10 (i), £/d = 1/20 (iii),

&/d = 1/40 (iv) and¢ /d = 1/80 (v). For eacl§ /d there is a stable branch (solid line) and two unstable branches corresponding to asymmetric
(dotted line) and symmetric (dashed line) solutions. The pitchfork bifurcation is markatPbgn curves i and ii. The Mach values at which
numerical computations were performed are markedbyit curves i (top) and iii (bottom) only. Bottom: blow up of the inset shown in the
top figure.
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it is straightforward to derive from (12), close to the critical pdirt 0, the universal scaling law
Fi = Fe— Fid + Fas¥?, (14)

where F_ is the energy of the stable stationary field aAd is the energy of the unstable stationary field. The
constants in (14) are related to those in (12) by the relatigns Fp, F = y andFa = 2/3/B. Note that the/§

term in (13) does not contribute to the equations of motion (12), but is responsible for the linear term in (14). The
dynamical content of the HSN normal form (12) can be understood by the following considerations. The phase-space
is separated into two regions by a separatrix (homoclinic orbit) that starts and ends at the hyperbolic fixed point.
Trajectories inside the separatrix remain bounded near the elliptic fixed point. If the system is taken beyond the
separatrix by a perturbation (e.g. thermal excitations), it will fall into unbounded (hyperbolic) trajectorigs. As
approachea/¢, the bounded region around the elliptic fixed point is reduced and the flow becomes more unstable.
At M = MC the elliptic fixed point meets the hyperbolic fixed point and the separatrix disappears. No stationary
flow can be formed fo > MC. Note that the appropriate normal form is Hamiltonian because (5) is invariant
under the following time reversal transformation:

t— —t, ¥ —>vY*, x— —x. (15)

At M = MP' (see Fig. 2), the unstable symmetric branch (dashed line) bifurcates at a pitchfork to a pair of
asymmetric branches (dotted line) [8]. It can be directly checked on our results (see Fig. 3 below) that the secondary
pitchfork bifurcation breaks the — —y symmetry of the flow.

Fig. 3. Stationary states faf = 0.24 ands /d = 1/10: stable (A), one vortex unstable (B), two vortices unstable (C). The surface indicates the
fluid densityp around the cylinder.
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Fig. 4. Saddle-node bifurcation Mach numiéf (x) and pitchfork bifurcation Mach numbe#’ (+) as a function of /d. The dotted curve
corresponds to a fit to the polynomial laW® = K;(£/d)%2 + ME . with K3 = 0.322 K, = 0.615 andM¢ . = 0.35. The dashed lines

Euler Euler
M; ~ 0.4264 andM; ~ 0.3903 correspond, respectively, to first-and second-order compressible correctionsfto+h@.5 critical velocity

computed using a local sonic criterion for an incompressible flow (see text). Note that the agreement, that is claimed to exist in [5,6], between
the& /d = 1/10 numerical result anglf; is shown to be spurious.

In Fig. 2, the bifurcation diagrams are presented in the same conditions as those of Fig. 1, but for the functional
E(M) — £(0) (change of relative to zero Mach number) as a functionMf The pitchfork bifurcation is marked
by MP' inthe&/d = 1/5 andé /d = 1/10 case. For smaller valuesifd, the pitchfork and the saddle-node Mach
numbers can no longer be resolved.

From Figs. 1 and 2, it is apparent thattad — 0, the three branches approach each other and the pitchfork gets
closer to the saddle-node. This behaviour is compatible with an Eulerian flow linif f#os= 0.

By visualizing the stationary solutions of the NLSE we can relate the branches of Figs. 1 and 2 to the presence
of vortices. Fig. 3 shows the density= |y |2 of typical stationary solutions fa = 0.24 andt/d = 1/10. ltis
apparent by inspection of the figure that the stable branch is irrotational (Fig. 3A) while the unstable branch (B)
corresponds to a one vortex solution, and the unstable branch (C) to a two vortex solutidrisAscreased, the
distance between the vortices and the obstacle on the unstable branches (Fig. 3B and C) decreases. At a certain
M < MC, they disappear on the surface on the cylinder, generating an irrotational flow. See [8] for a detailed study
of the Mach number at which the vortex emerges from the disc.

We now study the dependence&fi on the main features of the bifurcation diagram. In Fig. 4 the saddle-node
Mach numbemV¢ (crosses) and the pitchfork Mach numbéP! (pluses) are displayed as a functionsgfl. As
we have already pointed out, whépd is decreasedy ¢ and MP' become indistinguishable. In the limit where
£/d = 0, the critical Mach numbe#/© will be that of an Eulerian flow/g .-

This convergence to the Eulerian critical velocity can be characterized by fitting the polynomiaf9aw
K1(&/d)%2 + ME o, to theM® results. The dotted line in Fig. 4 shows such a fit yieldig= 0.322, K, = 0.615
and Mg ., = 0.35. This result is compatible with the analytical approximate results presented in [13,14] that
predicts a square rookf = 0.5) polynomial dependence dnd.

The dashed lin@/; in Fig. 4 corresponds to the critical velocity® = ,/2/11 obtained in [5] by applying a
local sonic criterion through the following procedure. Neglecting the quantum pressure term, the continuity (8) and
Bernoulli (9) equations for a stationary flow become

V- (pVe) =0, (16)
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U (V¢)?
2 2

where a new phase varialpé = ¢ — Ux has been defined so that the local velocity can be expresseg a8¢’

(see Eq. (7)). This system together with the appropriate boundary conditiopsdigf = —U andV;¢’ = 0

(whereV;, stands for the derivative @f in the direction perpendicular to the surface of the disc) can be solved by

an iterative scheme.
The first step consists in considering the density constant. The continuity equation is then simply a harmonic
equation for the phase. Its solution satisfying the corresponding boundary conditions is readily found to be

[1]:

17

(0 — poo) =

2
¢o = —|U| cog6) |:r + (d/rZ) } , (18)
wherer andé are the standard polar coordinates with origin at the centre of the disc. This solution corresponds
to a flow velocity fieldv = V¢ with maximums located a& = +x/2 and equal to @J|. Introducinggy, into the
Bernoulli equation (17) gives the first correction to the local densifjhe local sound speed can then be computed
using Eq. (11)c = ,/p. By supposing that the stationary solutions disappear when the local velocity is larger than
the local speed of sound (Landau’s sonic criterion) it is then straightforward to obtain a first-order approximation
to the saddle-node Mach number®$ = /2/11~ 0.4264 [5].

This approximation for the critical velocity can be improved by another iteration. Solving the continuity equation
with the corrected value of the densityyields an improved solution fap’. Applying the local sonic criterion
for this new velocity field one obtains the next order approximation [15] to the critical Mach nubiber
V/233—11/(2/7) ~ 0.3903.

Note that it is apparent in Fig. 4 that the agreement that is claimed to exist in [5] betwegpdthe 1/10
numerical computations and the first-order critical velocity approximatfgris a mere coincidence. Our present

&d

Fig. 5. Energy gap between branches as a functigri@éfThe (x) and @) show the difference between the enefgpf the one-vortex unstable
solution and the stable solution for Mach numb&fs= Mg/d —0.1 (x)andM = M:-C/d —0.08 (+) (WhereMg/d is the critical Mach number
as a function ot /d). The dashed lines correspond to the polynomialfifs = 92.2(¢/d)%% for (x) andAF = 71.5(¢/d)%%7 for (+). The
circles and the diamonds show the saddle-node amplitdgeand A¢ for F and€&, respectively (see text). The solid lines show the fits given
by As = 1406 /d)%16 andA r = 932(¢/d)%17.
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results, based on ti§gd — 0 solutions of the NLSE, point to a limit velocity of abau ., = 0.35. We have been
unable to find in the literature a computation of the precise valuggf,,. The problem of its direct determination,
starting from the Euler equation, is left for future work.

Fig. 5 shows the variation with/d of the gap between the stable and unstable energy branches (see Figs. 1 and
2). At the tip of the bifurcation, we characterize this gap as a functidyy éfby using two quantities. The circles
indicate the saddle-node amplituder = 2F 4 (see Eq. (14)), and the diamonds present the saddle-node amplitude
AE = 2€, corresponding to the scaling law for the functioial £, —£_ = £,8/2. The gap is also characterized,
at afinite distance from the tip of the bifurcation, asfhenergy difference between the one-vortex unstable solution
and the stable solution at Mach numbgfs= Mg/d — 0.1 (indicated by crosses) ad = M%?/d —0.08 (indicated
by pluses), where the vortices are well detached from the cylinder. I?d@’r/g,is the critical Mach number of the
corresponding /d.

The data shown in Fig. 5 shows that our numerical results folla#/d)? scaling. Note that this scaling law
was proposed in [6] based on the existence of detached vortices. It is therefore not surprising that it applies to the
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Fig. 6. Evolution of the NLSE time integration at a supercritical Mach nunit€r= 0.9 starting from asymmetrigtwo vortices) unstable
stationary solution at/ = 0.7. Here,£/d = 1/20 andM® ~ 0.382. The images correspondrte= 1 x 10* (A), t = 2 x 10* (B), t = 3 x 10*
(C),t = 4 x 10* (D) in natural €/c) time units. A clearly defined periodicity on the emissiontoind— vortex pairs appears.
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energy gap between the one-vortex unstable solution and the stable solution. Our results further demonstrate that
the (¢ /d)? scaling also applies to the bifurcation amplitudes andA¢.

3.2. Dynamical solutions

The stationary solutions obtained above provide us with adequate initial data for the study of dynamical solutions.
Indeed, after a small perturbation, their integration in time will generate a dynamical evolution with very small
acoustic emission. This procedure also provides an efficient way to start vortical dynamics in a controlled manner.

Figs. 6 and 7 show the evolution of the NLSE time integration at a supercritical Mach niitber0.9 that is
obtained starting, respectively, from a two-vortex and one-vortex unstable stationary solution. While Fig. 6 displays
a clearly defined periodicity on the emission-efand— vortex pairs, Fig. 7 shows a disorganized wake. Indeed,
initial condition given by the one-vortex unstable stationary solution is essentially different from the two-vortex

20

T
A o U H1s
-
o -4 10
= +® -
- 40
o - 4 -s
- 4 -10
- - -1s8
L L L 1 .20
-80 60 -40 20 o 20
T T T T ey 20
L U
B b
- < 10
+
L [} [~y 4s
i ° © 1°
L o =2 1
- -10
o - -15
L L =20
80 -60 -40 -20 o 20
T T 20
C| 7 =
G
- -1 10
+o .
B (0] + @ 18
- @ —q0
L ® 4.5
- H -10
L < -15
" ) . n 20
-80 -60 -40 -20 o 20
T T T T — 20
D - U 41s
+, I
- o 4 10
o @ o 4s
5 © Jiag
@
o = - -10
L 4 -1s
L s L L .20
-80 -60 -40 -20 o 20

Fig. 7. Evolution of the NLSE time integration, at a supercritical Mach nunM®e= 0.9 starting from anonsymmetri¢one vortex) unstable
stationary solution aM = 0.7. Here,£/d = 1/20 andM® ~ 0.382. The images correspond to the same times as in Fig. 6. Since this initial
condition presents a nonzero circulation around the cylinder (in contrast with the two-vortex unstable initial condition shown in Fig. 6), the
perturbation of this solution produces a peculiar pattern of vortex emission; —, +, +, —, —, +, +, etc. The circulation around the cylinder
oscillates symmetrically about 0. The resulting wake is extremely disorganized, in sharp contrast with Fig. 6.
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Fig. 8. Vortex emission frequency as a functionsgf = (M — M©)/M°® <« 1 (with M® = 0.3817) for a symmetric wake (as in Fig. 7) and

&/d = 1/20. The dashed line shows a fit of a polynomia+ Klaé{f with K1 = 0.081. The obta\ineﬁslr/,2 law for the frequency is equivalent
to the one expected for a dissipative system.

one since it presents a nonzero circulation around the cylinder. This characteristic forces the emission of a second
(oppositely charged) vortex in order for the disc to have a zero circulation as the first vortex is dragged to infinity.
This pattern is followed by the emission of a second oppositely charged vortex. The system then goes through the
peculiar pattern of vortex emission given By —, —, +, +, —, —, +, +, etc. The circulation around the cylinder
therefore oscillates symmetrically about O.

In order to study the behaviour of the frequency of vortex emission close to the bifurcation, we have measured itin
the symmetrical wake corresponding to Fig. 6 for several supercritical velocities (characterzga=by§ > 0).

Our results, plotted in Fig. 8, are consistent wim?é% scaling, which is unexpected in a Hamiltonian system.

The Andronov saddle-node and homoclinic bifurcations [16] have been shown recently to be relevant for the study
of dissipative extended systems [17,18]. The simple case of the saddle-node Andronov bifurcation is produced when
there exists an homoclinic connection at the bifurcation point. The homoclinic orbit generates a limit cycle whose
period diverges at the bifurcation with the timescaté evolution near the bifurcation point. In the case of dissipative
systems whose saddle-node bifurcation is controlled by the normal form

meQ = 8 — BO?, (19)

the timescale is found to be~ 8§p1/2 by a simple scaling argument.

If the Hamiltonian normal form (12) is used instead of (19), the timesecategiven byt ~ 8s_pl/4. Thus, in
contradiction with the results presented in Fig. 8, the frequency should diverge«a?%,é“. The relevance of the
dissipative scaling to our numerical results can perhaps be understood by the following physical arguments. The
system is generating vortices that are carried away by the flow. It behaves in a dissipative way because the incident
kinetic energy of the flow is irreversibly transferred to the vortical wake. Indeed, a time reversal of the type defined
in (15) will transform the system into a highly nongeneric state that requires a very special preparation of the system.
However, the proper extension to infinite nondissipative systems (such as the one studied in the present paper) of
the dissipative system results such as those given in [17,18] remains to be done.

Note that Josserand et al. [14] have derived a more complex equation than the normal form (19) in an approach
that uses the Euler—Tricomi equation supplemented by suitable asymptotic corrections. This equation reads

0+iwQ =5— 02 (20)
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This expression is time reversible and its stationary solutions correspond to a purey. iedbrmal argument
using the oscillating tern® would give the scaling ~ §/2 close tos = 0. However, the instability in (20) can be
shown to be a Hopf bifurcation occurring&t= »?/64 with a finite frequency.

Our results were obtained in a close vicinityf (5sp < 0.1). Note that in a much larger rangg, ~ 1, it was
reported in [5] that a linear scaling dnseems to be followed by the vortex emission frequency. This result is not
incompatible with our result because of the different rang&iofwhich they, respectively, apply.

4. Conclusion

The main results presented in this paper are the scaling laws that characterize the depengéaham dhe
bifurcation diagram for stationary solutions of the NLSE. The critical Mach numiferat which the stationary
stable and stationary unstable solutions meet in a saddle-node bifurcation was found to tend to the Eulerian critical
Mach numberMg ., ~ 0.35, following aM® — Mg, « (£/d)*515 law. This result is compatible with the
M® — ME jor (¢/d)Y? dependence predicted in [13,14]. The dependenégdbn the energy gap between the
stable and unstable stationary solution (nucleation barrier) was studied near and far from the tip of the saddle-node
bifurcation. The bifurcation amplitude and the energy difference between the one-vortex unstable and the stable
branches at a given Mach number show that this nucleation energy barrier vanighe#)as

Using slightly perturbed stationary solutions as initial conditions, the dynamics of solutions beyond the saddle-node
bifurcation was also studied. While a perturbed symmetric unstable stationary solution was found to generate a pe-
riodic vortex wake, a nonsymmetric solution produces a disorganized wake by generating vortices that follow the
emission pattera-, —, —, +, +, —, —, +, +, etc. The symmetric wake frequency was measured as a function of
the supercritical velocity parameter. The resulting scaling law was surprisingly found to correspond to the one of
dissipative systems.
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Appendix A. Numerical methods

In this appendix, we describe the numerical techniques used to compute the stationary and dynamical solutions
of Eq. (5).

Eqg. (5) follows a conservative dynamics, and therefore does not relax towards a minimum of the Energy
Nevertheless, the stable stationary states of (5) corresponding to a mifiicaalbe reached by integrating forward
the real Ginzburg—Landau equation (RGLE) associated to (5)

Iy 1 §F ¢

0 V28 V2
Indeed, (5) and (A.1) have the same stationary solutions. Eq. (A.1) is integrated to convergence by using the
Forward-Euler/Backwards-Euler time stepping scheme

(QOOY — Y2y + E2V2y) —iU - V. (A.1)

c

v(i+o)=0""1 [(1— iocU - V) (1) +aﬁ§

QX)) - Iw(t)lztb(t))} . (A.2)
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where

N
O_|:1 ﬁv] (A3)

The advantage of this time stepping method is that it converges to the stationary solution of (5) independent of the
time stepo.

We use Newton's method [19] to find unstable stationary solutions of the RGLE. In order to work with a
well-conditioned system [20], we search for fixed points of (A.2). Calling the value of the fields over thejth
collocation point, this is equivalent to finding* such that

fiH W) =¥ +0) — g (1) =0, (A.4)
Every Newton step thus requires the solution&@yy, of
df:
> [%} 8wy = —fiH (W), (A.5)
LA

which is done by an iterative bi-conjugate gradient method (BCGM) [21]. This method uses the direct application
of [d f(;)/d¥ )] over an arbitrary fieldp, given by

3 [df(” } Py = {®—1 [(1 —ioU- V) g+ o0 —=—(Q(xDy — ¥% — 2|w|2¢)] - w} .
o LdVw V2 5

Since the convergence of the time step (A.2) does not depend e roots found through this Newton iteration
are also independent of Thereforeg becomes a free parameter that can be used to adjust the preconditioning of
the system in order to optimize the convergence of the BCGM [20].

We use standard Fourier pseudo spectral methods [22]. Typical convergences of the Newton and bi-conjugate
gradientiterations are shown in Figs. 9 and 10. The computer resources needed to generate the bifurcation diagrams
presented below on a CRAY C90 are summarized in Table 1.

Iteration

Fig. 9. Two typical examples of the Newton method convergence towards the solution of Eq. (A.AJ fer1/10 and a field);, discretized
inton = 128 x 64 = 8190 collocation points. The error measure is give@y=1f(2j) (y)/n. The convergence is faster than exponential, as
expected for a Newton method.
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Fig. 10. Two typical examples of a bi-conjugate gradient method convergence corresponding to the case shown in Fig. 9. The convergence of
the relative error in the solution ofAx=b is given by|Ax — b|/|b|, whereA = [d ;) /dy k)], b= —f;)(¥) andx = sy, (see Eq. (A.5)).

Note that it is possible to reduce the precision required for the BCGM routine down i@ 1. In this
case, the convergence of (A.5) becomes simply exponential. Such a quasi-Newton scheme waséugeg for
1/40.

The time integration of the NLSE is done by using a fractional step (Operator-Splitting) method [23]. We construct
an exponential operator generating a forward time evolution. We divide this operator into one part that is computed
in spectral space

C
Tk, Ar) = expli —+U-k—k2>At}, A6
e an =i (A6)
and another part that is computed in physical space
C
TaL (X, At) = exp| —i [ VX) + — v (x, t 2>Ati|. A7
NL ( ) p[ ( ) \/thlj( )] (A7)

The time step is then given by

~

Pkt + AN =TLk, AYDF [T, ADFHTLK, At/2y (k. 0] (A8)

whereF andF ! represent the direct and inverse Fourier transforms, respectively.

Table 1

&/d Resolution Time
1/5 64x 32 5min
1/10 128<64 30 min
1/20 256¢128 2h
1/40 512« 256 10h

1/80 1024512 50h
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